# Optimal Transshipments and Orders: <br> A Tale of Two Competing and Cooperating Retailers 

Nagihan Çömez

Faculty of Business Administration,
Bilkent University
joint work with
K. E. Stecke and M. Çakanyıldırım

## Introduction: Cooperation

- Inventory pooling is a risk sharing strategy, which is the use of a common stock for several retailers.


## Introduction: Cooperation

- Inventory pooling is a risk sharing strategy, which is the use of a common stock for several retailers.
- In a virtual pooling (retailer-to-retailer trade) system, retailers coordinate through transshipments.


## Introduction: Cooperation

- Inventory pooling is a risk sharing strategy, which is the use of a common stock for several retailers.
- In a virtual pooling (retailer-to-retailer trade) system, retailers coordinate through transshipments.



## Introduction: Cooperation

- Inventory pooling is a risk sharing strategy, which is the use of a common stock for several retailers.
- In a virtual pooling (retailer-to-retailer trade) system, retailers coordinate through transshipments.

- Decentralized systems such as, Honda, and General Motors have intranet systems for their independent retailers.


## Introduction: Cooperation

- Inventory pooling is a risk sharing strategy, which is the use of a common stock for several retailers.
- In a virtual pooling (retailer-to-retailer trade) system, retailers coordinate through transshipments.

- Decentralized systems such as, Honda, and General Motors have intranet systems for their independent retailers.
- Observed in a variety of industries such as apparel, toys, furniture, IT products, aircraft and auto spare parts, etc.


## Cooperation

## exhibit 3 U.S. Dealer Estimates of <br> Fulfillment Methods



Customers switched to cars on lotOff-the-lot sales
*Supply Chain Management Review, September 1, 1997

## Cooperation

ехнівт 3 U.S. Dealer Estimates of Fulfillment Methods

*Supply Chain Management Review, September 1, 1997

- "Life without dealer trades would be a whole lot of special orders", WardsAuto.com, Dec 1, 2006.


## Cooperation is increasing, because...

| Item | Early 70s | Late 90s |
| :--- | ---: | ---: |
| Vehicle Models | 140 | 260 |
| Amusement Parks | 362 | 1174 |
| Prescription Drugs | 6,131 | 7,563 |
| OTC Pain Relievers | 17 | 141 |
| McDonald's Menu Items | 13 | 43 |
| Frito-Lay Chip Varieties | 10 | 78 |
| Levi's Jean Styles | 41 | 70 |
| Running Shoe Styles | 5 | 285 |
| Bicycle Types | 8 | 31 |
| Soft Drinks | 26 | 252 |
| TV Screen Sizes | 5 | 15 |
| Houston TV Channels | 5 | 185 |
| Breakfast Cereals | 160 | 340 |

## Cooperation is increasing, because...

| Item | Early 70s | Late 90s |
| :--- | ---: | ---: |
| Vehicle Models | 140 | 260 |
| Amusement Parks | 362 | 1174 |
| Prescription Drugs | 6,131 | 7,563 |
| OTC Pain Relievers | 17 | 141 |
| McDonald's Menu Items | 13 | 43 |
| Frito-Lay Chip Varieties | 10 | 78 |
| Levi's Jean Styles | 41 | 70 |
| Running Shoe Styles | 5 | 285 |
| Bicycle Types | 8 | 31 |
| Soft Drinks | 26 | 252 |
| TV Screen Sizes | 5 | 15 |
| Houston TV Channels | 5 | 185 |
| Breakfast Cereals | 160 | 340 |

- High demand uncertainty with increasing product variety
- Time competition may lead to stock-outs


## Cooperation is increasing, because...

| Item | Early 70s | Late 90s |
| :--- | ---: | ---: |
| Vehicle Models | 140 | 260 |
| Amusement Parks | 362 | 1174 |
| Prescription Drugs | 6,131 | 7,563 |
| OTC Pain Relievers | 17 | 141 |
| McDonald's Menu Items | 13 | 43 |
| Frito-Lay Chip Varieties | 10 | 78 |
| Levi's Jean Styles | 41 | 70 |
| Running Shoe Styles | 5 | 285 |
| Bicycle Types | 8 | 31 |
| Soft Drinks | 26 | 252 |
| TV Screen Sizes | 5 | 15 |
| Houston TV Channels | 5 | 185 |
| Breakfast Cereals | 160 | 340 |

- High demand uncertainty with increasing product variety
- Time competition may lead to stock-outs
- With developed information technology, easy information exchange


## Cooperation is increasing, because...

| Item | Early 70s | Late 90s |
| :--- | ---: | ---: |
| Vehicle Models | 140 | 260 |
| Amusement Parks | 362 | 1174 |
| Prescription Drugs | 6,131 | 7,563 |
| OTC Pain Relievers | 17 | 141 |
| McDonald's Menu Items | 13 | 43 |
| Frito-Lay Chip Varieties | 10 | 78 |
| Levi's Jean Styles | 41 | 70 |
| Running Shoe Styles | 5 | 285 |
| Bicycle Types | 8 | 31 |
| Soft Drinks | 26 | 252 |
| TV Screen Sizes | 5 | 15 |
| Houston TV Channels | 5 | 185 |
| Breakfast Cereals | 160 | 340 |

- High demand uncertainty with increasing product variety
- Time competition may lead to stock-outs
- With developed information technology, easy information exchange
- Cheaper 3PL services


## Introduction: Competition

- A stocked-out retailer asks for a transshipment not to lose demand.


## Introduction: Competition

- A stocked-out retailer asks for a transshipment not to lose demand.
- Study of 71,000 customers shows that "depending on the product category ... $21 \%$ to $43 \%$ will actually go to another store" when a product is out of stock (Corsten and Gruen 2004).


## Introduction: Competition

- A stocked-out retailer asks for a transshipment not to lose demand.
- Study of 71,000 customers shows that "depending on the product category ... $21 \%$ to $43 \%$ will actually go to another store" when a product is out of stock (Corsten and Gruen 2004).



## Competition or Cooperation?

- Demand flow: Probability of an unsatisifed customer visiting another store for the same product, before switching to another product.


## Competition or Cooperation?

- Demand flow: Probability of an unsatisifed customer visiting another store for the same product, before switching to another product.
- Demand flow is effected by brand loyalty and communication between retailers.


