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Set 2b: Kinetic Theory II 
 

 

 



Thus far….. 
 
First, a brief summary of what we’ve done thus far in Section 2. We initially considered 
distribution functions and the evaluation of average quantities related to distribution functions. 
Building on this knowledge, the ideal gas law, PV = NkT (or PV = nRT for n moles of gas) was 
derived.  The key assumptions underlying the concept of an ideal gas have also been described. 
An important element of our derivation of the ideal gas law was the consideration of average 
values. In Section 2.3 we introduced the exceptionally important concept of Boltzmann factors 
and outlined how these factors determined the distribution of the elements of a system amongst 
the available energy levels. In the remaining part of Section 2 of the module, we’ll consider: 
  

(i) the distribution of molecular speeds in an ideal gas – the Maxwell-Boltzmann 
distribution;  

(ii) the theorem of the equipartition of energy – a fundamental law of classical thermal 
and kinetic physics; 

(iii) how the specific heat of a gas relates to the equipartition of energy; 
(iv) the failure of the equipartition theorem to correctly describe both specific heats and 

the spectrum of radiation emitted by certain objects known as black-bodies; 
 
2.4 Distribution of molecular velocities in an ideal gas  
[NB See the slides and your notes for Lecture 7 for a complementary discussion of this topic] 
 
The following assumptions are particularly important throughout Section 2.4. As we’re dealing 
with an ideal gas, there are no interactions between molecules and the molecules are monatomic. 
That is, there are no internal vibrations or rotations of the molecules to consider. (As we’ll see 
later on, diatomic molecules (such as H2, N2 and O2) have vibrational and rotational modes that 
may be excited and this has an important bearing on the properties of the gas.) Thus, we can say: 
for an ideal gas the total energy is determined  solely by the kinetic energies of the molecules. 
We now want to consider the distribution of kinetic energies – i.e. the distribution of speeds – 
when the gas is in thermal equilibrium at a temperature T.  
 

The molecular speed is continuously 
distributed and is independent of the molecular 
position. For molecules travelling with a speed 
between v and v + dv, the components of the 
velocity vector lie within the following ranges:  
vx → vx  + dvx, vy → vy  + dvy , vz → vz  + dvz .  
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Fig. 2.13 The velocity vector for a gas molecule may 

be broken down into its components vx, vy and vz.   

 
What is the kinetic energy of a molecule 
whose velocity components lie within 
these ranges? 

 
??
 

 

??  
…which means that the probability of a molecule occupying this state is…? 



 

NOTES 

Therefore the probability, f(vx, vy, vz) dvxdvydvz , that a molecule has velocity components 
within the ranges vx → vx + dvx etc.. obeys the following relation: 
  

f(vx, vy, vz) dvxdvydvz  ∝ exp (-mv2/2kT) dvxdvydvz   (2.22) 
 
but v2 = vx2 + vy2 + vz2 ⇒  
 
f(vx, vy, vz) dvxdvydvz  = Aexp (-mvx2/2kT) exp (-mvy2/2kT) exp (-mvz2/2kT) dvxdvydvz  (2.23) 

 
where A is a constant. 
 
The question now arises as to how we evaluate the constant A. 

 
 
What is the probability that a molecule has velocity components within the range -∞  to 
+ ∞? 
 

 

??
Therefore, 
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In addition, if we’re interested in the probability distribution of only one velocity component (e.g. 
vx), we integrate over vy and vz:   
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Thus, cancelling the common factors in Eqn. 2.25 we get: 
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The value of the integral may be looked up in integral tables and we find: 
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(For those of you who are interested, Feynman discusses how to determine integrals of this type 
on p. 40-6 of the Feynman Lectures in Physics, Vol. I. Note however that you will not be 
expected to evaluate integrals such as this in the exam – the value of the integral will be 
provided). 
 
Substituting the value of the integral into the denominator of Eqn. 2.26, the expression for the 
distribution of molecular velocities in an ideal gas results: 
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NOTES 



Expression 2.28 is a Gaussian distribution (once again, see the 1st year laboratory errors manual). 
 
