Pages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 15714 result(s) returned

5.5.1 Non-uniform mixtures

Moulded rubbers and plastics are compounds of a polymer matrix and a variety of additives. The mixing history of the material before and during the moulding process can have a critical influence upon the final product properties. If mixing is done badly then the microstructure of the moulding can be non-uniform. Lack of uniformity can cause variations of strength and other physical properties within the moulding. The degree of dispersion or distribution of relatively minor quantities of addit
Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

5.5 Orientation in polymers

Viscoelasticity, like thermodynamics, is concerned with the correlation of controllable variables and bulk, macroscopic phenomena. But one unique feature of polymeric materials is that the molecular unit, the polymer chain, can be highly anisotropic, i.e. the chain can be fully extended, or curled up in an amorphous equilibrium state without any net orientation. In fact, unoriented polymer is rarely encountered in manufactured products because of the different ways it is processed to shape. B
Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

5.4 Dynamic mechanical properties

Viscoelasticity is not experienced just under quasi-static conditions, i.e. when the imposed stresses and strains are constant or change only slowly. Polymers, and particularly rubbers, are often deliberately selected for products which are to be subjected to dynamic mechanical loading. Tyres are an obvious example where the unique high strain elasticity and energy absorbing qualities of rubbers make them the natural choice of material. Stress analysis involves the use of the frequency-depend
Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

5.3.2 Effects of structure on viscoelasticity

If a single measurement of ER(t) is taken at an arbitrary but fixed interval of time, say 10 seconds, then it will vary with temperature in a way rather similar to the viscoelastic master curve. Such a curve for atactic polystyrene is shown in Figure 48, where the various zones of behaviour are identified. The effect of lightly crosslinking the material is to eliminate flow of any kind, extending
Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

5.3.1 Time-temperature superposition

For amorphous polymers above their Tgs, there is a convenient approximation which makes experiments easier. It is known as time-temperature superposition, and it relates time to temperature for viscoelastic materials. A sequence of measurements of ER (t) is performed at different temperatures at a fixed initial strain. The time scale might be limited between several seconds and say 100 hours. The curves obtained on uncrosslinked polyisobutylen
Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

5.3 Viscoelasticity and master curves

An immediate consequence of the viscoelasticity of polymers is that their deformations under stress are time dependent. If the imposed mechanical stress is held constant then the resultant strain will increase with time, i.e. the polymer creeps. If a constant deformation is imposed then the induced stress will relax with time (stress relaxation). Figure 46 shows the creep strain response to a constant stress followed
Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

5.2.2 Viscous behaviour

Viscous flow is not recoverable. When the stress is removed from a viscous fluid the strain remains. Hence the work energy is not returned to the forcing agency and has to be otherwise dissipated. Figure 45 illustrates this schematically by showing the strain response in such a viscous material when a simple stress history has been imposed upon it.


Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

5.2.1 Elastic and viscoelastic behaviour

When an elastic (not elastomeric, or long range elastic) material is stressed, there is an immediate and corresponding strain response. Figure 43 illustrates this by showing schematically the strain response to a particular stress history. Note that when the stress is removed the strain also returns to zero. So in a perfectly elastic material all the deformation is returned to the forcing agency. If this energy had
Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

5.2 Viscoelasticity of polymers

The simplest models for the deformation behaviour of an ideal material are those of Hookean linear elasticity in the solid state, and Newtonian linear viscosity in the liquid state. The end point of elastic deformation is either fracture or plastic flow, with the latter taking place at a constant yield stress in the ideal case. Whilst the behaviour of many real materials does approximate to these idealised models, that of polymers deviates markedly from them. In particular, their solid state
Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

5.1 The behaviour of polymers

The manufacture of polymer products is controlled by two often conflicting demands: the quality of the finished article in terms of its response to its environment and the ease or difficulty of processing it to shape. Both factors are controlled by what is termed viscoelasticity, namely, the behaviour of the polymer in response to applied stress or strain, and temperature. It is important to appreciate the duality in terms of the elastic and viscous responses of polymer solids and poly
Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

4.6.2 Material costs in manufacturing

For high added-value products like boats and cars, material costs form a relatively small proportion of total costs. For directly manufactured products, however, which are sold without much assembly or finishing, material costs do form a relatively large proportion of the total production cost. This applies particularly to polymeric containers for foods and drinks but not, for example, to containers for more sophisticated products like electronic or electrical goods. What is much more importa
Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

4.6.1 Prices of polymers

Prices of bulk and speciality polymers (Table 9) broadly reflect the degree of chemical processing and treatment needed to make them. Thus the polyolefins, which are directly polymerized from cracker streams, are generally the cheapest followed by vinyl derivatives of ethylene like PS and PVC. Derived polymers which require more complex treatment, such as ABS, PET and polyester thermosets are generally more expensive by f
Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

4.5.1 The copolymer equation

It can be shown that the rate of change of monomer concentration in any copolymerization is given by the equation

where [M1] and [M2] are the concentrations of monomers 1 and 2 at any instant and r1 and r2., are reactivity ratios. The reactivity ratios represent the rate at which one type of gr
Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

4.5 Copolymerization

The alloying of metals to improve their properties is widespread and although many polymers used today are relatively pure (e.g. polystyrene, nylon), an increasing number are mixtures of two or more polymers. As with metals, one reason for doing this is to increase the range of properties. The major practical problem, however, is that homopolymers blend together with difficulty and even where blends are possible, as in some thermoplastics, phase separation can occur readily.

This proble
Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

4.4 Step growth polymerization

Figure 41
Figure 41 Molecular mass distrib
Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

4.3.5 Co-ordination polymerization

While most free radical and ionic polymerizations are carried out homogeneously, there is another important class of reaction which is often performed with solid catalysts. These reactions, discovered in the mid-fifties, have revolutionized polymer manufacture by permitting much less severe polymerization conditions than with other systems and by allowing a greater degree of control of polymer structure. Ziegler-Natta catalysts, as they are called, will convert vinyl and diene monomers
Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

4.3.4 Ionic polymerization

Free radicals are indiscriminate in the compounds they attack, and their non-selective nature in polymerization reactions leads to problems such as chain branching and transfer which affect the structure of the polymer produced. Anionic polymerization overcomes many of these problems.

A typical commercial (but also see Box 8) anionic reaction is the polymerization of styrene using butyllithium, C4H9
Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

4.3.3 Termination and transfer

There are basically three ways in which chains terminate.

The first is known as coupling and occurs when two free radicals join together. This can be represented by the general equation

Such a mechanism significantly increases molecular mass, if it results in two polymer chains joining. This is the main mechanism which terminates the po
Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

4.3.2 Propagation

Once a small number of chains have been started, propagation involves successive addition of monomer units to achieve chain growth. At each step the free radical is regenerated as it reacts with the double bond. So in the case of styrene the propagation step is

The free radical can also add on in a different way to produce

</span><br><span class=Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

4.3.1 Initiation

Initiation is the mechanism which starts the polymerization process. Vinyl monomers are quite easily polymerized by a variety of activating methods. Styrene, for example, can be converted to solid polymer simply by heating, and ultraviolet light can have exactly the same effect. Usually, however, an activating agent is used. This is an unstable chemical which produces active species that attack the monomer. A good example is benzoyl peroxide which splits up when heated:

Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

Pages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786