## Competition or Cooperation?

- Demand flow: Probability of an unsatisifed customer visiting another store for the same product, before switching to another product.
- Demand flow is effected by brand loyalty and communication between retailers.
- Therefore, a retailer with inventory may (may not) send a transshipment to satisfy a retailer (flowed customer) demand.


## Scenario

- Two independent retailers are selling two substitutable products at a common price.


## Scenario

- Two independent retailers are selling two substitutable products at a common price.
- Each retailer makes a single cycle order from the manufacturer.


## Scenario

- Two independent retailers are selling two substitutable products at a common price.
- Each retailer makes a single cycle order from the manufacturer.
- During the cycle, in case of a stock-out, the stocked-out retailer can make a transshipment request to the other retailer.


## Scenario

- Two independent retailers are selling two substitutable products at a common price.
- Each retailer makes a single cycle order from the manufacturer.
- During the cycle, in case of a stock-out, the stocked-out retailer can make a transshipment request to the other retailer.
- The receiving retailer may


## Scenario

- Two independent retailers are selling two substitutable products at a common price.
- Each retailer makes a single cycle order from the manufacturer.
- During the cycle, in case of a stock-out, the stocked-out retailer can make a transshipment request to the other retailer.
- The receiving retailer may
- accept the request to get a certain revenue.


## Scenario

- Two independent retailers are selling two substitutable products at a common price.
- Each retailer makes a single cycle order from the manufacturer.
- During the cycle, in case of a stock-out, the stocked-out retailer can make a transshipment request to the other retailer.
- The receiving retailer may
- accept the request to get a certain revenue.
- or, reject the request expecting the current demand to flow to own store.


## Scenario

- Each retailer has to answer following questions to maximize his/her payoffs:


## Scenario

- Each retailer has to answer following questions to maximize his/her payoffs:
- How much should a retailer order?


## Scenario

- Each retailer has to answer following questions to maximize his/her payoffs:
- How much should a retailer order?
- How to accept/reject opponent's transshipment requests?


## Agenda

- Literature and contribution
- Development of expected profit functions
- Optimal transshipment policies
- Analysis of the ordering game
- Sensitivity and performance analysis
- Summary and conclusion


## Literature and Contribution

| Paper | Objective |  | Pooling Policy |  |  | Demand <br> Flow |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Central. | Decentral. | Only <br> Complete | Partial |  |  |
|  |  |  |  | Stat. | Non-Stat. |  |
| Krishnan and Rao (1965) | $\checkmark$ |  | $\checkmark$ |  |  |  |
| Comez et al. (2006) | $\sqrt{ }$ |  |  |  | $\sqrt{ }$ |  |
| Anupindi et al.(1999) |  | $\sqrt{ }$ | $\sqrt{ }$ |  |  | $\checkmark$ |
| Rudi et al. (2001) |  | $\checkmark$ | $\checkmark$ |  |  |  |
| Zhao et al. (2005) |  | $\sqrt{ }$ |  | $\checkmark$ |  |  |
| Zhao and Atkins (2005) |  | $\sqrt{ }$ | $\checkmark$ |  |  | $\sqrt{ }$ |
| Our study |  | $\sqrt{ }$ |  |  | $\sqrt{ }$ | $\sqrt{ }$ |

## Literature and Contribution

| Paper | Objective |  | Pooling Policy |  |  | Demand <br> Flow |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Central. | Decentral. | Only <br> Complete | Partial |  |  |
|  |  |  |  | Stat. | Non-Stat. |  |
| Krishnan and Rao (1965) | $\checkmark$ |  | $\checkmark$ |  |  |  |
| Comez et al. (2006) | $\checkmark$ |  |  |  | $\checkmark$ |  |
| Anupindi et al.(1999) |  | $\checkmark$ | $\checkmark$ |  |  | $\checkmark$ |
| Rudi et al. (2001) |  | $\checkmark$ | $\checkmark$ |  |  |  |
| Zhao et al. (2005) |  | $\sqrt{ }$ |  | $\checkmark$ |  |  |
| Zhao and Atkins (2005) |  | $\checkmark$ | $\checkmark$ |  |  | $\sqrt{ }$ |
| Our study |  | $\sqrt{ }$ |  |  | $\sqrt{ }$ | $\sqrt{ }$ |

We fill the gap in the literature for

- Optimal and dynamic transshipment policies in a finite decentralized system
- Demand flow in a partial pooling system


## Problem Setting



## Problem Setting

Order


- A discrete time model by dividing the ordering cycle into $N$ small decision periods.


## Problem Setting



- A discrete time model by dividing the ordering cycle into $N$ small decision periods.
- In each period, probability of receiving a unit demand at retailer 1 and retailer 2 are $p_{1}$ and $p_{2}$, respectively, where $p_{1}+p_{2} \leq 1$.


## Problem Setting



- A discrete time model by dividing the ordering cycle into $N$ small decision periods.
- In each period, probability of receiving a unit demand at retailer 1 and retailer 2 are $p_{1}$ and $p_{2}$, respectively, where $p_{1}+p_{2} \leq 1$.
- Each unit is bought from the manufacturer at the cost of $c$.


## Problem Setting



- A discrete time model by dividing the ordering cycle into $N$ small decision periods.
- In each period, probability of receiving a unit demand at retailer 1 and retailer 2 are $p_{1}$ and $p_{2}$, respectively, where $p_{1}+p_{2} \leq 1$.
- Each unit is bought from the manufacturer at the cost of $c$.
- Each unit is sold to the customer for a revenue of $r$.


## Problem Setting

In case of a stock-out

## Problem Setting

In case of a stock-out

- If a unit is transshipped between retailers,
- the sender charges $t$ to the receiver, $t \geq s_{1}, s_{2}$,


## Problem Setting

In case of a stock-out

- If a unit is transshipped between retailers,
- the sender charges $t$ to the receiver, $t \geq s_{1}, s_{2}$,
- the transportation $\operatorname{cost} \tau$ is also paid by the receiver.


