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ABSTRACT 
Indoles are converted into α-carbolines in four steps by acylation at C-3, Boc-protection, olefination of the 
resulting 3-indolyl aldehydes or ketones to give N-Boc-3-indolyl alkenyl oxime O-methyl ethers, which upon 
heating to 240 °C under microwave irradiation undergo loss of the Boc-group, and 6π-electrocyclization to α-
carbolines, following aromatization by loss of methanol (11 examples, 30 – 90% yield).   
 
 
 
In contrast to β-carbolines that are widely represented among natural products and synthetic bioactive 
compounds,1-3 α-carbolines (pyrido[2,3-b]indoles) are considerably less well investigated.4,5 Nevertheless there 
are some important examples such as the naturally occurring anticancer compounds grossularines -1 and -2,6-9 
and the neuronal cell protective agent mescengricin.10 In the medicinal chemistry arena, α-carbolines such as the 
GABA modulator,11 and the inhibitor of microsomal triglyceride transport protein implitapide,12,13 have also been 
widely studied.     
As a consequence, routes for the construction of the α-carboline nucleus are of interest but, unlike their β-
carboline counterparts that are almost invariably prepared from tryptophan or tryptamine derivatives, there is no 
main synthetic access to the isomeric α-carbolines. Thus, α-carbolines have been obtained from 2-
aminoindoles,14-16 by a variation of the Graebe-Ullmann synthesis of  carbazoles,17 by intramolecular Diels-Alder 
reaction of pyrazinones,18 from palladium-catalysed reactions of anilines with 2,3-dihalopyridines,19,20 by 
cyclization of 2-isocyanato-indoles,6-8 and of iminyl radicals.21-24 However, we were attracted by the possibility of 
developing a more general route based on a 6π-electrocyclic process, and we now report our initial results. 
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Figure 1. Structures of naturally occurring and bioactive α-carbolines. 
 
 
Scheme 1. Projected route to α-carbolines by 6π-electrocyclization of 3-indolyl alkenyl oxime ethers. 
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The projected precursors to α-carbolines were the 3-indolyl alkenyl oxime ethers 1, accessible from 3-acylindoles 
2 (Scheme 1). 3-Acylindoles are readily available by exploiting the natural reactivity of indoles to undergo facile 
acylation at the 3-position. The participation of oxime ethers in 6π-electrocyclic processes is known from the work 
of Hibino,25 and the possible intermediacy of imines related to 1 has been implicated in other work,23 and in a 
biomimetic synthesis of grossularine-1.9 
The precursors to the desired oxime ethers 1 were 3-acylindoles 2, and phosphonates 3. The phosphonates were 
prepared by reaction of the corresponding carbonyl compound with O-methyl hydroxylamine, with the aldoxime 
precursor being prepared by acid hydrolysis of the commercially available diethyl (2,2-diethoxy)ethylphosphonate. 
Subsequent Horner Wadsworth Emmons reaction with N-Boc-protected 3-indolyl aldehydes or ketones gave the 
required alkenyl oxime ethers 4 generally as mixtures of E/Z-alkene isomers that could be readily separated and 
characterized, apart from alkene 4g which was formed as the E-alkene. 
In general only one oxime isomer was observed which, on the basis of the chemical shift of the oxime 
RCH=NOMe proton in the 1H NMR spectrum, suggested that the oximes have the (Z)-geometry. In the case of 



oxime 4a, removal of the Boc-protecting group gave the crystalline E-alkene-Z-oxime (Figure 2), confirming the Z-
stereochemistry of the oxime double bond. The olefination reaction was then extended to indole-3-carbaldehydes 
bearing chloro- and alkoxy-groups, and indolyl ketones with methyl or ester groups (Table 1). 
 

 
Figure 2. X-Ray crystal structure of (E)-3-(1-methyl-1H-indol-3-yl)propenal (Z)-methyl oxime. 
 
With a range of oxime ethers 4 in hand, their thermal cyclization reactions were studied. Initially, these were 
investigated leaving the Boc-group in place since it was assumed that it would be cleaved under the high 
temperature conditions. In the event, heating 4a, as a mixture of geometric isomers, to 180 °C in 1,2-
dichlorobenzene gave a mixture of the desired α-carboline 5a (12%) plus the Boc-deprotected starting material. 
Increasing the temperature to 240 °C under microwave irradiation delivered the α-carboline 5a in 73% yield. We 
assume that the reaction involves initial thermal removal of the Boc-group to give the NH indole in which 
isomerization of the alkene into the cis-isomer required for electrocyclization is facilitated. In support of this, prior 
removal of the Boc-group in 4a under hydrolytic conditions (82%), gave the corresponding NH indole that cyclized 
to α-carboline 5a (54%) upon heating to 240 °C. It would appear that the NH is essential for cyclization since the 
corresponding N-methyl compound does not give 9-methyl-α-carboline under the same conditions. 
Electrocyclization of the indolyl alkenyl oxime ethers 4b – 4k, starting with either (Z) or (E)-alkene isomers, 
proceeded similarly to give a range of α-carbolines 5 in 30-90% yield (Table 1). The structures of the carbolines 
5f and 5h were confirmed by X-ray crystallography (Figure 3). 
 
 
Table 1. Preparation of indolyl alkenyl oxime ethers 4 [indoles, phosphonates, 3a, R2 = H; 3b, R2 = Me] and their 
conversion into α-carbolines 5 by 6π-electrocyclization 
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entry 2 Xa R4 3 R2 4 E yield/% Z yield/% Xb 5 yield/% 
1 a H H a H a 46 38 H a 73 
2 b 5-OMe H a H b 37 25 6-OMe b 36 
3 c 6-OMe H a H c 38 60 7-OMe c 30 
4 d 5-Cl H a H d 49 42 6-Cl d 55 
5 a H H b Me e 11 22 H e 90 
6 c 6-OMe H b Me f 28 62 7-OMe f 77 
7 b 5-OMe H b Me g 34c - 6-OMe g 41 
8 e H CO2Me a H h 38c 49 H h 52 
9 f H Me a H i 49 16c H i 62 
10 f H Me b Me j 45 23 H j 65 
11 e H CO2Me b Me k 52 29 H k 51 

a indole numbering; b α-carboline numbering; c mixture of oxime geometric isomers. 
 



 

 
Figure 3. X-Ray crystal structures of α-carbolines 5f and 5h. 
 
In conclusion, we have developed a new general route to α-carbolines that proceeds in just four steps from 
indoles. 
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