
 

 

  
Lecture Notes 

Set 2a: Kinetic Theory I 
 
 



2.1 Distributions and Averaging 
 
In this section of the module we will spend a considerable amount of time studying distribution 
functions. Not only is the form or shape of the distribution curve of interest but we will derive a 
number of fundamental quantities (including the average or mean value) from distribution 
functions. We’ll begin by revising some of what you’ve learnt in the Mathematical Modelling 
module on distribution functions. You’ll find that there is also some significant overlap of the 
mathematics discussed here with measurement theory, particularly with regard to Gaussian (or 
normal) distributions. 

 
 
Fig. 2.1 shows a histogram of a set of 
measurements of the height to which a ball 
bounces when dropped from a set distance above 
the floor. Note that the measurements are placed in 
bins whose width is ∆h. If the number of 
measurements is increased dramatically and the 
bin size correspondingly narrowed so that it 
becomes dh we get a continuous curve (Fig. 2.2). 
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Fig. 2.1 A histogram of measurements of the 
maximum height to which a ball bounces when 
dropped from a given distance above the floor. 
  

e curve shown in Fig. 2.2 is a Gaussian 
tribution. (The first few weeks of the 1st year 
ysics laboratory are dedicated to demonstrations of 
amongst other topics – the importance of Gaussian 
tributed variables). Later on in this section 
ussian functions will be shown to be of key 
portance when we consider the distribution of 
lecular velocities in a gas. It is important to note 
t N(h)dh is the number of measurements which 
lded values between h and h + dh. 

 
Q. 2.1 Considering Fig. 2.2, write down an 
expression that gives the total number of times 
the measurement was made. 
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Fig. 2.2 By increasing the total number of 
measurements and correspondingly reducing 
the bin size to dh, we get a smooth, 
continuous curve. 



Introduction to the Mathematics of Averaging 
 
Let’s now consider how we can determine the 
average value associated with a distribution function. 
First, we’ll treat a system that can only exist in certain 
discrete states. A good example of this is the quantum 
mechanical simple harmonic oscillator (SHO). This is 
a system we will encounter a number of times later in 
this section and throughout the module. As opposed 
to the classical potential energy function for a SHO 
which we met in Section 1 - that is, U(x) = ½kx2 – a 
quantum mechanical SHO cannot have any value of 
energy. Just as the energy states of an electron in an 
atom are quantized, so too are the vibrational energies 
of a quantum mechanical oscillator (see Fig. 2.3). The 
energies are given by: 
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2
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where n is the quantum number associated with the 
energy level (n = 0, 1, 2, 3..etc…), � is Planck’s constant divided by 2π and ω0  is the resonant 
frequency of the oscillator.  
 
(An important observation here is that the lowest energy state (n = 0) for a quantum mechanical 
oscillator, unlike the classical SHO, does not have zero energy. Thus, at 0 K when all classical 
vibration is ‘frozen out’, quantum mechanical oscillators still have a zero point energy. We’ll 
return to this point later.) 
 

 
 
We label the quantum mechanical SHO states as φi (where i = 0, 
1, 2 ….). The probability of occurrence of each of these states 
is Pi. If the oscillator has energy Ei in each of these states then 
the average value of E (which we’ll denote <E>) is given by: 
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However, this analysis is not limited to the quantum mechanical SHO. For any function which 
has discrete values (say, Qi ) when the system is in the states i = 0, 1, 2 …etc… then the average 
value of Q is: ∑>=<

i
iiQPQ where Pi is again the probability of finding the system in the ith 

state. 

 U(x) 
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Fig. 2.3 The potential energy curve for a 
classical simple harmonic oscillator is 
continuous. A quantum mechanical oscillator 
can only take on certain quantized energy 
values as illustrated by the equally spaced 
lines in the diagram above. 
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Fig. 2.4 The QM SHO vibrates in  

discrete states φi (i=1,2,3…..) 