## Problem Setting

In case of a stock-out

- If a unit is transshipped between retailers,
- the sender charges $t$ to the receiver, $t \geq s_{1}, s_{2}$,
- the transportation $\operatorname{cost} \tau$ is also paid by the receiver.
- If a demand cannot be satisfied by a retailer,


## Problem Setting

In case of a stock-out

- If a unit is transshipped between retailers,
- the sender charges $t$ to the receiver, $t \geq s_{1}, s_{2}$,
- the transportation $\operatorname{cost} \tau$ is also paid by the receiver.
- If a demand cannot be satisfied by a retailer,
- the demand flows to the opponent with probability $\theta$,


## Problem Setting

In case of a stock-out

- If a unit is transshipped between retailers,
- the sender charges $t$ to the receiver, $t \geq s_{1}, s_{2}$,
- the transportation $\operatorname{cost} \tau$ is also paid by the receiver.
- If a demand cannot be satisfied by a retailer,
- the demand flows to the opponent with probability $\theta$,
- totally lost with probability $1-\theta$.


## Problem Setting

In case of a stock-out

- If a unit is transshipped between retailers,
- the sender charges $t$ to the receiver, $t \geq s_{1}, s_{2}$,
- the transportation $\operatorname{cost} \tau$ is also paid by the receiver.
- If a demand cannot be satisfied by a retailer,
- the demand flows to the opponent with probability $\theta$,
- totally lost with probability $1-\theta$.

WLOG, $r \geq t+\tau$. Otherwise there is no transshipment problem.

## Problem Setting

In case of a stock-out

- If a unit is transshipped between retailers,
- the sender charges $t$ to the receiver, $t \geq s_{1}, s_{2}$,
- the transportation $\operatorname{cost} \tau$ is also paid by the receiver.
- If a demand cannot be satisfied by a retailer,
- the demand flows to the opponent with probability $\theta$,
- totally lost with probability $1-\theta$.

WLOG, $r \geq t+\tau$. Otherwise there is no transshipment problem. At the end of the cycle, each remaining unit is salvaged at $s_{1}, s_{2}$,
$c \geq s_{1}, s_{2}$.

## Total Expected Profit of the Cycle

## Total Expected Profit of the Cycle

The objective function of each retailer $i$ is

$$
\max _{S_{i}} J^{i}\left(S_{1}, S_{2}\right)=-c S_{i}+\pi_{N}^{i}\left(S_{1}, S_{2}\right)
$$

## Total Expected Profit of the Cycle

The objective function of each retailer $i$ is

$$
\max _{S_{i}} J^{i}\left(S_{1}, S_{2}\right)=-c S_{i}+\pi_{N}^{i}\left(S_{1}, S_{2}\right)
$$

$\pi_{n}^{i}\left(x_{1}, x_{2}\right)$ : The maximum expected total profit of retailer $i$ in the remaining $n$ periods with inventory levels are $x_{1}, x_{2}$, at retailer 1 and 2 .

## Total Expected Profit of the Cycle

The objective function of each retailer $i$ is

$$
\max _{S_{i}} J^{i}\left(S_{1}, S_{2}\right)=-c S_{i}+\pi_{N}^{i}\left(S_{1}, S_{2}\right)
$$

$\pi_{n}^{i}\left(x_{1}, x_{2}\right)$ : The maximum expected total profit of retailer $i$ in the remaining $n$ periods with inventory levels are $x_{1}, x_{2}$, at retailer 1 and 2 . Remark: $\pi_{n}^{i}\left(x_{1}, x_{2}\right)$ is obtained by making optimal transshipment decisions.

## Only One Case May Happen In a Cycle

## Case 1



Case 2


## Only One Case May Happen In a Cycle

## Case 1



## Total Expected Profit of Remaining Periods for Retailer 1

## Total Expected Profit of Remaining Periods for Retailer 1

- When both retailers have on-hand inventory:


## Total Expected Profit of Remaining Periods for Retailer 1

- When both retailers have on-hand inventory:

$$
\begin{aligned}
\pi_{n}^{1}\left(x_{1}, x_{2}\right)= & p_{1}\left[r+\pi_{n-1}^{1}\left(x_{1}-1, x_{2}\right)\right]+p_{2} \pi_{n-1}^{1}\left(x_{1}, x_{2}-1\right) \\
& +\left(1-p_{1}-p_{2}\right) \pi_{n-1}^{1}\left(x_{1}, x_{2}\right), \quad x_{1}, x_{2} \in \mathcal{N}
\end{aligned}
$$

## Total Expected Profit of Remaining Periods for Retailer 1

- When both retailers have on-hand inventory:

$$
\begin{aligned}
\pi_{n}^{1}\left(x_{1}, x_{2}\right)= & p_{1}\left[r+\pi_{n-1}^{1}\left(x_{1}-1, x_{2}\right)\right]+p_{2} \pi_{n-1}^{1}\left(x_{1}, x_{2}-1\right) \\
& +\left(1-p_{1}-p_{2}\right) \pi_{n-1}^{1}\left(x_{1}, x_{2}\right), \quad x_{1}, x_{2} \in \mathcal{N}
\end{aligned}
$$

- When retailer 2 stocks-out before retailer 1:


## Total Expected Profit of Remaining Periods for Retailer 1

- When both retailers have on-hand inventory:

$$
\begin{aligned}
\pi_{n}^{1}\left(x_{1}, x_{2}\right)= & p_{1}\left[r+\pi_{n-1}^{1}\left(x_{1}-1, x_{2}\right)\right]+p_{2} \pi_{n-1}^{1}\left(x_{1}, x_{2}-1\right) \\
& +\left(1-p_{1}-p_{2}\right) \pi_{n-1}^{1}\left(x_{1}, x_{2}\right), \quad x_{1}, x_{2} \in \mathcal{N}
\end{aligned}
$$

- When retailer 2 stocks-out before retailer 1:

$$
\begin{aligned}
& \pi_{n}^{1}\left(x_{1}, 0\right)=p_{1}\left[r+\pi_{n-1}^{1}\left(x_{1}-1,0\right)\right]+\left(1-p_{1}-p_{2}\right) \pi_{n-1}^{1}\left(x_{1}, 0\right) \\
& +p_{2} \max \left\{t+\pi_{n-1}^{1}\left(x_{1}-1,0\right), \theta\left(r+\pi_{n-1}^{1}\left(x_{1}-1,0\right)\right)+(1-\theta) \pi_{n-1}^{1}\left(x_{1}, 0\right)\right\}
\end{aligned}
$$

