Optimal Transshipments and Orders:
A Tale of Two Competing and Cooperating Retailers

Nagihan Comez

Faculty of Business Administration,

Bilkent University

joint work with
K. E. Stecke and M. Cakanyildirim

Nottingham University-September 17, 2008 — p.1



Introduction: Cooperation

#® Inventory poolings a risk sharing strategy, which is the use of a
common stock for several retailers.

Nottingham University-September 17, 2008 — p.2



Introduction: Cooperation

Inventory poolings a risk sharing strategy, which is the use of a
common stock for several retailers.

In avirtual pooling(retailer-to-retailer trade) system, retailers
coordinate through transshipments.

Nottingham University-September 17, 2008 — p.2



Introduction: Cooperation

Inventory poolings a risk sharing strategy, which is the use of a
common stock for several retailers.

In avirtual pooling(retailer-to-retailer trade) system, retailers
coordinate through transshipments.

Transshipment
(1n case of a stock-
out)

Nottingham University-September 17, 2008 — p.2



Introduction: Cooperation

#® Inventory poolings a risk sharing strategy, which is the use of a
common stock for several retailers.

#® In avirtual pooling(retailer-to-retailer trade) system, retailers
coordinate through transshipments.

Transshipment
(1n case of a stock-
out)

® Decentralized systensich as, Honda, and General Motors hav
Intranet systems for their independent retailers.

Nottingham University-September 17, 2008 — p.2



Introduction: Cooperation

#® Inventory poolings a risk sharing strategy, which is the use of a
common stock for several retailers.

#® In avirtual pooling(retailer-to-retailer trade) system, retailers
coordinate through transshipments.

Transshipment
(1n case of a stock-
out)

® Decentralized systensich as, Honda, and General Motors hav
Intranet systems for their independent retailers.

® Observedn avarietyof industries such as apparel, toys,
furniture, IT products, aircraft and auto spare pagts,
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*Supply Chain Management Review, September 1, 1997

#® “Life without dealer tradesould be a whole lot of special
orders", WardsAuto.com, Dec 1, 2006.
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Introduction: Competition

® A stocked-out retaileasksfor a transshipment not to lose
demand.

® Study of 71,000 customers shows that “depending on the ptod

category ..21% to 43%will actually go toanother storewhen a
product is out of stock (Corsten and Gruen 2004).

Demand flow
! (when the demand is
unsatisfied)
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Competition or Cooperation?

#® Demand flow Probability of an unsatisifed customer visiting
another store for the same product, before switching tonamot

product.

® Demand flow is effected bgrand loyaltyandcommunication
between retallers.

® Thereforea retailer with inventorynay (may noj send a
transshipment to satisfyratailer(flowed customgrdemand.
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Scenario

Two independentetailers are selling tweubstitutablgroducts
at a common price.

Each retailer makessinglecycle order from the manufacturer.

During the cycle, in case ofstock-ouf the stocked-out retailer
can make @ransshipmentequest to the other retailer.
The receiving retailer may

» accepthe request to get a certain revenue.

» or,rejectthe request expecting the current demand to flow t
own store.
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Scenario

® Each retailer has to answer following questionsi@aximize
his/her payoffs:

o How much should a retailerder?

o How toaccept/rejecopponent’s transshipment requests?
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Agenda

Literature and contribution

Development of expected profit functions
Optimal transshipment policies

Analysis of the ordering game

Sensitivity and performance analysis

Summary and conclusion
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Rudiet al. (2001) Vv Vv
Zhaoet al. (2005) vV V4
Zhao and Atkins (2005) V4 V4 v
Our study v V Vv

We fill the gap in the literature for

#® Optimalanddynamictransshipment policies in a finite
decentralized system

® Demand flown a partial pooling system
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Problem Setting

A discrete time model by dividing the ordering cycle into
small decision periods.

In each period, probability of receiving a unit demand aditet
1 and retailer 2 arg; andp-, respectively, wherg; + p» < 1.

