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Introduction: Cooperation

Inventory poolingis a risk sharing strategy, which is the use of a

common stock for several retailers.

In a virtual pooling(retailer-to-retailer trade) system, retailers

coordinate through transshipments.

Decentralized systemssuch as, Honda, and General Motors have

intranet systems for their independent retailers.

Observedin avarietyof industries such as apparel, toys,

furniture, IT products, aircraft and auto spare parts,etc.
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Cooperation

*Supply Chain Management Review, September 1, 1997

“Life without dealer tradeswould be a whole lot of special

orders", WardsAuto.com, Dec 1, 2006.
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Cooperation is increasing, because...

High demand uncertainty with increasingproduct variety

Time competitionmay lead to stock-outs

With developedinformation technology, easy information

exchange

Cheaper3PL services
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Competition or Cooperation?

Demand flow: Probability of an unsatisifed customer visiting

another store for the same product, before switching to another

product.

Demand flow is effected bybrand loyaltyandcommunication

between retailers.

Therefore, a retailer with inventorymay(may not) send a

transshipment to satisfy aretailer(flowed customer) demand.
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Two independentretailers are selling twosubstitutableproducts

at a common price.

Each retailer makes asinglecycle order from the manufacturer.

During the cycle, in case of astock-out, the stocked-out retailer

can make atransshipmentrequest to the other retailer.

The receiving retailer may

acceptthe request to get a certain revenue.

or, rejectthe request expecting the current demand to flow to

own store.
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Scenario

Each retailer has to answer following questions tomaximize

his/her payoffs:

How much should a retailerorder?

How to accept/rejectopponent’s transshipment requests?
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Agenda

Literature and contribution

Development of expected profit functions

Optimal transshipment policies

Analysis of the ordering game

Sensitivity and performance analysis

Summary and conclusion
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Literature and Contribution
Objective Pooling Policy

Only Partial Demand

Paper Central. Decentral. Complete Stat. Non-Stat. Flow

Krishnan and Rao (1965)
√ √

Comezet al. (2006)
√ √

Anupindiet al.(1999)
√ √ √

Rudiet al. (2001)
√ √

Zhaoet al. (2005)
√ √

Zhao and Atkins (2005)
√ √ √

Our study
√ √ √
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√ √

Comezet al. (2006)
√ √

Anupindiet al.(1999)
√ √ √

Rudiet al. (2001)
√ √

Zhaoet al. (2005)
√ √

Zhao and Atkins (2005)
√ √ √

Our study
√ √ √

We fill the gap in the literature for

Optimalanddynamictransshipment policies in a finite

decentralized system

Demand flowin a partial pooling system
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Order

A discrete time model by dividing the ordering cycle intoN

small decision periods.

In each period, probability of receiving a unit demand at retailer

1 and retailer 2 arep1 andp2, respectively, wherep1 + p2 ≤ 1.

Each unit is bought from the manufacturer at the cost ofc.

Each unit is sold to the customer for a revenue ofr.
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Problem Setting

In case of astock-out

If a unit is transshipped between retailers,

the sender chargest to the receiver,t ≥ s1, s2,

the transportation costτ is also paid by the receiver.

If a demand cannot be satisfied by a retailer,

the demand flows to the opponent with probabilityθ,

totally lost with probability1 − θ.

WLOG, r ≥ t + τ . Otherwise there is no transshipment problem.

At the end of the cycle, each remaining unit issalvagedats1, s2,

c ≥ s1, s2.
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Total Expected Profit of the Cycle

The objective function of each retaileri is

max
Si

J i(S1, S2) = −cSi + πi
N (S1, S2).

πi
n(x1, x2): The maximum expected total profit of retaileri in the re-

mainingn periods with inventory levels arex1, x2, at retailer 1 and 2.

Remark: πi
n(x1, x2) is obtained by making optimal transshipment de-

cisions.
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Only One Case May Happen In a Cycle

S1

S2
Transshipment 

policy of retailer 1
is relevant

x1

x2

Case 1

S2

S1
Transshipment 

policy of retailer 2
is relevantx1

x2

Case 2
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π1

n
(x1, 0) = p1[r + π1

n−1
(x1 − 1, 0)] + (1 − p1 − p2)π

1

n−1
(x1, 0)
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π1
n(x1, x2) = p1[r + π1

n−1(x1 − 1, x2)] + p2π
1
n−1(x1, x2 − 1)

+(1 − p1 − p2)π
1
n−1(x1, x2), x1, x2 ∈ N .

When retailer 2 stocks-out before retailer 1:

π1

n
(x1, 0) = p1[r + π1

n−1
(x1 − 1, 0)] + (1 − p1 − p2)π

1

n−1
(x1, 0)

+p2 max{t + π1

n−1
(x1 − 1, 0)

︸ ︷︷ ︸

, θ(r + π1

n−1
(x1 − 1, 0))

︸ ︷︷ ︸

+ (1 − θ)π1

n−1
(x1, 0)

︸ ︷︷ ︸

}

Expected profit from accepting Demand flows Demand is lost
︸ ︷︷ ︸

Expected profit from rejecting
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Total Expected Profit of Remaining Periods for Retailer 1

When both retailers are stocked-out:

π1
n(0, 0) = π1

n−1(0, 0).