## Total Expected Profit of Remaining Periods for Retailer 1

- When both retailers have on-hand inventory:

$$
\begin{aligned}
\pi_{n}^{1}\left(x_{1}, x_{2}\right)= & p_{1}\left[r+\pi_{n-1}^{1}\left(x_{1}-1, x_{2}\right)\right]+p_{2} \pi_{n-1}^{1}\left(x_{1}, x_{2}-1\right) \\
& +\left(1-p_{1}-p_{2}\right) \pi_{n-1}^{1}\left(x_{1}, x_{2}\right), \quad x_{1}, x_{2} \in \mathcal{N}
\end{aligned}
$$

- When retailer 2 stocks-out before retailer 1:

$$
\begin{aligned}
& \pi_{n}^{1}\left(x_{1}, 0\right)=p_{1}\left[r+\pi_{n-1}^{1}\left(x_{1}-1,0\right)\right]+\left(1-p_{1}-p_{2}\right) \pi_{n-1}^{1}\left(x_{1}, 0\right) \\
& +p_{2} \max \{\underbrace{t+\pi_{n-1}^{1}\left(x_{1}-1,0\right)}_{\text {Expected profit from accepting }}, \underbrace{\theta\left(r+\pi_{n-1}^{1}\left(x_{1}-1,0\right)\right)}_{\text {Expected profit from rejecting }}+\underbrace{(1-\theta) \pi_{n-1}^{1}\left(x_{1}, 0\right)}_{\text {Demand flows }}\}
\end{aligned}
$$

## Total Expected Profit of Remaining Periods for Retailer 1

## Total Expected Profit of Remaining Periods for Retailer 1

When both retailers are stocked-out:

$$
\pi_{n}^{1}(0,0)=\pi_{n-1}^{1}(0,0)
$$

## Total Expected Profit of Remaining Periods for Retailer 1

When both retailers are stocked-out:

$$
\pi_{n}^{1}(0,0)=\pi_{n-1}^{1}(0,0)
$$

At the end of the cycle:

$$
\pi_{0}^{1}\left(x_{1}, x_{2}\right)=s_{1} x_{1}
$$

## Total Expected Profit of Remaining Periods for Retailer 1

When both retailers are stocked-out:

$$
\pi_{n}^{1}(0,0)=\pi_{n-1}^{1}(0,0)
$$

At the end of the cycle:

$$
\pi_{0}^{1}\left(x_{1}, x_{2}\right)=s_{1} x_{1}
$$

This completes the construction of $\pi_{n}^{1}\left(x_{1}, x_{2}\right)$ under Case 1, i.e., retailer 2 stocks-out before retailer 1 .

## Analysis of Transshipment Problem for Retailer 1

## Analysis of Transshipment Problem for Retailer 1

Define the marginal benefit of one extra inventory at retailer 1,

$$
\delta_{n}^{1}(x)=\pi_{n}^{1}(x, 0)-\pi_{n}^{1}(x-1,0)
$$

## Analysis of Transshipment Problem for Retailer 1

Define the marginal benefit of one extra inventory at retailer 1 ,

$$
\delta_{n}^{1}(x)=\pi_{n}^{1}(x, 0)-\pi_{n}^{1}(x-1,0)
$$

In period $n$, a transshipment request is accepted if and only if

$$
\underbrace{\theta\left(r+\pi_{n-1}^{1}\left(x_{1}-1,0\right)\right)}+\underbrace{(1-\theta) \pi_{n-1}^{1}\left(x_{1}, 0\right)} \leq \underbrace{t+\pi_{n-1}^{1}\left(x_{1}-1,0\right)}
$$

Demand flows Demand is lost Exp. profit from accept

## Analysis of Transshipment Problem for Retailer 1

Define the marginal benefit of one extra inventory at retailer 1,

$$
\delta_{n}^{1}(x)=\pi_{n}^{1}(x, 0)-\pi_{n}^{1}(x-1,0)
$$

In period $n$, a transshipment request is accepted if and only if

$$
\delta_{n-1}^{1}(x) \leq(t-\theta r) /(1-\theta)
$$

## Analysis of Transshipment Problem for Retailer 1

Define the marginal benefit of one extra inventory at retailer 1 ,

$$
\delta_{n}^{1}(x)=\pi_{n}^{1}(x, 0)-\pi_{n}^{1}(x-1,0)
$$

In period $n$, a transshipment request is accepted if and only if

$$
\delta_{n-1}^{1}(x) \leq(t-\theta r) /(1-\theta)
$$

marginal benefit of rejecting (function of $n$ and $x$ )

## Analysis of Transshipment Problem for Retailer 1

Define the marginal benefit of one extra inventory at retailer 1,

$$
\delta_{n}^{1}(x)=\pi_{n}^{1}(x, 0)-\pi_{n}^{1}(x-1,0)
$$

In period $n$, a transshipment request is accepted if and only if

$$
\delta_{n-1}^{1}(x) \leq(t-\theta r) /(1-\theta)
$$

marginal cost of rejecting (constant)

## Analysis of Transshipment Problem for Retailer 1

Define the marginal benefit of one extra inventory at retailer 1,

$$
\delta_{n}^{1}(x)=\pi_{n}^{1}(x, 0)-\pi_{n}^{1}(x-1,0)
$$

In period $n$, a transshipment request is accepted if and only if

$$
\delta_{n-1}^{1}(x) \leq(t-\theta r) /(1-\theta)
$$

## Analysis of Transshipment Problem for Retailer 1

Define the marginal benefit of one extra inventory at retailer 1,

$$
\delta_{n}^{1}(x)=\pi_{n}^{1}(x, 0)-\pi_{n}^{1}(x-1,0)
$$

In period $n$, a transshipment request is accepted if and only if

$$
\delta_{n-1}^{1}(x) \leq(t-\theta r) /(1-\theta)
$$

Lemma (i) The marginal benefit can not be more than the unit selling price: $\delta_{n}^{i}(x) \leq r$.