 In other cases, instead of comprising a set of discrete states, the system is capable of existing in 
any one of a continuous range of states. The state of the system is represented by a coordinate, x 

 
Q. 2.2 What’s the probability of finding this continuous system in a specified, individual 
state, x? 
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here is a certain probability associated with finding the system in a state lying within a range x 
o x + δx . This probability is given by f(x)δx. The quantity Q considered for the discrete function 
bove is now a function of the continuous variable, x and should thus be written Q(x). The 
verage value of Q is given by:  
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n the limit δx → dx, <Q> is given by the following integral:  

∫>=< dxxfxQQ )()(     (2.4) 

ote that the function f(x)dx is a probability and hence: ∫ =1)( dxxf  
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2.2 The Ideal Gas Law 
 
Having introduced distribution functions, we can now move on to derive the ideal gas law - a 
cornerstone of kinetic theory and thermal physics. From a consideration of the motions of the 
molecules comprising an idealized gas (i.e. the microscopic structure of the gas), the relation PV 
= nkT  will be derived (where P, V, n, k, and T are pressure, volume, number of molecules, 
Boltzmann’s constant and temperature respectively ). This simple law underlies a large amount of 
the physics we’ll cover in this module and illustrates convincingly how a consideration of the 
microscopic structure of a system allows the prediction of relationships between macroscopic 
variables.  
 
Consider a gas confined in a large square box (wall area:A, side 
length: a). In deriving the ideal gas law we make a number of 
important assumptions: 
 

(i) the molecules comprising the gas are featureless 
points, occupying negligible volume; 

(ii) there are no forces between the molecules (i.e. no 
intermolecular interactions); 

(iii) all molecules move independently making elastic 
collisions; 

(iv) the molecules obey Newton’s laws of motion. 
 
This hypothetical gas is termed, perhaps unsurprisingly, an ideal gas. A
He or Ne at low pressures shows approximately ideal gas behaviour. Lat
the differences in the behaviour of real and ideal gases will be covered.  
 
Molecular velocities 
 
To derive the ideal gas law we need to consider the distribution of mo
start with a question: 

 
 
Q. 2.3 What’s the average velocity of a molecule? 
 
 

We could assume that all the molecules move parallel to the x-, y- or z-ax
speed. However, this is a very big assumption and goes somewhat ‘again
neglects the distribution of molecular speeds and velocities which are at 
physics. In the following we will take into account the appropriate distrib
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ig. 2.5 Cartoon of ideal gas 
cules in a container. Note the
ibution of velocities (different 

vector lengths) 
 monatomic gas such as 
er in this section some of 
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The molecules are specularly reflected at the walls – that is, the angle 
of incidence equals the angle of reflection. The momentum change a 
molecule suffers on colliding with a wall which, as shown in Fig. 2.6, 
is perpendicular to the x-axis, is therefore 2mvx. (Make sure you 
understand why).  
 
 

 
To d
collis
collis
distan
Fig. 
mole
 
Furth
comp
f(vx)d
of m
is: Nf
 
Henc
range
 

 
 
To ge
a wal

By sy
 
 

ref s 

??
 
Fig. 2.6 Specular 
lection of molecule
etermine the rate of change of momentum due to the 
ions of the molecules with a wall, the frequency of 
ions needs to be determined. Only those molecules within a 
ce vx of the wall will collide with it within 1 second (see 

2.7). This will be a fraction vx/a of the total number of 
cules in the box.  

ermore, the fraction of all molecules which have their x 
onent of velocity in the range vx to vx + dvx is given by: 
vx. Here f(vx)dvx represents a probability. The total number 
olecules having their x-component of velocity in this range 
(vx)dvx.  

e, the total change of momentum per second due to molecules wit
 is: 
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t the total change of momentum due to molecules of all velocities
l, integrate over all velocities: 
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Q. 2.4 Why are the integral limits (0, ∞) ? 
 
 

mmetry, f(vx) = f(-vx) and hence the integrand is symmetrical abo
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ig. 2.7 Only those molecules 
thin vx of the wall will collide
th it within 1 second.
hin the given velocity 

  (2.5) 

 (in the x direction) hitting 

  (2.6) 
ut vx=0.  