At the end of the cycle:

π1
0(x1, x2) = s1x1.

This completes the construction ofπ1
n(x1, x2) under Case 1, i.e.,

retailer 2 stocks-out before retailer 1.
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Define themarginal benefitof one extra inventory at retailer 1,

δ1
n(x) = π1

n(x, 0) − π1
n(x − 1, 0)

In periodn, a transshipment request is accepted if and only if

θ(r + π1

n−1
(x1 − 1, 0))

︸ ︷︷ ︸

+ (1 − θ)π1

n−1
(x1, 0)

︸ ︷︷ ︸

≤ t + π1

n−1
(x1 − 1, 0)

︸ ︷︷ ︸

Demand flows Demand is lost Exp. profit from accept
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n−1(x) ≤ (t − θr)/(1 − θ)

Lemma(i) The marginal benefit can not be more than the unit selling

price: δi
n(x) ≤ r.

(ii) The marginal benefit of keeping extra inventory is decreasing in

inventory level:δi
n(x) ≤ δi

n(x − 1).

(iii) The marginal benefit of keeping extra inventory is increasing inn:

δi
n−1(x) ≤ δi

n(x).
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Optimal Transshipment Policy

Result 1:

For eachn, it is optimal toreject(accept) the transshipment

request whenxi ≤ x̃i
n (xi > x̃i

n).

The hold-back level̃xi
n can be obtained as

x̃i
n := max{x : δi

n−1(x) > (t − θr)/(1 − θ)}.

Hold-back levels are increasing (decreasing) inn (time):

x̃i
1≤x̃i

2≤ . . .≤x̃i
n. . . .
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Properties of Retailer i’s Transshipment Policy

If t < (1 − θ)si + θr = E[revenue from retained unit atn = 1],

retaileri doesn’t participatein transshipping.

Otherwise,

In period 1, hold-back level is zero,x̃i
1 = 0,

hold-back level inn is at mostn − 1, x̃i
n ≤ n − 1,

hold-back level decreases by at most 1 in time,

x̃i
n+1 − x̃i

n ≤ 1.
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An Example Transshipment Policy of Retailer 1

p1 = p2 = 0.2, r = 10, t = 6, θ = 0.3, s1 = 1
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The optimal ordering level of a retailer is abest response

function:
S∗

1(S2) = arg max
S1

J1(S1, S2)

S∗
2(S1) = arg max

S2

J2(S1, S2)

The ordering problem is aCournot game.

Ordering game has amixed strategyequilibrium.
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Submodular gamesare characterized such as each player’s best

response function is decreasing in the actions of other players.

A game is submodular,if

each player’s payoff function has decreasing differences in

S1 andS2:

J1(S1 + 1, S2) − J1(S1, S2)≥J1(S1 + 1, S2 + 1) − J1(S1, S2 + 1).
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Submodular Games (Milgrom and Roberts 1990)

Submodular gamesare characterized such as each player’s best

response function is decreasing in the actions of other players.

A game is submodular,if

each player’s payoff function has decreasing differences in

S1 andS2:

J1(S1 + 1, S2) − J1(S1, S2)≥J1(S1 + 1, S2 + 1) − J1(S1, S2 + 1).

Pure strategyNashequilibrium exists in two-playersubmodular

games.
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Ordering game wheret = r − τ

Requested retailer makes all the profit from a transshipment.

Result 2:

each retailer’s profit function has decreasing differencesin

(S1,S2),

theordering gameof the retailers issubmodular

there exists a pure-strategyNash equilibriumin inventory levels

(S∗
1 , S

∗
2).
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Ordering game wheret < r − τ

Profit functions don’t have decreasing differencesin all (S1, S2).

Thus, submodularity fails.

This means submodularity over entire space is atoo strong

condition.

Numerical studyshows submodularity is valid over most of the

strategy space.

Nash equilibrium exists forall numericalstudies.
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Ordering game wheret < r − τ

Best response functions for a sample problem

N = 60 andp1 = 0.2, p2 = 0.3, r = $13, t = $6, c = $4, τ = $1, θ = 0.2, s1 = s2 = $2
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When demand rate ishigh, payoff functions can be extended to

be defined overnon-integernumbers.

ForS1, S2 /∈ N

Ji(S1, S2) =

(dS1e − S1)(dS2e − S2)Ji(bS1c, bS2c) + (dS1e − S1)(S2 − bS2c)Ji(bS1c, dS2e)

+(S1 − bS1c)(dS2e − S2)Ji(dS1e, bS2c) + (S1 − bS1c)(S2 − bS2c)Ji(dS1e, dS2e)
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Equilibrium Solution for Large Retailers

LemmaThe extended payoffJi(S1, S2) is continuous& concavein Si.

Result 3:

The orderinggamewith extended payofffunctions has a pure

strategyNashequilibrium.
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Sensitivity of Hold-back Levels wrt Parameters

We analytically compared thechange in marginal benefitto thechange

in marginal costper change in parameters.