## Analysis of Transshipment Problem for Retailer 1

Define the marginal benefit of one extra inventory at retailer 1,

$$
\delta_{n}^{1}(x)=\pi_{n}^{1}(x, 0)-\pi_{n}^{1}(x-1,0)
$$

In period $n$, a transshipment request is accepted if and only if

$$
\delta_{n-1}^{1}(x) \leq(t-\theta r) /(1-\theta)
$$

Lemma (i) The marginal benefit can not be more than the unit selling price: $\delta_{n}^{i}(x) \leq r$.
(ii) The marginal benefit of keeping extra inventory is decreasing in inventory level: $\delta_{n}^{i}(x) \leq \delta_{n}^{i}(x-1)$.

## Analysis of Transshipment Problem for Retailer 1

Define the marginal benefit of one extra inventory at retailer 1,

$$
\delta_{n}^{1}(x)=\pi_{n}^{1}(x, 0)-\pi_{n}^{1}(x-1,0)
$$

In period $n$, a transshipment request is accepted if and only if

$$
\delta_{n-1}^{1}(x) \leq(t-\theta r) /(1-\theta)
$$

Lemma (i) The marginal benefit can not be more than the unit selling price: $\delta_{n}^{i}(x) \leq r$.
(ii) The marginal benefit of keeping extra inventory is decreasing in inventory level: $\delta_{n}^{i}(x) \leq \delta_{n}^{i}(x-1)$.
(iii) The marginal benefit of keeping extra inventory is increasing in $n$ :
$\delta_{n-1}^{i}(x) \leq \delta_{n}^{i}(x)$.

## Optimal Transshipment Policy

## Optimal Transshipment Policy

Result 1:

- For each $n$, it is optimal to reject (accept) the transshipment request when $x_{i} \leq \tilde{x}_{n}^{i}\left(x_{i}>\tilde{x}_{n}^{i}\right)$.


## Optimal Transshipment Policy

## Result 1:

- For each $n$, it is optimal to reject (accept) the transshipment request when $x_{i} \leq \tilde{x}_{n}^{i}\left(x_{i}>\tilde{x}_{n}^{i}\right)$.

The hold-back level $\tilde{x}_{n}^{i}$ can be obtained as

$$
\tilde{x}_{n}^{i}:=\max \left\{x: \delta_{n-1}^{i}(x)>(t-\theta r) /(1-\theta)\right\} .
$$

## Optimal Transshipment Policy

## Result 1:

- For each $n$, it is optimal to reject (accept) the transshipment request when $x_{i} \leq \tilde{x}_{n}^{i}\left(x_{i}>\tilde{x}_{n}^{i}\right)$.

The hold-back level $\tilde{x}_{n}^{i}$ can be obtained as

$$
\tilde{x}_{n}^{i}:=\max \left\{x: \delta_{n-1}^{i}(x)>(t-\theta r) /(1-\theta)\right\} .
$$

- Hold-back levels are increasing (decreasing) in $n$ (time): $\tilde{x}_{1}^{i} \leq \tilde{x}_{2}^{i} \leq \ldots \leq \tilde{x}_{n}^{i} \ldots$


## Properties of Retailer $i$ 's Transshipment Policy

## Properties of Retailer $i$ 's Transshipment Policy

- If $t<(1-\theta) s_{i}+\theta r$


## Properties of Retailer $i$ 's Transshipment Policy

- If $t<(1-\theta) s_{i}+\theta r=\mathrm{E}[$ revenue from retained unit at $n=1]$, retailer $i$ doesn't participate in transshipping.


## Properties of Retailer $i$ 's Transshipment Policy

- If $t<(1-\theta) s_{i}+\theta r=\mathrm{E}[$ revenue from retained unit at $n=1]$, retailer $i$ doesn't participate in transshipping.
- Otherwise,


## Properties of Retailer $i$ 's Transshipment Policy

- If $t<(1-\theta) s_{i}+\theta r=\mathrm{E}[$ revenue from retained unit at $n=1]$, retailer $i$ doesn't participate in transshipping.
- Otherwise,
- In period 1 , hold-back level is zero, $\tilde{x}_{1}^{i}=0$,


## Properties of Retailer $i$ 's Transshipment Policy

- If $t<(1-\theta) s_{i}+\theta r=\mathrm{E}[$ revenue from retained unit at $n=1]$, retailer $i$ doesn't participate in transshipping.
- Otherwise,
- In period 1 , hold-back level is zero, $\tilde{x}_{1}^{i}=0$,
- hold-back level in $n$ is at most $n-1, \tilde{x}_{n}^{i} \leq n-1$,


## Properties of Retailer $i$ 's Transshipment Policy

- If $t<(1-\theta) s_{i}+\theta r=\mathrm{E}[$ revenue from retained unit at $n=1]$, retailer $i$ doesn't participate in transshipping.
- Otherwise,
- In period 1 , hold-back level is zero, $\tilde{x}_{1}^{i}=0$,
- hold-back level in $n$ is at most $n-1, \tilde{x}_{n}^{i} \leq n-1$,
- hold-back level decreases by at most 1 in time,

$$
\tilde{x}_{n+1}^{i}-\tilde{x}_{n}^{i} \leq 1 .
$$

## An Example Transshipment Policy of Retailer 1



$$
p_{1}=p_{2}=0.2, r=10, t=6, \theta=0.3, s_{1}=1
$$

## Analysis of Ordering Game

- The optimal ordering level of a retailer is a best response function:

$$
\begin{aligned}
& S_{1}^{*}\left(S_{2}\right)=\arg \max _{S_{1}} J^{1}\left(S_{1}, S_{2}\right) \\
& S_{2}^{*}\left(S_{1}\right)=\arg \max _{S_{2}} J^{2}\left(S_{1}, S_{2}\right)
\end{aligned}
$$

## Analysis of Ordering Game

- The optimal ordering level of a retailer is a best response function:

$$
\begin{aligned}
& S_{1}^{*}\left(S_{2}\right)=\arg \max _{S_{1}} J^{1}\left(S_{1}, S_{2}\right) \\
& S_{2}^{*}\left(S_{1}\right)=\arg \max _{S_{2}} J^{2}\left(S_{1}, S_{2}\right)
\end{aligned}
$$

- The ordering problem is a Cournot game.