   (2.7) 



The value of the integral is simply the mean value of vx
2 which is denoted <vx

2>. Hence, the total 
change of momentum per second is: 
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Show that Equation 2.8 can be written PV = mN <vx

2>. 
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y symmetry, <vx
2> = <vy

2> = <vz
2>.  

o, <vx
2> = (1/3) <vx

2 + vy
2+ vz

2> = (1/3) <v2> 

Thus: ><= 2

3
1 vmNPV     (2.9) 

v2> is the mean square speed of the molecules. 

NOTES 



Free expansion: the Joule effect 
 
The mean square speed of the molecules, <v2>, and thus the 
total molecular kinetic energy (½ Nm<v2>) are greater the 
higher the temperature. The question now arises as to 
whether <v2> is also a function of pressure or volume? 
Joule attempted to address this issue in 1845 by allowing 
gas to expand into a vacuum adiabatically. An adiabatic 
process occurs when the system is completely isolated from 
its surroundings – there is no heat flow into or out of the 
system.   
 
Take an ideal monatomic gas – that is, a gas where all the 
‘molecules’ are single atoms (eg. He, Ar, Ne, Hg vapour). 
In this case there are no internal motions of the gas 
molecule (eg vibrations, rotations). 
 

 
In common with very many textbooks I’ll use the term 
‘molecule’ and ‘atom’ interchangeably to describe the 
constituents of an ideal gas even though the ‘molecules’ 
comprise only one atom.  
 

 
 
 
Furthermore, the gas is ideal so there are no intermolecular interactions. Hence, no work is done 
during a free adiabatic expansion of an ideal gas (because we don’t need to put any work in to 
break intermolecular ‘bonds’). 

 
NB It is easy to get confused here. In this case we are concerned with the free 
adiabatic expansion of the gas. There is no mechanism (for example, a piston) by 
which work could be done on the gas or the gas could do work. We will discuss 
situations involving those types of adiabatic work in detail in Section 3 of the 
module.  

 
So no work is done and there is no heat energy flowing into or out of the gas (remember, this is 
an adiabatic process) – thus, the total energy (U) of an ideal gas remains unchanged during a 
free expansion. That is, dU = 0. 
 
Writing U as U(T,P), the following relationship holds: 
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If no temperature change takes place (i.e. dT = 0) in a free expansion (dU = 0) then it follows 
that: 

 

 
 
Fig. 2.8 Free expansion of a gas into a 
vacuum. In the upper sketch the gas is 
confined to the chamber on the left by 
the valve. On opening the valve the gas 
expands into the chamber on the right. 
This process is carried out 
adiabatically – there is no heat flow 
into or out of  the gas. 
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or, to put Eqn. 2.11 into words, U – the internal energy – does not depend on P. You should use 
similar arguments to convince yourself that a lack of a temperature change in a free expansion 
also implies that U does not depend on V. Joule did not detect a temperature change† during the 
free expansion of the gas used in his experiments and hence he used this as proof of the following 
statement. 

 
  
The internal energy of an ideal gas depends only on temperature. 
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’s law and mean kinetic energy 
 
Writing the internal energy of the ideal gas as  

U = ½m<v2>, Equation 2.9 can be rewritten as: 

 
PV = 2U/3                    (2.12)   

 
As U is a function of T only for an ideal gas we find: 
 

PV = φ(T) or, in other words, 
PV = constant for a given temperature 

 
This is Boyle’s law. 
 

 the temperature T is proportional to the mean kinetic energy we can write: 

<EK> ∝ T ⇒   
½ m<v2> = cT (where c is a constant) 

sing the constant, c as 3kT/2 we get the following important relation: 

kTvm
2
3

2
1 2 >=<     (2.13) 

 
 k is Boltzmann’s constant (1.38 x 10-23 JK-1). Hence, there is a constant conversion factor 
etween the mean kinetic energy of a molecule and a unit of temperature (the Kelvin).

                                        
ct, we now know that Joule’s measurement apparatus was insufficient to measure the small temperature change 
as present because the gas used (air) is not an ideal gas. This need not concern us at the moment, although it is 
hat fortuitous that Joule’s experiment was flawed as it is likely that the progress of kinetic theory would have 

lowed somewhat if a temperature change had been measured.   