  

 

 

The mathematical expression for a Gaussian 
function is: 
       
      (2.29) 
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where σ is the standard deviation and μ is the 
mean. The relationship between the standard 
deviation and the full width at half maximum 
(FWHM) of the distribution is:  
 

σ = FWHM/√(8ln2) 
 Fig. 2.14 The probability distribution associated with 

molecular velocities in an ideal gas is a Gaussian 
function which is symmetric about the mean velocity 
(which is 0).  

 
 
 
 

 
2.5 Distribution of molecular speeds in an ideal gas 
 
We need to carry out a few more mathematical steps to derive an expression for the distribution 
of molecular speeds. Combining equations 2.23 and 2.28: 
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This expression is written in Cartesian coordinates (i.e. x, y, z). To derive an expression for the 
distribution of molecular speeds it is best to switch to spherical polar coordinates (Fig. 2.15). 
 

NOTES 
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Fig. 2.15 Spherical polar coordinates. The vector vr  is 
expressed in terms of the angles θ, φ and its length, v. θ is the 
angle between   and the z-axis, whereas φ is the angle that 
the projection of the vector onto the xy plane makes with 
the x axis. 

vr

vr

 
You need not at this point be concerned 
with the details of spherical polar 
coordinates (you will, however, encounter 
these in a number of modules next year). 
For now, you should realise that if we 
consider all directions of the velocity 
vector, the tip of the vector will trace out 
the surface of a hollow sphere with its 
centre at the origin. One octant of that 
sphere is shown in Fig. 2.16, as is a small 
surface element, dS which results from 
infinitesimal changes in the direction of the 
vector.  
 
 
 
 
 
 

However, we are not only concerned with changes 
in the direction of the velocity vector - we also 
need to consider changes in the length of the 
vector. If the velocity vector changes length from 
v to v + dv then the radius of the sphere changes 
by the same amount and we get an infinitesimal 
change of volume: 4πv2dv.  

 Surface element, dS, shown – 
need to consider volume 

element, dV 

 
Fig. 2.16 If we consider all possible directions 
that the velocity vector can point, the tip of the 

vector will trace out the surface of a hollow 
sphere. A small surface element, dS, resulting 

from infinitesimal changes in  the direction of the 
velocity vector is shown. 

 
 

?? Why does the volume change by 
4πv2dv when the velocity vector 
changes length from v to v + dv? 
 

 
 
 
 

NOTES 



Combining Eqn. 2.30 with the expression for the volume element, 4πv2dv leads to the following 
equation: 
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This is the Maxwell-Boltzmann distribution of molecular speeds in a gas.  
 
 

Figure 2.17 shows the Maxwell-
Boltzmann distribution for ideal 
gas molecules at two temperatures, 
293 K and 600 K. In this case, the 
speed interval, dv, is 1 ms-1. Note 
that the peak of the distribution 
moves to a larger value of speed as 
the temperature increases. In 
addition, because the distribution is 
asymmetric the most probable 
speed is a little less than the mean 
speed. You will derive values for 
the most probable speed and the 
mean speed in the problems for 
Coursework Set 3. (The integrals 
given in the Appendix to this set of 
notes will prove useful for the 
coursework exercises). 

0 500

 
 
 
Note that to determine the total 
number of molecules with speeds 
between certain limits, one must 
integrate under the curve as shown in 
Fig. 2.18. 
 
 
 
 
 
 
 
 
(A useful website related to the Maxwell-Boltzmann distribution may be found at the following 
URL: http://copm.uark.edu/~jgeabana/mol_dyn/KinThI.html) 
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Fig. 2.17 The Maxwell-Boltzmann distribution for ideal gas  
molecules at 293 K and 600 K 
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Fig. 2.18 To determine the number of molecules with speeds 
between 500 and 1000 ms-1, integrate under the curve within 
those limits 
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http://copm.uark.edu/%7Ejgeabana/mol_dyn/KinThI.html


 

NOTES 

2.6 ½ m<v2> = 3kT/2 revisited 
 
In the derivation of the ideal gas law in Section 2.2 of the notes, the constant relating the mean 
kinetic energy of the gas to the absolute temperature was apparently arbitrarily chosen as 3k/2 
where k is Planck’s constant. I noted at the time that this was somewhat unsatisfactory. Having 
deduced the function governing the distribution of molecular speeds, we are now in a position to 
show that the mean energy of the gas is indeed given by 3(½ kT). This has very important 
implications for classical physics – as we shall shortly see. 
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Using one of the integrals given in Appendix A, we find: 
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Therefore, we have derived ‘from first principles’ that the average energy of the ideal gas is given 
by 3kT/2. This will be a result that we’ll use repeatedly in what follows in the rest of Section 2. 



