Moving towards Custom Manufacturing:

 comparing different order fulfilment strategiesHartanto Wong, Daniel Eyers, Krassimir Dotchev

Contents

O Introduction / background
∂ Models:

- Production inventory model
- Market demand model
- Integrated model
© Numerical results
© Concluding remarks

Contents

© Introduction / background

© Models:

- Production inventory model
- Market demand model
- Integrated model
© Numerical results
- Concluding remarks

Project: Ultimate Customisation

Crafts

Mass
Production

Mass
Customisation

Ultimate Customisation

Enabled by advanced manufacturing technology such as Rapid Manufacturing

Rapid Manufacturing Technologies

- Evolved from Rapid Prototyping

OAlso known as direct manufacturing, layer manufacturing, or 3D printing

D No need for tooling; is not constrained by any complexity geometry; can accommodate one-off highly customised products (Custom Manufacturing - CM)

CM - a growing industrial application

Comparing Hearing aids manufacturing
(conventional vs. RM enabled)

a. Cast
b. Trim
c. Wax
d. Cast \#2
e. Pouring of Shell Material
f. Drain/Drip
g. Trim \#2
h. Vent
i. Attaching Faceplate \& Buffing Shell

Objective

D To evaluate the relative performance of Custom Manufacturing as an alternative order fulfilment strategy to the more conventional strategies (e.g. make-to-stock, build-to-order / postponement)

Contents

- Introduction / background

© Models:

- Production inventory model
- Market demand model
- Integrated model
- Numerical results
© Concluding remarks

Manufacturing-based analysis (cost oriented)

Manufacturing-Marketing Based Analysis (profit oriented)

Buffers of finished goods

Finished
products

Configuration 1
 Make-To-Stock (MTS)

Configuration 2

BTO with Delayed Differentiation (DD)

Configuration 3

Custom
Manufacturing (CM)

Literature Review

- Models comparing MTO vs. MTS vs. ATO

Arreola-Risa and DeCroix (1998); Rajagopalan (2002); Gupta and Benjaafar (2004); Su et al. (2005), Wong et al. (2008)

- Models incorporating price and lead time \& sensitive-demand

Li (1992); Palaka (1998); Webster (2002); Yang and Geunes (2007)

- Models incorporating marketing-manufacturing decisions in line with this paper

De Groote (1994); Jiang et al. (2006); Alptekinoglu and Corbett (2007)

Costs:

- Holding cost h
- Production cost $\boldsymbol{c}_{\text {mTS }}$
- Proliferation cost \boldsymbol{K}

Buffers of finished goods

Buffers of finished goods

Marketing decisions:

- Number of product lines \boldsymbol{N}
- Characteristic of each product line $\boldsymbol{x}_{\boldsymbol{i}}$
- Price \boldsymbol{p}

Manufacturing decision

- Base stock level (FG) $\boldsymbol{S}_{\boldsymbol{i}}$

Finished products

Marketing decisions:

- Number of product lines N
- Characteristic of each product line $\boldsymbol{x}_{\boldsymbol{i}}$
- Price \boldsymbol{p}

Manufacturing decision

- Base stock level (GC) $\boldsymbol{S}_{\mathbf{0}}$

Marketing decisions:

- Price p

Main Assumptions

- Monopolistic setting
- Product lines are horizontally differentiated \rightarrow same price is reasonable
© Customer demand follows a Poisson process
- Manufacturing processing times are exponentially distributed

Market demand model

- The spatial locational model of Hotteling (1929)
- Customers' tastes are uniformly distributed over a closed interval of the product space [0,1]

O N product lines are horizontally differentiated

- Each product's characteristic $x_{i} \in[0,1]$
© Customer demand is sensitive to product characteristic x_{i}, price p, and promised lead time w

Hotelling's location model

The Hotelling Beach

Market demand model

The utility of customer at θ derives from buying a product with price p, characteristic x_{i}, and promised lead time w :

$$
U\left(\theta, x_{i}, p, w\right)=r-p-c_{w} w-c_{X}\left|\theta-x_{i}\right|
$$