 



Finally, the ideal gas law….. 
 
“Why have you decided to choose the constant of proportionality as 3k/2?” 
 
Bear with me..! We’ll see why the constant has that particular value later in the 
module. 
 
 
 

Accepting that <EK> = 3kT/2, we can rewrite PV = (1/3)Nm<v2> (Eqn. 2.9) as: 
 

NkTPV =      2.14 
 
For 1 mole of gas, N = NA (Avogadro’s number). Equation 2.14 can then also be written as: 
 

RTPV =      2.15 
 
where R is the universal gas constant. 

 
 

 

Don’t confuse N (total no. of molecules) with n (no. of moles) 
 
 
 

NOTES 



When is a gas an ideal gas? 
 
Before moving on to the next section I’d like to both synopsise what we’ve covered thus far (see 
below) and to reiterate that an ideal gas is exactly what its name suggests: an idealisation. No real 
gas behaves exactly like an ideal gas: first, molecules are not pointlike and, second, all molecules 
interact to some degree. However, a key point to realise is that the ideal gas law (Equation 2.14 or 
Equation 2.15) is a good approximation to the behaviour of real gases at low pressures.  
 
Summary thus far 
 
To recap: we have derived the ideal gas law from a microscopic picture of the gas. This should 
not be taken too lightly – remember, throughout this module “we assert that the gross properties 
of matter should be explainable in terms of the motion of its parts” (RP Feynmann, Lectures on 
Physics, Vol I, p. 49-1). However, we need to go much further. We’ve so far only considered the 
average speed of the molecules and know little if anything about the details of the distribution of 
speeds and the positions/ arrangements of the molecules comprising the gas. A key question to 
clear up is just why we can say that ½ m<v2> = 3kT/2. Considering the distributions rather than 
solely the average quantities will provide us with a much better insight into what temperature 
represents. 
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2.3 Boltzmann factors 
 
“Available energy is the main object at stake in the struggle for existence 
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and the evolution of the world”, Ludwig Boltzmann 
 
“At thermal equilibrium all microscopic constituents of a system have the 
same average energy”, Grant & Philips, “The Elements of Physics”, p.421 
 
 
 

nstead of the average energy we’re now going to consider the 
istribution of energy in a system. For a system in thermal 
quilibrium at a certain temperature, the components are 
istributed over available energy states to give a total internal 
nergy, U (see Fig. 2.9). However, what is the probability of 
inding a molecule (or a particle, or another component of the 
ystem) in a given energy state? 

oltzmann’s law 
he probability of finding a component of a system (eg an 
tom) in an energy state, ε, is proportional to the Boltzmann 
actor: exp (-ε/kT) 

his elegant and simple law underlies a vast amount of physics. Y
he law to memory. 

 
 
“Where did the exponential term come from?” 
 
 

erivation of Boltzmann’s law 

et’s revisit our picture of molecular motion in a gas. We 
magine making the molecules subject to a force pointing 
long the x-direction. This could be an electric field 
cting on charged molecules, or an attraction to a wall, or 
omething – it doesn’t matter. Now, consider two planes 
n the gas separated by a distance dx (as shown in Fig. 
.10). There is a pressure change, dP between the planes.  

P = force on each atom x no. of atoms per unit vol x ? 
 
 
From a consideration of the unit of pressure, can you 
suggest what the final term in the equation above might be? 
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Fig. 2.9 Sample distributions of the 
components of a system amongst the 
available energy states. 
ou’ll find it useful to commit 
dx
 2.10 Molecules subject to a force 
ng in the +x direction. We consider 
essure difference across the ‘slice’ 

of gas of width dx. 



So:      dP = F(N/ V)dx 
             = Fn’dx      2.16  
 
However, from Equation 2.14 dP can also be written as: 
 
      dP = n’kT      2.17 

 
 
n’ (=N/V) is a different quantity to n. 
 