Each unit is bought from the manufacturer at the cost of

Each unit is sold to the customer for a revenue.of
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Problem Setting

In case of astock-out

#® If aunitis transshipped between retailers,
» the sender chargédo the receivert > sy, so,
» the transportation costis also paid by the receiver.

#® If ademand cannot be satisfied by a retaller,
s the demand flows to the opponent with probabifity
» totally lost with probabilityl — 6.

WLOG, r > t 4+ 7. Otherwise there is no transshipment problem.
At the end of the cycle, each remaining unisevagedat s, s-,

c > S1,S89.
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Total Expected Profit of the Cycle

The objective function of each retailers

mSaXJi(Sl, SQ) = —CSZ' + W};V(Sly S2>

7' (11, x5): The maximum expected total profit of retailein the re-
mainingn periods with inventory levels are;, x5, at retailer 1 and 2.

Remark: 7’ (z1,x5) is obtained by making optimal transshipment de

clsions.
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Only One Case May Happen In a Cycle

Case 1
Transshipment
policy of retailer 1
Xo is relevant
‘,\_\.\‘\ —_—
X1
Case 2

Transshipment
policy of retailer 2

Is relevant
N
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#® When both retailers have on-hand inventory:

+(1 — P1 — p2)7Ti,,_1(331,332), X1, T2 € N.

® When retailer 2 stocks-out before retailer 1:

T (21,0) = pi[r + 75 _ (1 — 1,0)] + (1 — p1 — p2)mpy_y(21,0)
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Total Expected Profit of Remaining Periods for Retailer 1

#® When both retailers have on-hand inventory:

® When retailer 2 stocks-out before retailer 1:

T (21,0) = pi[r + 75 _ (1 — 1,0)] + (1 — p1 — p2)mpy_y(21,0)
+po max{t + 7'('711_1(:131 —1,0),0(r + 7'('711_1(.731 —1,0)) + (1 — 0)7@11_1(:1:1, 0)}

Y
N J/
-~ -~

Expected profit from accepting Demand flows Demand is lost

~”

Expected profit from rejecting
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Total Expected Profit of Remaining Periods for Retailer 1

When both retailers are stocked-out:

m,(0,0) = 7,_,(0,0).

At the end of the cycle:

7T(1)(£E1,ZE2) = S1X1.

This completes the constructionof (z1, z2) under Case 1, i.e.,
retailer 2 stocks-out before retailer 1.
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Define themarginal benefibf one extra inventory at retailer 1,
On(@) = 7p(2,0) — m,(z — 1,0)

In periodn, a transshipment request is accepted if and only if
O(r +m)_(x1 —1,0) 4+ (1 — )7} _(21,0) < t+m_(x1 —1,0)

\ .

~ ~ ~

Demand flows Demand is lost Exp. profit from accept
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Analysis of Transshipment Problem for Retailer 1

Define themarginal benefibf one extra inventory at retailer 1,
On(@) = my (2, 0) — m, (z — 1,0)

In periodn, a transshipment request is accepted if and only if
Op—1(z) < (t—0r)/(1—0)

Lemma(i) The marginal benefit can not be more than the unit selling
price: " () < r.

(i) The marginal benefit of keeping extra inventory is dasrag in
inventory level:d’ (z) < o' (z — 1).

(i) The marginal benefit of keeping extra inventory Is g&sing inn.:

Op () < 6,().

Nottingham University-September 17, 2008 — p.17



Optimal Transshipment Policy

Nottingham University-September 17, 2008 — p.18



Optimal Transshipment Policy

Result 1:

® Foreach, it is optimal toreject(accept) the transshipment
request when; < 2’ (z; > 7°).

Nottingham University-September 17, 2008 — p.18



Optimal Transshipment Policy

Result 1:

® Foreach, it is optimal toreject(accept) the transshipment
request when; < 2’ (z; > 7°).

The hold-back level’ can be obtained as

7 =max{r: 8 (z) > (t—0r)/(1-0)}.

