Appropriate Technology: Solar tracker

To design, model and make a low cost solar tracker for use in developing world

countries.

Name:Darren EastwoodTutor:Dr. M J CliffordSession:2002-2003

Tear Fund

- Tackle root causes of poverty to make a long term difference.
- Provide advice, training and consultancy.
- Funding of initiatives to address major global issues.

Solar Tracking

- Attempts make sunlight contact the solar panel surface normally, at all times throughout the day.
- Electronic / Passive tracking
- Improves efficiency of solar panel.
- Suppliers have quoted ~ 30% increases

Current Electronic Solar Trackers

- Motor driven tracking using electronic sensors to detect sunlight.
- Inefficient Motor uses solar panel power.

Current Passive Solar Trackers

© Zomeworks Corporation

Control using the sun's heat to move partially pressured liquid from cylinders positioned at equal distances either side of a central pivot to offset balance.

Possible New Designs

- Redesign of partially pressured fluid system (Zomeworks). E.g. Including a night return mechanism.
- Expanding fluid in a piston. E.g. Greenhouse window opener.
- Heated air in a piston to instigate movement. E.g. Sterling engine

Chosen Design - Passive Sensor

- Aluminium/Steel Bimetallic strip.
- Differential thermal expansion causes bending.

• Cheap, obtainable, low maintenance.

Chosen Design

- Two bimetallic strips; oppositely positioned equal distances from a central pivot.
- Bimetallic strip bending (towards central pivot) creates an imbalance in the system and produces movement.
- Damping controls movement.

Modeling the design

- C Program models tracking movements throughout the day.
- Program integrated over many small time periods.
- Efficiency calculated for entire day

Solar radiation from the sun

Heating of bimetallic strip

Bending of bimetallic strip

System reorientation due to different forces

Efficiency of solar tracker

Bimetallic Strip Thermodynamics

Conduction=Solar-Thermalthrough barRadiationLosses

•Losses increase with temperature, seeking an equilibrium.

• Modelled as a lumped mass system.

 $\Delta T_{AL} = \frac{\sum Q.\Delta t}{m.C_{p}}$

Bimetallic Strip Bending

• For the materials at the same temperatures, differential expansion causes produces a bending moment.

- Thermal bending moment calculated first without loading, then other moments (e.g. block mass) superimposed.
- •Hence deflection found.

Solar Tracker Reorientation

• BMS deflection alters the moment about the central pivot - accentuated by point masses.

• Forces about pivot are considered: Friction, damping, inertia and mass forces

• Integrative numerical approach used to find angle of solar tracker.

Sensitivity to parameters

Sensitivity to parameters

External disturbance counteraction e.g.Wind
Significant damping minimises effects
Bimetallic strip thickness:
Speed of response Vs. Yielding and, hence, premature failure

Works in Theory- What about in practice?

Construction of a prototype was necessary to prove the validity of the theory.

Materials - Cheap and easily obtained
E.g. Mild steel, aluminium, brass, timber, resin

•Manufacture - Turning, milling, cutting

Make it anywhere in the world!

Completed prototype

Testing

•Conducted in the School of the Built Environment.

•500W halogen lamps used, hence conditions could be accurately measured and program altered to suit.

•However, testing set-up insufficient to model solar conditions for a full day.

i) Bimetallic Strip Testing

Comparision between experimental testing and computer model of bimetallic strip deflections

ii) Response Testing

Tracker In Action

Suggested improvements

Two main improvements considered:

- Night Return Mechanism
- Sun sets in the West but rises in the East.
- Reorientation during nightfall to anticipate sunrise.
- Bimetallic strip again as a possible trigger, temperature drop at night produces differential contraction and hence bending.

Suggested improvements

- Tilted central axis system
- Solar tracker currently only effective around equatorial regions.
- Tilted axis would allow potential for use in other locations (of sufficient solar intensity).
- Dual axis system more efficient but also more complex.

Conclusions

- Passive, low cost, low maintenance method of solar tracking presented.
- Materials and manufacturing processes available in developing world countries.
- Computer program boasts efficiencies of up to 23% extra.
- However, confined to areas receiving sufficient solar intensity.

Acknowledgements

- Dr. S. Pickering Advice and consultation on bimetallic strip thermodynamics
- Dr. I Care Novel outlook and advice at the conceptual stages.
- Dr. R. Wilson Help with all stages in the design and organising testing facilities.
- Dr. M. J. Clifford Constant support and encouragement throughout the year.