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Tutorial work Set 1 

(Covers material in Lectures 1 - 5) 
 

Lecture notes for module available from www.nottingham.ac.uk/~ppzpjm 
philip.moriarty@nottingham.ac.uk 

 
 
The following topics are covered in this set of problems: 
 

1. A brief introduction to interatomic/intermolecular forces and potentials. (This largely involved a 
revision of topics covered in the Autumn semester Modelling module – approximate form of a function 
near a minimum, finding equilibrium separation…) [Lecture 1]; 

2. Very gentle introduction to changes of phase, latent heats etc.. (Phase changes will be revisited in the 
last few lectures of the module) [Lectures 1 and 2]; 

3. Distribution functions [Lecture 3]; 
4. Derivation and simple applications of the ideal gas law [Lectures 3 and 4]; 
5. Boltzmann distribution and Boltzmann factors [Lectures 4 and 5]. 

 
 
Q1. One mole of an ideal gas is held in a container (volume: 0.1 m3) at a pressure of 5 kPa. Determine the 
temperature of the gas. If the temperature is changed to 373K and the volume of the container is kept 
constant, calculate the change in gas pressure. In an isothermal expansion where the volume of gas is 
doubled, what is the change in the internal energy of the gas?  
[From 2003 F31ST1 resit paper].  
  
Q2. A block of steel of 1 kg mass and at a temperature of 250°C is placed into an insulated container that 
holds 100 grams of water at 10°C. The container is made of aluminium and weighs 20 grams. Calculate the 
mass of the fraction of water that is converted into steam. [Specific heat of steel = 448 J kg-1 K-1; specific 
heat of water = 4186 J kg-1 K-1; specific heat of aluminium = 660 J kg-1 K-1; latent heat of vaporisation of 
water = 2.26 x 106 J kg-1] 
 
Q3. Suppose we have a large collection of N molecules with total energy E. The individual energies 
available to each molecule are such so that there are Ni molecules with energy ει (hence, E = 
∑Ni ει). Boltzmann’s distribution law states that: 
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where N0 is the number of molecules found in the energy state ε0, ΔE = εi - ε0, and k is Boltzmann’s constant. 
If we increase the temperature of the system, which of the following statements is/are true? 
 

(a) All of the energy levels will become more populated; 
(b) All of the energy levels will become less populated; 
(c) All of the energy levels will be more closely spaced together; 
(d) All of the energy levels will be spaced further apart; 
(e) Some of the energy levels will be more closely spaced, others will be spaced further apart; 
(f) Some of the energy levels will become more populated, some less populated. 

 



 
Q4. In 1910, Perrin and Dabrowski determined Avgadro’s number by examining the distribution of particles 
in a colloidal suspension (a mixture of spherical mastic particles in water). The particles had a radius of 0.52 
μm and a density ρ of 1.063 g cm-3. Perrin and Dabrowski determined the number of particles in layers 
separated by a distance of 6 μm to be 305, 530, 940, and 1880. Calculate the value of Avogadro’s constant 
using these data and the expression for Boltzmann’s distribution law given in Q3. 
 
[Take the density of the suspending fluid to be 1.00 g cm-3 and the temperature to be 15° C. Furthermore, 
note that the gravitational force on a particle suspended in a liquid is reduced by the buoyancy of the liquid 

and is given by:  
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, where r is the radius of the particle, and ρ and ρ1 are the densities of the 

particles and the surrounding liquid respectively]. 
 
 
 
Q5. The probability distribution (P(vx) dvx) associated with the x component of velocity, vx, of the molecules 
of an ideal gas is given by: 
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Sketch the form of the velocity distribution curve for two temperatures T1 and T2 (T1 > T2) and write down 
the value of  for the distribution in each case. Show that the mean square value of v>< xv x (i.e. <vx

2>)  is  
kT/m.  



Solutions 
 
Q1.  
 
PV = RT. Plug numbers in: T = 60.2 K 
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ΔP = 25.98 kPa  
 
Isothermal expansion. For an ideal gas U is a function of T only so change in internal energy = 0. 
 
[Note to tutors: the idea that the internal energy of an ideal gas is a function only of temperature is 
introduced in Lecture 4. The students will therefore probably struggle to answer the final part of the question 
so you may need to spend some time explaining the answer (and the question!)]. 
 
Q2. 
 
The first thing to realise is that as not all the water has been converted to steam, the heat input from the block 
drives the phase transition at 100°C rather than raising the temperature above 100°C.   
 
Heat lost by the steel = heat gained by the container and water  
 
Qsteel = msteel csteel (ΔT) = 448 (100 – 250) = 6.72 x 104 J (Heat lost by steel) 
 
Qwater = 0.1 x 4186 x (100 – 10) = 3.77 x 104 J (Heat gained by water to get to 100°C) 
 
Qsteam = msteam (2.26 x 106) J. (Heat gained by a mass msteam of water in conversion to steam). 
 
Qcontainer = 0.02 [660] [90] J = 1188 J 
 
Thus, 6.72 x 104 J = 3.77 x 104 + 1188 J + msteam (2.26 x 106) J 
 
Therefore, 12.5 grams of water are converted to steam. 
 
Q3.  
 
The correct answer is (f). 
 



Solutions (contd.) 
 
 
Q4. 
 
In Lecture 5, the students have seen the derivation of the Boltzmann distribution for a ‘column’ of gas (see 
Set 2a of the lecture notes available on the website). In the case of the colloidal suspension described above 
we can write: 
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Thus, a graph of ln N vs h (from Perrin and Dabrowski’s data) yields a slope of  
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slope of the graph is approximately -1 x 105 m-1 and hence k can be estimated as 1.26 x 10-23 J K-1. 
Avogadro’s number = R/ k = 6.60 x 1023 mol-1.  
 
Q5. 
Students get confused between the velocity and speed distributions. The velocity distribution given above is 

Gaussian with mean, <vx> = 0 and standard deviation of  
m
kT
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[Note to tutors: In Lecture 3, a little time is spent revisiting concepts related to Gaussian-distributed 
variables. The students have previously encountered these in the 1st year lab. module (and in the associated 
errors manual) and in the autumn semester Analytical Skills and Modelling module.] 
 
To evaluate <vx

2>: 
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Using the standard integrals given in the Appendix to Set 2b of the F31ST1 notes: 
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[Note that in Set 2 of the coursework, the students will evaluate <v2> from the Maxwell-Boltzmann 

distribution and (hopefully) find that it is 3kT/m. The result above follows from ><>=< 22

3
1 vvx . ] 


