Pages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 17395 result(s) returned

4.5 Photographs showing the detail: broken lugs

The bases of the columns to which they were attached originally on pier 3 deserve closer inspection. Even at this scale, the two fractured lugs where the tie bars were formerly fixed are clearly visible at the right-hand and left-hand sides of Figure 28 (arrowed). The southern (left-hand) column base in
Author(s): The Open University

4.2 An introduction to the Board of Trade photographs

It is important to bear in mind that these shots show the bridge remains in the state they were in just after the accident, and are almost exactly what the investigators would have seen when they inspected the bridge (see Input 8, linked below).

Click 'View document' below to open Input 8

4.1 Condition of the bridge: an overview

An investigation was put into motion by the Board of Trade (BoT) as soon as news of the catastrophe reached London. Three commissioners were appointed to consider the evidence. They proceeded at their task with haste, knowing the country looked to them for an explanation of the accident.

Fifty photographs were taken of the remains of the bridge about a week after the collapse at the request of the BoT enquiry team.

The photographs are vital evidence of the way the bridge piers fai
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.5 Sunday 28 December 1879

The morning of Sunday 28 December 1879 was quiet. When Captain Wright took his ferry boat, the Dundee, across the firth at 1.15 pm, he noted that the weather was good and the water was calm. The 4.15 pm crossing was just as uneventful, but the captain noted that the wind had freshened.

By 5.15 pm a gale was moving in from the west and the river, in the words of the captain ‘was getting up very fast’. The local shuttle train left Newport at 5.50 pm and arrived at Dundee statio
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Bridge girders

Figures 11 and 12, below, are photographs of the bridge taken from the south and north banks of the firth.

The girders of the bridge were supported on a total of 85 piers. The first 14 piers were made from brick and masonry, built up as a solid structure. The rest were fabricated from iron on masonry platforms, and by comparison, appeared rather insubstantial (Author(s): The Open University

3.1 Overview

The Tay Bridge disaster came towards the end of a period of intense development of the railway system in the UK. The bridge had materials that were well known. Cast iron was used for the columns and wrought iron for the trussed girders.

The construction of the bridge was, at the time, the largest single engineering project in Britain, the Tay estuary being about two miles wide near Dundee, and the bridge was the longest in the world.

In the shallower approaches in the estuary, con
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.4 Early disasters

Many of the earliest bridges were simply a wooden trestle type of construction, an efficient and easy-to-build structure, yet providing a secure and safe passage for heavy metal trains. Although we tend to associate such structures with the United States, they were in fact widely used in Britain in the early days of steam locomotion. However, they had a limited lifetime owing to rot, so were gradually replaced by wrought iron girder bridges, often laid on brick or masonry piers.

Designe
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.1 Overview

Catastrophes of human origin can be just as traumatic as those of natural origin, and are studied with even greater intensity for their causes. There are several ways disasters of human origin can be classified, depending on cause or size or origin. Another way of looking at them is by the kind of human activity – perhaps mining, fishing or transportation. Equally, disasters could be classified according to the kind of event that occurred during the accident – perhaps collision, sinking,
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.2 Earthquakes and volcanoes

The disasters that first come to mind are those where the earth itself changes in an unpredictable and sudden way:

  • earthquakes

  • volcanic eruptions

  • tidal waves

These natural phenomena are now known to be interconnected: earthquakes result from vast plates of the earth's crust meeting and moving against one another. Volcanic explosions, such as Krakatoa (1883) and Mount St Helens (1980) are also manifestations
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Learning outcomes

After studying this unit, you should be able to:

  • understand the basic structural issues of the Forth Road Bridge;

  • give examples of how engineers are trying to alleviate the wear and tear on the bridge.


Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Acknowledgements

The following material is Proprietary (see terms and conditions) and is used under licence

Figures

Figure 7: The Royal Scottish Museum, Edinburgh

Figure 8: The Royal Scottish Museum, Edinburgh

Figure 20: taken from www.acmi.net.au/AIC/BLATTNER_STILLE.html

Figure 13 and 25: Ampex GB Limited

We also thank Nigel Bewley (British Library Sound Archive), Daniel Leech-Wilkinson (King's College, London) and Robert Philip
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

4 Unit summary

Sound recording really took off once the public's demand for recorded music had been acknowledged. The choice of technology, cylinder or disc, was determined more by the selection of the artist and material than the quality of the sound. Development of disc technology was slow due to the lack of better alternatives, remaining substantially unchanged for over fifty years. The development of radio broadcasting caused a slump in the record industry but eventually it not only provided improvement
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.5 Studio tape recorders

The importance of tape recording to record production cannot be overemphasised. From its development until the coming of digital tape recorders in the late 1970s, the analogue tape recorder was at the heart of the professional music recording studio. Initially, the full width of the standard quarter-inch tape was used for making monophonic recordings. Stereo needed two tracks – one for each channel. Rather than doubling the tape width, a decision was made to halve the track width by incorpo
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.2 Recording on the wire

A paper published by Oberlin Smith in an 1888 issue of Electrical World discussed the possibilities for recording sound using the property of magnetism. He envisaged a cotton thread impregnated with steel dust passing through a coil carrying a current controlled by a microphone. The variations with the sound in the strength of the current would cause corresponding magnetic fluctuations in the magnetic medium. Unfortunately he dismissed his idea because, as he said in his paper, he thou
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.6 Turning the handle

The owners of the original hand-cranked gramophones were instructed that the standard velocity for ‘seven-inch plates’ was about 70 revolutions per minute. The owner was also warned that failure to turn the plate at the correct speed would lead to a lowering of the pitch if turned too slow, or a raising of the pitch if turned too fast. It is doubtful if true reproduction of the recorded sound was ever achieved by the owners of these machines! A better power source was needed and as electr
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Learning outcomes

By the end of this unit you should be able to:

  • explain correctly the meanings of the emboldened terms in the main text and use them correctly in context;

  • give a brief account of the history of the record industry;

  • describe the methods used for storing analogue audio recordings introduced in the main text, highlighting their technological aspects;

  • make informed judgements as to the quality of a sound recording through analysis of the a
    Author(s): The Open University

    License information
    Related content

    Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Introduction

This unit looks at the ways in which technology has influenced the music industry and how this has changed the way we listen to music and buy records. It is a brief history of the recording industry from its beginnings at the end of the nineteenth century. Step changes in technology will be highlighted in a story that often is as much about the people who built the industry and the recordings they made as about the technologies that were developed and used.

Please note that Author(s): The Open University

Module team

T356 course team

Academic staff

Dr Alec Goodyear (course chair)

Professor Nicholas Braithwaite

Jan Kowal

Dr Tony Nixon

Dr Sally Organ

Robin Harding (critical reader)

James McLannahan (critical reader)

Dr Martin Rist (critical reader)

Dr George Weidmann (critical reader)

Peta Jellis (course manager)

External assessor

P
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Acknowledgements

Grateful acknowledgement is made to the following sources:

Figures

Figure 7 (a): PDB ID 1BKV Kramer, R. Z., Bella, J., Mayville, P., Brodsky, B. and Berman, H. M. (1990) ‘Sequence dependent conformational variations of collagen triple-helical structure’, Natural Structural Biology, vol. 6, pp. 454–57

Figure 7(b): PDB ID 1ATN Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. and Holmes, K. C. (1990) ‘Atomic structure
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

4 Engineering with proteins

What are the prospects for designing and making new proteins for specific purposes? The technology exists to build polypeptide chains unit by unit in a test tube, but this is time-consuming and expensive. Often a more practical approach is to find ways of working with nature to produce useful substances in a form that we can use. This might involve extracting a naturally occurring protein and chemically modifying it in some way, or using genetic engineering to produce a particular protein in
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Pages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870