Inventory Pooling to Deliver Differentiated Service*

Aydın Alptekinoğlu SMU Cox School of Business

* Joint work with Anand Paul (U.Florida) and Nikhil Jain (Servigistics)

The Model

- A firm supplies a single product to *N* customers (indexed by i) from a centralized pool of inventory.
- Customer i has a random demand X_i for this product, and requires a minimum type-one service level guarantee: P{X_i is fully satisfied} ≥ β_i
- Events unfold in the following sequence during a single period:
 - The firm orders S units of the product in advance so as to receive them at the beginning of the period.
 - Actual customer demands realize.
 - □ The firm allocates the available pool of inventory among the *N* customers and makes shipments accordingly at the end of the period.
- The firm wants to find the minimum S (along with an allocation policy) that satisfies every customer's service level.

The Pie

How large should it be? How should it be cut?

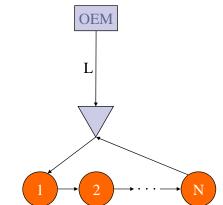
Theoretical Motivation

- Inventory pooling is at the root of many celebrated ideas in OM for 'managing' product variety
 - E.g. postponement (delayed differentiation), component commonality, resource flexibility
- Yet, our understanding of pooling has been largely shaped by cost models (rather than service level models)

Practical Motivation

- Service parts management
 Gold and blue contracts
- Delayed differentiation for fashion goods
- Stock allocation in perishable goods retailing
 - Inventory management of fresh foods in grocery industry (Swaminathan and Srinivasan 1999)

Practical Motivation: After-Sales Service in Automobile Industry



- A spare-parts warehouse regularly delivers parts to regional dealers
- "There is a distinct correlation between the quality of after-sales service and customer intent to re-purchase." Therefore, "customer-focused metrics" are essential.
- Decision Variables: System order-up-to level (S), and the allocation rule (x)
- Objective: Finding the optimal <u>ordering</u> and <u>allocation</u> policies so as to satisfy desired service levels

Source: Cohen et al. 2006 (HBR)

The Model

- A firm supplies a single product to N customers (indexed by i) from a centralized pool of inventory.
- Customer i has a random demand X_i for this product, and requires a minimum type-one service level guarantee: P{X_i is fully satisfied} ≥ β_i
- Events unfold in the following sequence during a single period:
 - The firm orders S units of the product in advance so as to receive them at the beginning of the period.
 - □ Actual customer demands realize.
 - $\hfill\square$ The firm allocates the available pool of inventory among the *N* customers and makes shipments accordingly at the end of the period.
- The firm wants to find the minimum *S* (along with an allocation policy) that satisfies every customer's service level.

Outline

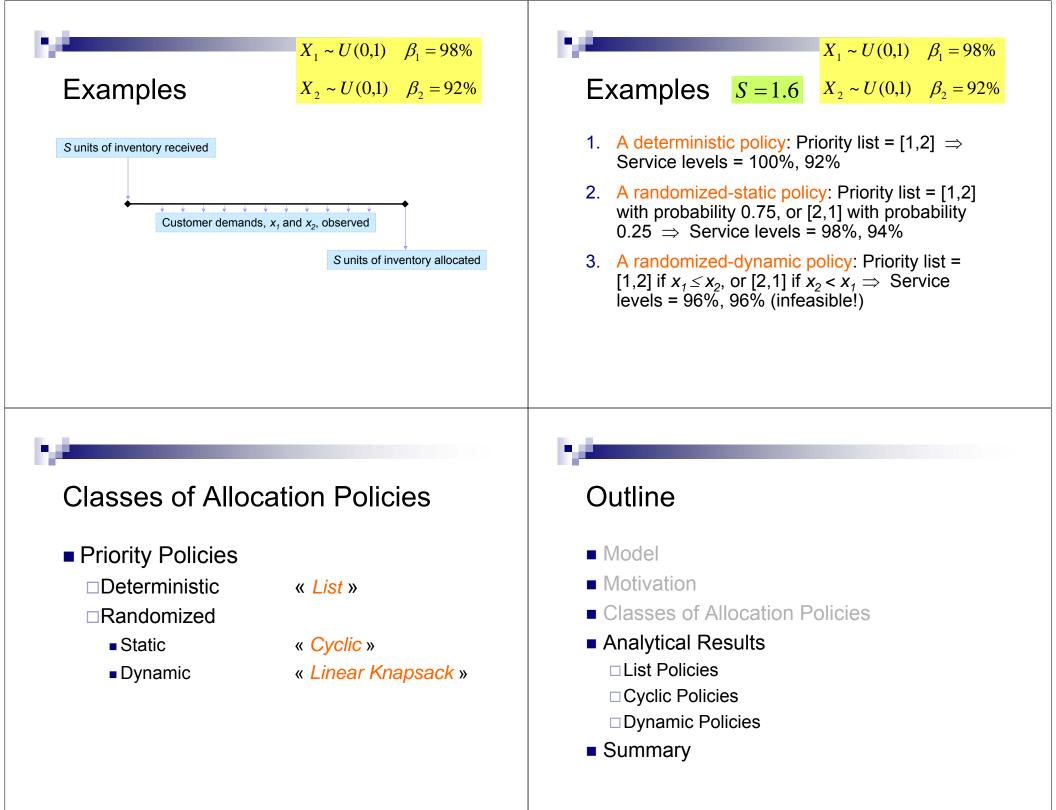
- Model
- Motivation
- Classes of Allocation Policies
- Analytical Results
 - □ List Policies
 - \Box Cyclic Policies
 - Dynamic Policies
- Summary

