5.9 Mechanical tests by David Kirkaldy

In order to determine which of the several parts of the joint were weakest, and gain some idea of the scatter in strength, David Kirkaldy was employed by Henry Law to test various samples he had collected from the bases of the fallen piers. David Kirkaldy had a good reputation for accurate and rigorous mechanical testing of materials using a large tensometer he had designed and built in London (see Input 9, linked below).

Click 'View document' below to open Input 9


Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Bridge oscillations

Testimony was taken from the many workers employed during construction and painting of the structure just after completion. Their evidence was more compelling, especially from painters working at the top of the high girders piers during passage of trains, as well as during windy weather. They were painting the cast iron of the piers during the summer of 1879. In the main, they reported feeling strong sideways as well as vertical motion:

Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

4.8 Photographs showing the detail: standing pier 28

The final part of the survey deals with the two standing piers connected to the lower girders left after the high girders section fell during the disaster. The whole of pier 28 is shown in Figure 34, and two close-ups of the columns are shown in Figures Author(s): The Open University

Bridge girders

Figures 11 and 12, below, are photographs of the bridge taken from the south and north banks of the firth.

The girders of the bridge were supported on a total of 85 piers. The first 14 piers were made from brick and masonry, built up as a solid structure. The rest were fabricated from iron on masonry platforms, and by comparison, appeared rather insubstantial (Author(s): The Open University

3.3 Description of the bridge

An outline plan of the bridge shows the main piers on which the bridge was laid (Figure 10). To allow shipping to pass up the Tay to Perth, a height of about 88 feet was required between the bridge girders and the high water mark in the middle of the firth. On the south bank, at Wormit, the land rose steeply t
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.2 Transportation disasters

Movement of people and goods was one of the main outcomes of the industrial revolution in Britain in the late-eighteenth century, starting with canals, which were displaced gradually by railways. Industrialisation came through innovation in manufacture, especially the development of mass-produced materials such as cast-iron. While the material had been known and used since the Elizabethan period, it could only be made in small quantities by smelting iron ore with charcoal.

The Darby fam
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.2 Earthquakes and volcanoes

The disasters that first come to mind are those where the earth itself changes in an unpredictable and sudden way:

  • earthquakes

  • volcanic eruptions

  • tidal waves

These natural phenomena are now known to be interconnected: earthquakes result from vast plates of the earth's crust meeting and moving against one another. Volcanic explosions, such as Krakatoa (1883) and Mount St Helens (1980) are also manifestations
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

10 Part 2: 6 Review

In Part 2 of this unit, you have undertaken a major piece of work. In encountering the case study you were engaging with a set of events, issues, actors, stakeholders and intentions that was, by any standards, complex. In addition, you brought your own complexity to it, your own stakeholdings and understandings, your own reactions and feelings.

You used systems diagrams to structure the complexity you encountered in the case study. That then structured and clarified the situation in way
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.5 Review

The title of this unit could have been Juggling with complexity: searching for system. This title seemed to capture something essential about the unit. Juggling is a rich metaphor and will be used explicitly in Part 3. But it also carries the idea of a skill that needs to be practised and that might seem incredibly awkward to begin with. You may find this idea helpful as you review your work in Part 1. Juggling is also a skill that, once practised, becomes second nature. This too may b
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

5.14.2 Reverse osmosis

This technique, explained in Section 3.8.1, is rapidly becoming a major means of desalination, with research producing membranes with lower operating pressures (and hence lower operating costs). Originally a pressure of 14 × 106 Pa was needed to separate pure water from sea water but with newer membranes only half this pressure is required. Reverse osmosis membranes operate at ambient temperature, in contrast to multistage flash distillation, and this lower temperature minimises s
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Introduction

This unit is from our archive and it is an adapted extract from Environmental Control and Public Health (T210) which is no longer in presentation. If you wish to study formally at The Open University, you may wish to explore the courses we offer in this curriculum area.

With
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Acknowledgements

The content acknowledged below is Proprietary (see terms and conditions) and is used under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0 Licence.

Grateful acknowledgement is made to the following sources for permission to reproduce material within this book:

Fi
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.7 Aftermath

In the immediate aftermath of the disaster, it was vital to prevent any further collapses, especially on bridges of similar design. Two other bridges were built to a design similar to that of the Silver Bridge, one upstream at St Mary's, West Virginia and the other in Brazil at Florianopolis. The bridge upstream on the Ohio river, at St Mary's, was the focus of concern, and it was closed to traffic immediately after the disaster. The eye-bar design was actually quite widespread in other bridg
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.6 Failure sequence

Following the discovery of the broken eye bar near the top of the northern suspension chain on the Ohio side of the bridge (Figure 36), it was possible to reconstruct the sequence of events during the collapse.

When the side chain separated, the entire structure was destabilised, simply b
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.5 Design of the bridge

The design of the original structure was governed by applicable standards in 1926. The official inquiry found that the design and build fell within those limits, the most important being the allowable stress in the eye-bar chain of 345 MPa. The steel was to be made with a maximum elastic limit of 520 MPa, with a safety factor on the strength of the steel of 2.75. It was argued at the time that over 70 per cent of the load was from the self-weight of the structure. Other suspension bridges of
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.4.5 Fretting fatigue

An additional possibility was considered. It was known that there was significant movement of the bridge during passage of traffic, because users had noticed it many times when crossing. The joints would thus have been subjected to rotary motion around the pin in order to accommodate such vibrations. Could these have caused fatigue crack growth at the bearing surfaces?

Contact between a circular and a flat plate creates so-called Hertzian stresses at the contact zone: compressive at the
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.4.2 Analysis of the eye-bar steel

Many sections were taken of the steel near the fracture to examine its microstructure, and were compared with different parts of the same eye bar as well as with other eye bars. The sections showed a steel core surrounded by a zone that could be identified as being of higher strength due to the presence of martensite.

Martensite is a strong, hard phase of steel usually formed by rapid quenching from a high temperature.

XPS, X-ray photoelectron spectroscopy, gives information about
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.4.1 Fracture surface

One half of the eye at the joint is shown in Figure 38(a), and it shows two breaks in the limbs either side of the pin-hole. Although both appear brittle in this picture, in fact one side showed signs of ductile deformation. The way it had fractured was unique when compared with the other eye b
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.3.3 Reassembling the parts

As the wreckage was pulled from the river it was examined and identified, and any failures of the metal components were recognised and tagged. This was a mammoth task, given that virtually the whole bridge had fallen into the water, including all the road decks, trusses, chains and hangers, eye bars and the two towers. The parts were then reassembled and all the failed or fractured components photographed and catalogued. Over 90 per cent of the bridge components were collected together and re
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.3 The investigation

The investigation took three years to complete, although critical evidence emerged within weeks of the accident.

Some possibilities could be ruled out immediately. For example, there were rumours of supernatural forces at work that night, but very little solid evidence of the ‘Mothman’ emerged, either there or anywhere else. The Mothman was a demon purportedly haunting the bridge, which has supposedly appeared as a portent of similar disasters around the world. Such stories would ha
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share