Market demand model

Market demand model

Given that N, w, c_{w}, and c_{x} are fixed, we obtain full market coverage with the maximum revenue by setting:

$$
\begin{aligned}
& \rho \quad x_{i}^{*}=\frac{2 i-1}{2 N} \quad i=1,2, \ldots, N \\
& \Rightarrow \quad p^{*}=\bar{r}-c_{w} w-\frac{c_{x}}{2 N}
\end{aligned}
$$

Production-Inventory model

The MTS system (Buzacott and Shanthikumar, 2003)
Expected inventory:

$$
\begin{aligned}
I_{i}\left(S_{i}\right)=S_{i}-\left(\frac{\lambda_{i}}{\mu-\Lambda}\right)\left(1-\hat{\rho}_{i}^{s_{i}}\right), \text { where } & \hat{\rho}_{i}=\lambda_{i} /\left(\mu-\lambda_{-i}\right) \\
\lambda_{-i} & =\sum_{j \neq i} \lambda_{j}
\end{aligned}
$$

Max lead time:

$$
\operatorname{Pr}\left[T_{i}\left(S_{i}\right) \leq w\right]=1-\hat{\rho}_{i}^{S_{i}} \cdot e^{-(\mu-\Lambda) w}
$$

The DD system (Gupta and Benjaafar, 2004)
$I_{0}\left(S_{0}\right)=S_{0}-\left(\frac{\rho_{1}\left(1-\rho_{1}^{S_{0}}\right)}{1-\rho_{1}}\right)$
$\operatorname{Pr}\left(T\left(S_{0}\right) \geq w\right) \approx\left\{\begin{array}{l}\left(1+\rho^{S_{0}}(1-\rho) \mu w\right) e^{-\mu(1-\rho) w} \text { if } \rho_{1}=\rho_{2}=\rho, \\ e^{-\mu_{2}\left(1-\rho_{2}\right) w}+\left(\frac{\left(1-\rho_{2}\right) \rho_{1}^{S_{0}+1}}{\rho_{2}-\rho_{1}}\right) \cdot\left(e^{-\mu_{2}\left(1-\rho_{2}\right) w}-e^{-\mu_{1}\left(1-\rho_{1}\right) w}\right) \text { otherwise }\end{array}\right.$

The CM system
Use the MTS model with zero stock

Profit functions

MTS
$Z(N, \mathbf{x}, \mathbf{S}, p)=\sum_{i=1}^{N}\left(p-c_{\mathrm{MTS}}\right) \cdot \lambda_{i}\left(x_{i}, S_{i}, p\right)-h \cdot I_{i}\left(S_{i}\right)-K \cdot N$

DD
$Z\left[N, \mathbf{x}, S_{0}, p\right]=\sum_{i=1}^{N}\left(p-c_{\mathrm{DD}}\right) \cdot \lambda_{i}\left[x_{i}, S_{0}, p\right]-h_{0} \cdot I_{0}\left[S_{0}\right]-K \cdot N$

CM
$Z[p]=\left(p-c_{\mathrm{CM}}\right) \cdot \Lambda$

Constraint: $\quad \operatorname{Pr}[T \leq w] \geq 1-\beta$

Contents

O Introduction / background

9 Models:

- Production inventory model
- Market demand model
- Integrated model

D Numerical results

- Concluding remarks

Numerical Experiment

- Total demand rate : $\Lambda=5$
- Production cost $c_{\mathrm{MTS}}=c_{\mathrm{DD}}=100$
- Reservation price $r=500$
- Production rate $=\mu=[6 / 7 / 8 / 9 / 10$]
- Waiting cost $=c_{w}=[15 / 30 / 45 / 60 / 75$]
- Preference deviation cost $=c_{x}=[40 / 80 / 120 / 160 / 200]$
- Holding cost = h = [5 / $10 / 15 / 20$]
- Product proliferation cost $=K=[5 / 10 / 15 / 20 / 25$]
- CM Production cost $=c_{\mathrm{CM}}=[100 / 105 / 110 / 115 / 120]$

Average profit comparison

Number of product lines

The effect of production rate

CM vs. DD

Concluding Remarks

- Many issues may inhibit the viability of CM (customers' lead time sensitivity and high production cost)
- Next step - To assess the viability of CM by understanding how CM products may encroach on demand for conventional products
- Incorporating different market segments
- Competitive analysis where MTS, DD and CM products co-exist in the market

Thank You...

DD vs. MTS

Market demand model

Market demand model