## Analysis of Ordering Game

- The optimal ordering level of a retailer is a best response function:

$$
\begin{aligned}
& S_{1}^{*}\left(S_{2}\right)=\arg \max _{S_{1}} J^{1}\left(S_{1}, S_{2}\right) \\
& S_{2}^{*}\left(S_{1}\right)=\arg \max _{S_{2}} J^{2}\left(S_{1}, S_{2}\right)
\end{aligned}
$$

- The ordering problem is a Cournot game.
- Ordering game has a mixed strategy equilibrium.


## Submodular Games (Milgrom and Roberts 1990)

## Submodular Games (Milgrom and Roberts 1990)

- Submodular games are characterized such as each player's best response function is decreasing in the actions of other players.


## Submodular Games (Milgrom and Roberts 1990)

- Submodular games are characterized such as each player's best response function is decreasing in the actions of other players.
- A game is submodular, if


## Submodular Games (Milgrom and Roberts 1990)

- Submodular games are characterized such as each player's best response function is decreasing in the actions of other players.
- A game is submodular, if
- each player's payoff function has decreasing differences in $S_{1}$ and $S_{2}$ :


## Submodular Games (Milgrom and Roberts 1990)

- Submodular games are characterized such as each player's best response function is decreasing in the actions of other players.
- A game is submodular, if
- each player's payoff function has decreasing differences in $S_{1}$ and $S_{2}$ :

$$
J^{1}\left(S_{1}+1, S_{2}\right)-J^{1}\left(S_{1}, S_{2}\right) \geq J^{1}\left(S_{1}+1, S_{2}+1\right)-J^{1}\left(S_{1}, S_{2}+1\right) .
$$

## Submodular Games (Milgrom and Roberts 1990)

- Submodular games are characterized such as each player's best response function is decreasing in the actions of other players.
- A game is submodular, if
- each player's payoff function has decreasing differences in $S_{1}$ and $S_{2}$ :

$$
J^{1}\left(S_{1}+1, S_{2}\right)-J^{1}\left(S_{1}, S_{2}\right) \geq J^{1}\left(S_{1}+1, S_{2}+1\right)-J^{1}\left(S_{1}, S_{2}+1\right)
$$

- Pure strategy Nash equilibrium exists in two-player submodular games.

Ordering game where $t=r-\tau$

## Ordering game where $t=r-\tau$

- Requested retailer makes all the profit from a transshipment.


## Ordering game where $t=r-\tau$

- Requested retailer makes all the profit from a transshipment.

Result 2:

## Ordering game where $t=r-\tau$

- Requested retailer makes all the profit from a transshipment.

Result 2:

- each retailer's profit function has decreasing differences in $\left(S_{1}, S_{2}\right)$,


## Ordering game where $t=r-\tau$

- Requested retailer makes all the profit from a transshipment.

Result 2:

- each retailer's profit function has decreasing differences in $\left(S_{1}, S_{2}\right)$,
- the ordering game of the retailers is submodular


## Ordering game where $t=r-\tau$

- Requested retailer makes all the profit from a transshipment.


## Result 2:

- each retailer's profit function has decreasing differences in $\left(S_{1}, S_{2}\right)$,
- the ordering game of the retailers is submodular
- there exists a pure-strategy Nash equilibrium in inventory levels $\left(S_{1}^{*}, S_{2}^{*}\right)$.

Ordering game where $t<r-\tau$

## Ordering game where $t<r-\tau$

- Profit functions don't have decreasing differences in all $\left(S_{1}, S_{2}\right)$.
- Thus, submodularity fails.


## Ordering game where $t<r-\tau$

- Profit functions don't have decreasing differences in all $\left(S_{1}, S_{2}\right)$.
- Thus, submodularity fails.
- This means submodularity over entire space is a too strong condition.


## Ordering game where $t<r-\tau$

- Profit functions don't have decreasing differences in all $\left(S_{1}, S_{2}\right)$.
- Thus, submodularity fails.
- This means submodularity over entire space is a too strong condition.
- Numerical study shows submodularity is valid over most of the strategy space.


## Ordering game where $t<r-\tau$

- Profit functions don't have decreasing differences in all $\left(S_{1}, S_{2}\right)$.
- Thus, submodularity fails.
- This means submodularity over entire space is a too strong condition.
- Numerical study shows submodularity is valid over most of the strategy space.
- Nash equilibrium exists for all numerical studies.


## Ordering game where $t<r-\tau$

Best response functions for a sample problem
$N=60$ and $p_{1}=0.2, p_{2}=0.3, r=\$ 13, t=\$ 6, c=\$ 4, \tau=\$ 1, \theta=0.2, s_{1}=s_{2}=\$ 2$


## Equilibrium Solution for Large Retailers

## Equilibrium Solution for Large Retailers

- When demand rate is high, payoff functions can be extended to be defined over non-integer numbers.


## Equilibrium Solution for Large Retailers

- When demand rate is high, payoff functions can be extended to be defined over non-integer numbers.

For $S_{1}, S_{2} \notin \mathcal{N}$
$J_{i}\left(S_{1}, S_{2}\right)=$
$\left(\left\lceil S_{1}\right\rceil-S_{1}\right)\left(\left\lceil S_{2}\right\rceil-S_{2}\right) J_{i}\left(\left\lfloor S_{1}\right\rfloor,\left\lfloor S_{2}\right\rfloor\right)+\left(\left\lceil S_{1}\right\rceil-S_{1}\right)\left(S_{2}-\left\lfloor S_{2}\right\rfloor\right) J_{i}\left(\left\lfloor S_{1}\right\rfloor,\left\lceil S_{2}\right\rceil\right)$
$+\left(S_{1}-\left\lfloor S_{1}\right\rfloor\right)\left(\left\lceil S_{2}\right\rceil-S_{2}\right) J_{i}\left(\left\lceil S_{1}\right\rceil,\left\lfloor S_{2}\right\rfloor\right)+\left(S_{1}-\left\lfloor S_{1}\right\rfloor\right)\left(S_{2}-\left\lfloor S_{2}\right\rfloor\right) J_{i}\left(\left\lceil S_{1}\right\rceil,\left\lceil S_{2}\right\rceil\right)$

## Equilibrium Solution for Large Retailers

- When demand rate is high, payoff functions can be extended to be defined over non-integer numbers.