Nottingham University-September 17, 2008 – p.28



Sensitivity of Hold-back Levels wrt Parameters

We analytically compared thechange in marginal benefitto thechange

in marginal costper change in parameters.

Result 4:The hold-back level is

Nottingham University-September 17, 2008 – p.28



Sensitivity of Hold-back Levels wrt Parameters

We analytically compared thechange in marginal benefitto thechange

in marginal costper change in parameters.

Result 4:The hold-back level is

decreasingin the transshipment pricet,

Nottingham University-September 17, 2008 – p.28



Sensitivity of Hold-back Levels wrt Parameters

We analytically compared thechange in marginal benefitto thechange

in marginal costper change in parameters.

Result 4:The hold-back level is

decreasingin the transshipment pricet,

increasingin demand probabilitiesp1 andp2, demand flow

probabilityθ, customer revenuer, and her own salvage pricesi.

Nottingham University-September 17, 2008 – p.28



Sensitivity of Hold-back Levels wrt Parameters

We analytically compared thechange in marginal benefitto thechange

in marginal costper change in parameters.

Result 4:The hold-back level is

decreasingin the transshipment pricet,

increasingin demand probabilitiesp1 andp2, demand flow

probabilityθ, customer revenuer, and her own salvage pricesi.

Implications:

Nottingham University-September 17, 2008 – p.28



Sensitivity of Hold-back Levels wrt Parameters

We analytically compared thechange in marginal benefitto thechange

in marginal costper change in parameters.

Result 4:The hold-back level is

decreasingin the transshipment pricet,

increasingin demand probabilitiesp1 andp2, demand flow

probabilityθ, customer revenuer, and her own salvage pricesi.

Implications:

Manufacturer can offer incentives to increasetransshipment

price, which increases cooperation.

Nottingham University-September 17, 2008 – p.28



Sensitivity of Hold-back Levels wrt Parameters

We analytically compared thechange in marginal benefitto thechange

in marginal costper change in parameters.

Result 4:The hold-back level is

decreasingin the transshipment pricet,

increasingin demand probabilitiesp1 andp2, demand flow

probabilityθ, customer revenuer, and her own salvage pricesi.

Implications:

Manufacturer can offer incentives to increasetransshipment

price, which increases cooperation.

Increase in expecteddemandor demand flowleads to more

competition, so less cooperation.
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Numerical Analysis of Retailers’ Benefit

3000 problems are analyzed by generating random parameters
with uniform distributions

p1 ∼ U(0.1, 0.25) p2 ∼ U(0.1, 0.25) c ∼ U(3, 5)

s1 ∼ U(0, 2) s2 ∼ U(0, 2) t ∼ U(6, 8)

r ∼ U(10, 14) τ ∼ U(1, 2) θ ∼ U(0.1, 0.3)
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Numerical Analysis of Retailers’ Benefit

3000 problems are analyzed by generating random parameters
with uniform distributions

p1 ∼ U(0.1, 0.25) p2 ∼ U(0.1, 0.25) c ∼ U(3, 5)

s1 ∼ U(0, 2) s2 ∼ U(0, 2) t ∼ U(6, 8)

r ∼ U(10, 14) τ ∼ U(1, 2) θ ∼ U(0.1, 0.3)

Out of 3000 problems,all have at least one equilibrium,9.9%of

them have 2 equilibrium points.

For the cases with 2 equilibrium points,S∗
1 + S∗

2 are the same for

both equilibrium points.

Averagedecrease in safety stockof a retailer wrt no pooling is

4.5%.

Averageincrease in the profitof a retailer wrt no pooling is3.3%,

with a maximum of9.6%.
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Numerical Analysis of Retailers’ Benefit

The retailer with relativelylow expected demandbenefits from

the transshipmentmore.

τ = 1, t = 6, r = 10, s1 = s2 = 0, c = 2.5
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Manufacturer’s Benefit: Total Expected Sales

On average, even for highθ, manufactureris not hurtby

transshipment.
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p1 = p2 = 0.2, τ = 1, t = 8, r = 10, s1 = s2 = 0, c = 3.5
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Manufacturer’s Benefit: Total Expected Sales

On average, even for highθ, manufactureris not hurtby

transshipment.

p1 = p2 = 0.2, τ = 1, t = 8, r = 10, s1 = s2 = 0, c = 3.5

For3000problems, averageimprovement in total expected sales

by optimal pooling wrt no pooling is2.1%(max7.8%).
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Summary and Conclusion

We showed the existence ofan optimal non-stationary

transshipment policy in a decentralized system with demandflow.
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Summary and Conclusion

We showed the existence ofan optimal non-stationary

transshipment policy in a decentralized system with demandflow.

There existsNash equilibriumfor retailers ordering decisions (i)

for omnipotent requested retailer, (ii) in general for extended

payoffs.

The level ofcompetitioneffects the willingness to cooperate.

Both retailers and the manufacturerbenefitfrom the optimal

transshipment.
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Thank you
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