Nottingham University-September 17, 2008 — p.18



Optimal Transshipment Policy

Result 1:

® Foreach, it is optimal toreject(accept) the transshipment
request when; < 2’ (z; > 7°).

The hold-back level’ can be obtained as
7 =max{x : 0 _(x) > (t—0r)/(1—-0)}.

#® Hold-back levels are increasing (decreasing) iftime):
TL<ah <. <qt. ..
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Properties of Retailer:’s Transshipment Policy

® Ift < (1—6)s; + 0r =E[revenue from retained unit at= 1],
retailer; doesn’t participaten transshipping.
® Otherwise,
s Inperiod 1, hold-back level is zerg! = 0,
s hold-back level im is atmostn — 1, 7! < n — 1,
» hold-back level decreases by at most 1 in time,

n —
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Hold-back inventory levels

An Example Transshipment Policy of Retailer 1

04.\ I — \ \ \ \ \ I E—

1 2 3 456 7 8 91011 1213 14 1516 17 18 19 20
# of remaining decision periods

p1 =p2=02,r=10,t=6,0 =0.3,s1 =1
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® The optimal ordering level of a retailer ido@st response
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Analysis of Ordering Game

® The optimal ordering level of a retailer ido@st response

function:
S7(Sy) = arg I%&XJl(Sl, S9)

S5(S1) = arg I%&XJ2(51, S9)

® The ordering problem is @ournot game

#® Ordering game hasmaixed strategyequilibrium.
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Submodular Games (Milgrom and Roberts 1990)

® Submodular gameare characterized such as each player’s best
response function is decreasing in the actions of otheepsay

® A game is submodulaf,

» each player’s payoff function has decreasing differenges |
Sl anng:
Jl(Sl + 1, SQ) — Jl(Sl, SQ)ZJl(Sl + 1,5 + 1) — Jl(Sl, So + 1).
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Submodular Games (Milgrom and Roberts 1990)

® Submodular gameare characterized such as each player’s best
response function is decreasing in the actions of otheepsay

® A game is submodulaf,
» each player’s payoff function has decreasing differenges |
S1 and.Ss:
J(S1 +1,85) — JY(Sy,82)>JH(S1 + 1,8, +1) — JL(S1, 5, +1).

® Pure strategiNashequilibrium exists in two-playesubmodular
games.
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Ordering game wheret =r — 71

#® Requested retailer makes all the profit from a transshipment

Result 2:

® each retailer’s profit function has decreasing differemees
(51,52),

® theordering gamef the retailers isubmodular

® there exists a pure-stratefyash equilibriunmn inventory levels
(57, 53).
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°

Ordering game wheret < r — 7

Profit functions don’t have decreasing differenceall (5, .S,).
Thus, submodularity fails.

This means submodularity over entire spacetmaastrong
condition.

Numerical studyshows submodularity is valid over most of the
strategy space.

Nash equilibrium exists faall numericalstudies.
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Ordering game wheret < r — 7

Best response functions for a sample problem

N =60andp; =0.2,p2 =0.3,r =$13,t = $6,c = $4,7 = $1,0 = 0.2,51 = s2 = $2

S, 35

30 1
4

25 (14,21)

20 A

Ay AYAYAYAYAVAYAYAYAYAYAYAYAYAYAYSayil)

15

10 A

( T?‘Sg) — (14721)
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be defined ovenon-integemumbers.

ForsS,, S, ¢ NV

Ji(51,52) =
(151] = S1)([S2] — S2)Ji([S1], [S2]) + ([S1] — S1)(S2 — |S2])Ji([S1], [S2])
+(S1 — [S1))([S2] — S2)Ji([S1], [S2)) + (51 — [S1])(S2 — [S2]) Ji([S1]s [ S2])
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® \When demand rate sgh, payoff functions can be extended to
be defined ovenon-integemumbers.