For $S_{1}, S_{2} \notin \mathcal{N}$
$J_{i}\left(S_{1}, S_{2}\right)=$
$\left(\left\lceil S_{1}\right\rceil-S_{1}\right)\left(\left\lceil S_{2}\right\rceil-S_{2}\right) J_{i}\left(\left\lfloor S_{1}\right\rfloor,\left\lfloor S_{2}\right\rfloor\right)+\left(\left\lceil S_{1}\right\rceil-S_{1}\right)\left(S_{2}-\left\lfloor S_{2}\right\rfloor\right) J_{i}\left(\left\lfloor S_{1}\right\rfloor,\left\lceil S_{2}\right\rceil\right)$
$+\left(S_{1}-\left\lfloor S_{1}\right\rfloor\right)\left(\left\lceil S_{2}\right\rceil-S_{2}\right) J_{i}\left(\left\lceil S_{1}\right\rceil,\left\lfloor S_{2}\right\rfloor\right)+\left(S_{1}-\left\lfloor S_{1}\right\rfloor\right)\left(S_{2}-\left\lfloor S_{2}\right\rfloor\right) J_{i}\left(\left\lceil S_{1}\right\rceil,\left\lceil S_{2}\right\rceil\right)$
For $S_{1} \notin \mathcal{N}, S_{2} \in \mathcal{N}$

$$
J_{i}\left(S_{1}, S_{2}\right)=\left(\left\lceil S_{1}\right\rceil-S_{1}\right) J_{i}\left(\left\lfloor S_{1}\right\rfloor, S_{2}\right)+\left(\left\lfloor S_{2}\right\rfloor-S_{2}\right) J_{i}\left(\left\lceil S_{1}\right\rceil, S_{2}\right),
$$

## Equilibrium Solution for Large Retailers

- When demand rate is high, payoff functions can be extended to be defined over non-integer numbers.

For $S_{1}, S_{2} \notin \mathcal{N}$
$J_{i}\left(S_{1}, S_{2}\right)=$
$\left(\left\lceil S_{1}\right\rceil-S_{1}\right)\left(\left\lceil S_{2}\right\rceil-S_{2}\right) J_{i}\left(\left\lfloor S_{1}\right\rfloor,\left\lfloor S_{2}\right\rfloor\right)+\left(\left\lceil S_{1}\right\rceil-S_{1}\right)\left(S_{2}-\left\lfloor S_{2}\right\rfloor\right) J_{i}\left(\left\lfloor S_{1}\right\rfloor,\left\lceil S_{2}\right\rceil\right)$
$+\left(S_{1}-\left\lfloor S_{1}\right\rfloor\right)\left(\left\lceil S_{2}\right\rceil-S_{2}\right) J_{i}\left(\left\lceil S_{1}\right\rceil,\left\lfloor S_{2}\right\rfloor\right)+\left(S_{1}-\left\lfloor S_{1}\right\rfloor\right)\left(S_{2}-\left\lfloor S_{2}\right\rfloor\right) J_{i}\left(\left\lceil S_{1}\right\rceil,\left\lceil S_{2}\right\rceil\right)$
For $S_{1} \notin \mathcal{N}, S_{2} \in \mathcal{N}$

$$
J_{i}\left(S_{1}, S_{2}\right)=\left(\left\lceil S_{1}\right\rceil-S_{1}\right) J_{i}\left(\left\lfloor S_{1}\right\rfloor, S_{2}\right)+\left(\left\lfloor S_{2}\right\rfloor-S_{2}\right) J_{i}\left(\left\lceil S_{1}\right\rceil, S_{2}\right),
$$

For $S_{1} \in \mathcal{N}, S_{2} \notin \mathcal{N}$

$$
J_{i}\left(S_{1}, S_{2}\right)=\left(\left\lceil S_{2}\right\rceil-S_{2}\right) J_{i}\left(S_{1},\left\lfloor S_{2}\right\rfloor\right)+\left(S_{2}-\left\lfloor S_{2}\right\rfloor\right) J_{i}\left(S_{1},\left\lceil S_{2}\right\rceil\right) .
$$

## Equilibrium Solution for Large Retailers

## Equilibrium Solution for Large Retailers



## Equilibrium Solution for Large Retailers



LemmaThe extended payoff $J_{i}\left(S_{1}, S_{2}\right)$ is continuous \& concave in $S_{i}$.

## Equilibrium Solution for Large Retailers



LemmaThe extended payoff $J_{i}\left(S_{1}, S_{2}\right)$ is continuous \& concave in $S_{i}$. Result 3:

- The ordering game with extended payoff functions has a pure strategy Nash equilibrium.


## Sensitivity of Hold-back Levels wrt Parameters

We analytically compared the change in marginal benefit to the change in marginal cost per change in parameters.

## Sensitivity of Hold-back Levels wrt Parameters

We analytically compared the change in marginal benefit to the change in marginal cost per change in parameters.

Result 4: The hold-back level is

## Sensitivity of Hold-back Levels wrt Parameters

We analytically compared the change in marginal benefit to the change in marginal cost per change in parameters.

Result 4: The hold-back level is

- decreasing in the transshipment price $t$,


## Sensitivity of Hold-back Levels wrt Parameters

We analytically compared the change in marginal benefit to the change in marginal cost per change in parameters.

Result 4: The hold-back level is

- decreasing in the transshipment price $t$,
- increasing in demand probabilities $p_{1}$ and $p_{2}$, demand flow probability $\theta$, customer revenue $r$, and her own salvage price $s_{i}$.


## Sensitivity of Hold-back Levels wrt Parameters

We analytically compared the change in marginal benefit to the change in marginal cost per change in parameters.

Result 4: The hold-back level is

- decreasing in the transshipment price $t$,
- increasing in demand probabilities $p_{1}$ and $p_{2}$, demand flow probability $\theta$, customer revenue $r$, and her own salvage price $s_{i}$. Implications:


## Sensitivity of Hold-back Levels wrt Parameters

We analytically compared the change in marginal benefit to the change in marginal cost per change in parameters.

Result 4: The hold-back level is

- decreasing in the transshipment price $t$,
- increasing in demand probabilities $p_{1}$ and $p_{2}$, demand flow probability $\theta$, customer revenue $r$, and her own salvage price $s_{i}$. Implications:
- Manufacturer can offer incentives to increase transshipment price, which increases cooperation.