Classes of Allocation Policies **Examples of Priority Policies** Service customers in decreasing order of Priority Policies service level Deterministic 2. Service customers on the basis of a priority list generated randomly (before demands realize) □ Randomized 3. Service customers on the basis of a priority list Static -Zhang (2003) generated after demand realizations are observed, e.g., serve customers in increasing Dynamic -- Swaminathan & Srinivasan (1999) order of demand realizations The first policy is almost always suboptimal; the second policy is sometimes optimal; the third policy is potentially optimal. Example of a Non-Priority Policy Service Level **Type 1**: Two customers, A and B. *Probability* {*X_i* completely met from stock} Observe demand realizations.

 A's demand is filled from 80% of the onhand stock. Then B's demand is filled from residual stock + a fixed reserve of 20% of the stock. Any stock left over is funneled back to A.

Type 2 (Expected Fill Rate):

Customer i demand met from stock Customer i demand



List Policies

- Pre-determined priority list of customers, e.g., Lexus and Toyota customers at a car dealership
- The optimal List Policy: prioritize customers in decreasing order of their desired service levels
- The optimal inventory level: $\max\{G_{t_i}^{-1}(\beta_{t_i})\}$ where
 - \Box t_i is the customer with *i*-th highest desired service level and
 - $\Box \ G_{t_i}(\cdot)$ is the *cdf* of $X_{t_1} + \dots + X_{t_i}$

Example

- X₁,X₂,X₃ iid Normal(100,20)
- Service levels 0.9, 0.8, 0.7 respectively
- G₁(S)+G₂(S)+G₃(S)=2.4 when S=292, which is optimal by the preceding theorem
- Optimal cyclic policy: apply priority list
 - □ 2-1-3 with probability 1/2
 - □ 2-3-1 with probability 1/6
 - □ 3-1-2 with probability 1/3
- Optimal list policy: apply priority list 1-2-3 with S=318 units

Cyclic Policies

THEOREM 4. Suppose the demands are iid random variables.

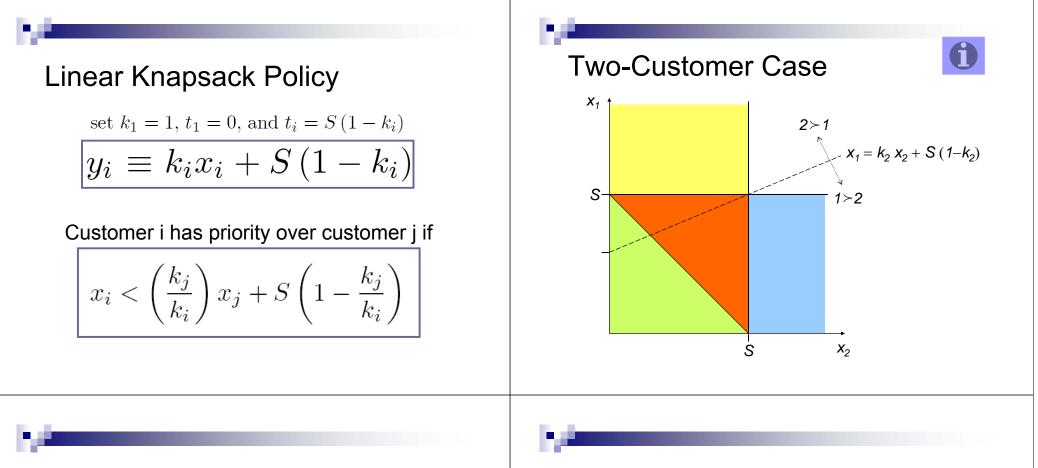
(a) The optimal cyclic policy can be found by solving the following problem: Min S subject to $\mathbf{W} \cdot \mathbf{C}(S) > \mathbf{B}$.

(b) The unique solution S_E of the equation $\sum_{i=1}^{N} G_i(S) = \sum_{i=1}^{N} \beta_i$ is a lower bound for the optimal stock.

(c) All the service levels are exactly satisfied if and only if $C(S_E)$ majorizes B. The optimal inventory in this case is precisely S_E .