ForsS,, S, ¢ NV

Ji(51,52) =
(151] = S1)([S2] — S2)Ji([S1], [S2]) + ([S1] — S1)(S2 — |S2])Ji([S1], [S2])
+(S1 — [S1))([S2] — S2)Ji([S1], [S2)) + (51 — [S1])(S2 — [S2]) Ji([S1]s [ S2])

FOfSl ¢N,SQ e N
Ji(S1,92) = ([S1] = 51)Ji(|S1], 52) + ([.S2] — S2)Ji([ 511, S2),

FOfSl EN,SQ §éN
Ji(51,52) = ([S2] = 52)Ji(51, [S2]) + (52 — [52]) i (51, [S21).
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Equilibrium Solution for Large Retailers

J(51,5,)

120 -~

100 -

80 -

0 -

T

7

0

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Lemmadlhe extended payoff(S;, S2) is continuous& concaven S;.
Result 3:

® The orderinggamewith extended payoffunctions has a pure
strategyNashequilibrium.
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Sensitivity of Hold-back Levels wrt Parameters

We analytically compared thehange in marginal benetf thechange
In marginal cosper change in parameters.
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Sensitivity of Hold-back Levels wrt Parameters

We analytically compared thehange in marginal benetf thechange
In marginal cosper change in parameters.

Result 4:The hold-back level is
® decreasingn the transshipment price

® increasingn demand probabilities; andp-, demand flow
probability/, customer revenue, and her own salvage price.
Implications:

#® Manufacturer can offer incentives to increassnsshipment
price, which increases cooperation.

® Increase in expectatemandor demand flowleads to more
competition, so less cooperation.
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Numerical Analysis of Retailers’ Benefit

#® 3000 problems are analyzed by generating random parameter
with uniform distributions

p1 ~ U(0.1,0.25) | p2 ~U(0.1,0.25) | ¢~ U(3,5)
s1 ~ U(0,2) s2 ~ U(0,2) t ~U(6,8)
r ~ U(10,14) T~ U(1,2) 6 ~ U(0.1,0.3)
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Numerical Analysis of Retailers’ Benefit

3000 problems are analyzed by generating random parameter
with uniform distributions

p1 ~ U(0.1,0.25) | p2 ~U(0.1,0.25) | ¢~ U(3,5)
s1 ~ U(0,2) s2 ~ U(0,2) t ~U(6,8)
r ~ U(10,14) T~ U(1,2) 6 ~ U(0.1,0.3)

Out of 3000 problemsll have at least one equilibriuri, 9% of
them have 2 equilibrium points.

For the cases with 2 equilibrium pointS; + S5 are the same for
both equilibrium points.

Averagedecrease in safety stook a retailer wrt no pooling is
4.5%

Averageincrease in the proff a retailer wrt no pooling i18.3%
with a maximum 010.6%
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Numerical Analysis of Retailers’ Benefit

® The retailer with relativelyow expected demanenefits from
the transshipmenhore

16 -

14 ——AJ1

. \ = AJ2 /
10 \ /

% Improvement in Profit
(=3}

005 010 015 020 025 030 035 040 045 P
045 040 035 030 025 020 015 010 005 P

T=1,t=6,r=10,51 =59 =0,c= 2.5
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Manufacturer’s Benefit: Total Expected Sales

#® On average, even for high manufacturers not hurtby
transshipment.
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#® On average, even for high manufacturers not hurtby
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Manufacturer’s Benefit: Total Expected Sales

#® On average, even for high manufacturers not hurtby
transshipment.
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| +—ES(OP) -=-ES(NP) -+ AES|

pr=p2=02,7=1,t=81r=10,81 = 590 =0,c=3.5

#® For3000problems, averagenprovement in total expected sales
by optimal pooling wrt no pooling 18.1%(max7.8%).
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Summary and Conclusion

We showed the existence ah optimal non-stationary
transshipment policy in a decentralized system with denfiamd

There existdNash equilibriunfor retailers ordering decisions (i)
for omnipotent requested retailer, (ii) in general for exted
payoffs.

The level ofcompetitioneffects the willingness to cooperate.

Bothretailers and the manufactuteenefitfrom the optimal
transshipment.
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Thank you
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