 

Equating 2.16 and 2.17; 
 

'
'

n
dnkTFdx =       2.18 

 
Solving this differential equation (see your Mathematical Modelling and/or General Maths 
notes): 
 

∫ ∫=
'
'

n
dnkTFdx            2.19 

 
⇒ -ε  = kT ln(n’)+C       2.20 

 
In equation 2.20, ε is the potential energy (remember F=-dU/dx, hence ∫−= FdxU ). Equation 
2.20 can be rewritten as: 
 

)/exp(' kTn εα −=      2.21 
 
Here, α is a constant whose value can be determined by considering the number density when the 
potential energy is 0. 
 

 

NOTES 



Boltzmann factors and probability 
 
Equation 2.21 is a simple but exceptionally important expression. Remember that at the start of 
the derivation we said that any force was appropriate. This is almost but not quite correct. For 
Eqn. 2.21 to be valid the force must be conservative – that is, the elements of the system (the 
molecules in this case) are not subject to friction or any other type of process that dissipates 
energy. Thermal equilibrium cannot exist if the forces on the atoms are not conservative. 
However, Eqn. 2.21 doesn’t depend on the type of conservative force and hence is a general 
expression.  

 
Boltzmann factors appear everywhere in physics (and chemistry 
and biology and materials science and…..). Why? Primarily 
because the Boltzmann expression (Eqn. 2.21) underlies the 
population of energy states and thus controls the rate of a process. 
 
A key example is that of diamond. Graphite is more 
thermodynamically stable than diamond and represents the 
ground state of crystalline carbon. Given enough time, diamond 
will decay to graphite. The key reason why diamond is 
(relatively) prevalent in our world is that it represents what is 
termed a kinetically hindered state of the system. To see more 
clearly what this means, the potential energy curve shown in Fig. 
2.12 is useful. 
 
 
 
 
 

Stability, metastability and instability 
 
The potential energy curve shown in Fig. 
2.12 includes both a metastable and a 
stable state. There is a ‘hill’ (if we were 
considering a gravitational potential then 
this would literally be a hill) between the 
metastable and the ground state. The 
system will only surmount the hill when 
it gains enough energy. If we are relying 
on thermal fluctuations for this to 
happen the energy input may be very 
low (see below).  Diamond is metastable 
with respect to graphite. 
 
The probability of surmounting the 
barrier is proportional to exp(-∆∆∆∆E/kT) 
 

 
 
Fig. 2.11 A Boltzmann factor is 

responsible for the fact that 
diamond does not 

spontaneously decay into 
graphite. 
 

Potential 
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Stable 
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∆Ε 

Fig. 2.12 A schematic potential energy curve illustrating  
time invariant stable and metastable states, and a transient 
unstable state. 



 
 
It is possible to have a time invariant unstable state. Can you sketch the form of the potential 
energy curve associated with this state? ?? 

 

 

 
The statement in bold at the bottom of the preceding page is so important I’m going to repeat it 
again (in a slightly different form): 

 
 
The probability of finding a system in a state with energy ∆∆∆∆E above the ground 
state is proportional to: exp (-∆∆∆∆E/kT)  

 

NOTES 

  
 

 

!!

 

 
 
PROBLEM: Electrons in atoms are restricted to occupying certain 
 
E  
quantized energy states. The hydrogen atom can exist in its ground 
state (E1) or in an excited state (E2, E3, E4 etc…). At a temperature 
T, what is the relative probability of finding the atom in the E3 state 
as compared to finding it in the E2 state? 
 

(a) exp (E3/kT) 
(b) exp (E2/kT) 
(c) exp((-E3+E2)/kT), or 
(d) exp((-E2-E3)/kT) 

E1 

E2 

3

 
 



The value of kT at room temperature (293 K) is 0.025 eV. 
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s is a very important value to memorise as it gives us a ‘handle’ on what processes are likely 
ccur at room temperature. 

 
The first excited state of the hydrogen atom lies ~ 10.2 eV above the ground state. What is 
the probability of the hydrogen atom being in the first excited state at room temperature 
(in the absence of any energy input other than thermal energy)?  

 

ember that molecular vibrations and rotations are also quantized and Boltzmann factors can 
sed to determine the relative populations of the quantized energy levels associated with these 

tions. 