Linear Knapsack Policy

- Suppose the inventory level is S and the demand realizations are x₁,...,x_N.
- Linear Knapsack (LK) Policy, defined by two N-vectors (k₁,...,k_N) and (t₁,...,t_N), is the following procedure for allocating inventory among the N customers:
 - □ Apply the linear transformation $y_i = k_i x_i + t_i$ to each of the demand realizations (*i* =1, ..., *N*)
 - \Box Prioritize (or rank-order) customers in increasing order of y_i and allocate *S* accordingly



Two-Customer Case

Let S_0 be implicitly defined by

 $P\{X_1 + X_2 \le S_0\} = \beta_1 + \beta_2 - 1 + P\{X_1 > S_0, X_2 > S_0\}$

Two-Customer Case

Define

Case 1:	$\beta_1 \ge \alpha_1 \text{ and } \beta_2 \ge \alpha_2$
Case 2:	$\boldsymbol{\beta}_1 > \boldsymbol{\alpha}_1 \text{ and } \boldsymbol{\beta}_2 < \boldsymbol{\alpha}_2$
Case 3:	$\beta_1 < \alpha_1 \text{ and } \beta_2 > \alpha_2$

where

$$\alpha_1 \equiv P\{X_1 + X_2 \le S_0\} + P\{X_1 \le S_0, X_2 > S_0\}$$

$$\alpha_2 \equiv P\{X_1 + X_2 \le S_0\} + P\{X_1 > S_0, X_2 \le S_0\}$$

Two-Customer Case

THEOREM 8. With two customers, the optimal inventory level is S^* , and the linear knapsack policy

with $k_1 = 1$ and $k_2 = k^*$ is an optimal allocation policy. The optimal policy parameters are:

	S^*	k^*
Case 1: $\beta_1 \ge \alpha_1$ and $\beta_2 \ge \alpha_2$	S_0	k_0
Case 2: $\beta_1 > \alpha_1$ and $\beta_2 < \alpha_2$	$F_1^{-1}(\beta_1)$	∞
Case 3: $\beta_1 < \alpha_1$ and $\beta_2 > \alpha_2$	$F_2^{-1}(\beta_2)$	0

with S_0 and k_0 uniquely determined by two implicit equations:

 $P\{X_1 + X_2 \le S_0\} = \beta_1 + \beta_2 - 1 + P\{X_1 > S_0, X_2 > S_0\}$ (1)

 $P\left\{ \omega(S_{\mathbf{0}}), \ X_{1} < k_{\mathbf{0}}X_{2} + S_{\mathbf{0}}\left(1 - k_{\mathbf{0}}\right) \right\} = \beta_{1} - P\left\{ X_{1} + X_{2} \leq S_{\mathbf{0}} \right\} - P\left\{ X_{1} \leq S_{\mathbf{0}}, \ X_{2} > S_{\mathbf{0}} \right\}$

Example - revisited $X_2 \sim U(0,1)$ $\beta_2 = 92\%$

 $X_1 \sim U(0,1)$ $\beta_1 = 98\%$

The optimal inventory level: $S^* = 1.55$

The optimal allocation policy: LK policy with k_1 =1.00 and k_2 =0.80; Priority list = [1,2] if $x_1 \le 0.80 \ x_2 + 0.31$, or [2,1] otherwise; Service levels = 98%, 92%

Dynamic Policies: Special Case

- Assume *iid* demands and identical service levels
- Optimal allocation policy is to serve the customers in ascending order of their demand realizations
- Optimal inventory level is the unique S* that satisfies

 $\sum_{i=1}^{N} H_i(S^*) = N\beta$

where $H_i(\cdot)$ is the *cdf* of the sum of *i* smallest demands

Comparison:

	Distribution	β	S_{list}	S_{cyclic}	$S_{dynamic}$
ſ	Normal (10,2)	75 %	33	28	28
Ì		80 %	34	30	30
		85 %	34	31	31
[90 %	35	32	32
[95 %	36	34	34
[Normal (10,3)	75 %	34	28	27
		80 %	35	30	29
		85 %	36	31	31
[90 %	37	33	33
[95 %	39	36	36
[Lognormal (10,5)	75 %	35	28	25
		80 %	37	30	28
		85 %	39	32	31
		90 %	42	35	34
[95 %	47	40	39
[Lognormal (10,10)	75 %	38	27	22
[80 %	41	31	25
[85 %	46	35	30
		90 %	52	41	36
		95 %	64	52	46
[Lognormal (10,15)	75 %	38	26	19
		80 %	43	31	23
Ì		85 %	49	36	28
		90 %	58	45	35
[95 %	78	62	50

Dynamic Policies: A Bound

The unique solution S_{LB} of the equation

$$\sum_{i=1}^{N} H_i(S_0) = \sum_{i=1}^{N} \beta_i$$

is a lower bound on the optimal inventory level.

Summary / Contributions

- Identified three classes of allocation policies in varying degrees of ease of implementation
- Characterized the optimal ordering and allocation policies within these classes for any number of customers under several special cases & devised a general algorithmic solution
- Established a general lower bound on optimal inventory
- Developed a closed-form distribution-free solution for the optimal ordering and allocation policies in the case of two customers

Q&A

For more information:

Aydın Alptekinoğlu aalp@cox.smu.edu

Anand Paul <paulaa@ufl.edu>

"This ensures that we don't overanalyze."