## Sensitivity of Hold-back Levels wrt Parameters

We analytically compared the change in marginal benefit to the change in marginal cost per change in parameters.

Result 4: The hold-back level is

- decreasing in the transshipment price $t$,
- increasing in demand probabilities $p_{1}$ and $p_{2}$, demand flow probability $\theta$, customer revenue $r$, and her own salvage price $s_{i}$. Implications:
- Manufacturer can offer incentives to increase transshipment price, which increases cooperation.
- Increase in expected demand or demand flow leads to more competition, so less cooperation.


## Numerical Analysis of Retailers' Benefit

- 3000 problems are analyzed by generating random parameters with uniform distributions

$$
\begin{array}{l|l|l}
\hline p_{1} \sim U(0.1,0.25) & p_{2} \sim U(0.1,0.25) & c \sim U(3,5) \\
s_{1} \sim U(0,2) & s_{2} \sim U(0,2) & t \sim U(6,8) \\
r \sim U(10,14) & \tau \sim U(1,2) & \theta \sim U(0.1,0.3) \\
\hline
\end{array}
$$

## Numerical Analysis of Retailers' Benefit

- 3000 problems are analyzed by generating random parameters with uniform distributions

| $p_{1} \sim U(0.1,0.25)$ | $p_{2} \sim U(0.1,0.25)$ | $c \sim U(3,5)$ |
| :--- | :--- | :--- |
| $s_{1} \sim U(0,2)$ | $s_{2} \sim U(0,2)$ | $t \sim U(6,8)$ |
| $r \sim U(10,14)$ | $\tau \sim U(1,2)$ | $\theta \sim U(0.1,0.3)$ |

- Out of 3000 problems, all have at least one equilibrium, $9.9 \%$ of them have 2 equilibrium points.


## Numerical Analysis of Retailers' Benefit

- 3000 problems are analyzed by generating random parameters with uniform distributions

| $p_{1} \sim U(0.1,0.25)$ | $p_{2} \sim U(0.1,0.25)$ | $c \sim U(3,5)$ |
| :--- | :--- | :--- |
| $s_{1} \sim U(0,2)$ | $s_{2} \sim U(0,2)$ | $t \sim U(6,8)$ |
| $r \sim U(10,14)$ | $\tau \sim U(1,2)$ | $\theta \sim U(0.1,0.3)$ |

- Out of 3000 problems, all have at least one equilibrium, $9.9 \%$ of them have 2 equilibrium points.
- For the cases with 2 equilibrium points, $S_{1}^{*}+S_{2}^{*}$ are the same for both equilibrium points.


## Numerical Analysis of Retailers' Benefit

- 3000 problems are analyzed by generating random parameters with uniform distributions

| $p_{1} \sim U(0.1,0.25)$ | $p_{2} \sim U(0.1,0.25)$ | $c \sim U(3,5)$ |
| :--- | :--- | :--- |
| $s_{1} \sim U(0,2)$ | $s_{2} \sim U(0,2)$ | $t \sim U(6,8)$ |
| $r \sim U(10,14)$ | $\tau \sim U(1,2)$ | $\theta \sim U(0.1,0.3)$ |

- Out of 3000 problems, all have at least one equilibrium, $9.9 \%$ of them have 2 equilibrium points.
- For the cases with 2 equilibrium points, $S_{1}^{*}+S_{2}^{*}$ are the same for both equilibrium points.
- Average decrease in safety stock of a retailer wrt no pooling is 4.5\%.


## Numerical Analysis of Retailers' Benefit

- 3000 problems are analyzed by generating random parameters with uniform distributions

| $p_{1} \sim U(0.1,0.25)$ | $p_{2} \sim U(0.1,0.25)$ | $c \sim U(3,5)$ |
| :--- | :--- | :--- |
| $s_{1} \sim U(0,2)$ | $s_{2} \sim U(0,2)$ | $t \sim U(6,8)$ |
| $r \sim U(10,14)$ | $\tau \sim U(1,2)$ | $\theta \sim U(0.1,0.3)$ |

- Out of 3000 problems, all have at least one equilibrium, $9.9 \%$ of them have 2 equilibrium points.
- For the cases with 2 equilibrium points, $S_{1}^{*}+S_{2}^{*}$ are the same for both equilibrium points.
- Average decrease in safety stock of a retailer wrt no pooling is 4.5\%.
- Average increase in the profit of a retailer wrt no pooling is $3.3 \%$, with a maximum of $9.6 \%$.


## Numerical Analysis of Retailers' Benefit

- The retailer with relatively low expected demand benefits from the transshipment more.



## Manufacturer's Benefit: Total Expected Sales

- On average, even for high $\theta$, manufacturer is not hurt by transshipment.


## Manufacturer's Benefit: Total Expected Sales

- On average, even for high $\theta$, manufacturer is not hurt by transshimment.



## Manufacturer's Benefit: Total Expected Sales

- On average, even for high $\theta$, manufacturer is not hurt by transshimment.

$p_{1}=p_{2}=0.2, \tau=1, t=8, r=10, s_{1}=s_{2}=0, c=3.5$
- For 3000 problems, average improvement in total expected sales by optimal pooling wrt no pooling is $2.1 \%$ (max $7.8 \%$ ).


## Summary and Conclusion

- We showed the existence of an optimal non-stationary transshipment policy in a decentralized system with demand flow.


## Summary and Conclusion

- We showed the existence of an optimal non-stationary transshipment policy in a decentralized system with demand flow.
- There exists Nash equilibrium for retailers ordering decisions (i) for omnipotent requested retailer, (ii) in general for extended payoffs.


## Summary and Conclusion

- We showed the existence of an optimal non-stationary transshipment policy in a decentralized system with demand flow.
- There exists Nash equilibrium for retailers ordering decisions (i) for omnipotent requested retailer, (ii) in general for extended payoffs.
- The level of competition effects the willingness to cooperate.


## Summary and Conclusion

- We showed the existence of an optimal non-stationary transshipment policy in a decentralized system with demand flow.
- There exists Nash equilibrium for retailers ordering decisions (i) for omnipotent requested retailer, (ii) in general for extended payoffs.
- The level of competition effects the willingness to cooperate.
- Both retailers and the manufacturer benefit from the optimal transshipment.


## Thank you