2.7 Equipartition of energy and degrees of freedom 
 
Equation 2.33 was derived by considering the translational motion of the ideal gas monatomic 
molecules in three directions – i.e. we were concerned with vx, vy, and vz (see Fig. 2.13). We say 
that the molecules each have three degrees of freedom. If we reconsider an atom bound in a solid, 
as discussed in Section 1, for small displacements from equilibrium the atom behaves as a simple 
harmonic oscillator. The probability of finding the system in a given energy state is proportional 
to: exp(-μx2/2kT) (where μ is the spring constant of the SHO). This is analogous to the probability 
of finding a monatomic ideal gas molecule in a given energy state due to its translational kinetic 
energy, exp(-mvx

2/2kT). Using an analysis almost identical to that described in Sections 2.4 to 2.6 
for kinetic energy we find that: 
 
     ½ μ<x2> = ½ kT     (2.34) 
 

Thus, the average potential energy of a simple harmonic oscillator is also ½ kT. 
 
(Note that I have used μ  to denote the spring constant of the SHO here in order to avoid 
confusion with k, Boltzmann’s constant). 
 
Theorem of equipartition of energy 
 
“Each quadratic term in the expression for the average total energy of a particle in thermal 
equilibrium with its surroundings contributes on average ½ kT to the total energy” 
 
 or  “Each degree of freedom contributes an average energy of ½ kT” 
 
So, what is meant by a ‘quadratic term?’. Consider the following: 
 

1. Translational kinetic energy (Sections 2.4 – 2.6) comprises 3 
‘squared’ or quadratic terms: ½ m<vx

2>, ½ m<vy
2>, ½ m<vz

2> 
⇒ Average energy is 3 x ½ kT  = 3kT/2 

2. Rotational energy: ½ I<ω2> =  ½ kT per axis of rotation. 
Diatomic molecules (Fig. 2.19) have two axes of rotation, hence 
average rotational energy = kT. 

  
3.  

What is the average total energy of a simple harmonic 
oscillator? 

 

 
Fig. 2.19 – a 

diatomic molecule 

??
NOTES 



 
 
2.8 Work done by a gas 
 
For an ideal gas of monatomic molecules, the equipartition of energy theorem yields the 
following result for the total energy of 1 mole:  
 
     U = 3NAkT/2 = 3RT/2     (2.35) 
 
If we heat 1 mole of gas its temperature rises by a different amount depending on whether the 
pressure or the volume is fixed. That is, CP is not the same as CV. To consider where the 
differences in specific heat arise (and how these differences relate to the equipartition theorem), 
we need to first determine the work done by an ideal gas when it expands. 

 
As PV = RT, the gas must expand if the pressure is kept fixed and the 
temperature is increased. (See http://intro.chem.okstate.edu/ 
1314F00/Laboratory/GLP.htm for a Java applet on the relationships 
between P, V and T for an ideal gas).  
 
We assume that the piston is entirely frictionless : all of the work done 
by the gas goes into pushing the piston back (work done on the 
surroundings) and not into overcoming frictional forces.  That is, the 
force is conservative. 
 
Furthermore, we let the gas expand exceptionally slowly 
(quasistatically) so that the gas is in thermal equilibrium at all times. 
 

The gas expands reversibly. 
 
In Section 3 we will return to a more in-depth discussion of reversibility, quasistatic processes 
and thermal equilibrium.  
 
As P = F/A ⇒ F = PA 
 
dW = Fdx ⇒ dW = PAdx ⇒ 
 

dW = -PdV (reversible) (2.36) 
 
NB The convention we adopt is that an expansion 
of the gas (ie positive dV) is associated with 
negative work whereas a compression of the gas 
leads to positive work.  

 
 
Fig. 2.20 Expansion of 

an ideal gas 

dx dx 

 
 
Fig. 2.21 When the gas expands quasistatically 

the frictionless piston moves back by an 
infinitesimal amount dx. 

 
Positive work is work done on the system by the surroundings. 
Negative work is work done by the system on the surroundings. 
  

http://intro.chem.okstate.edu/%201314F00/Laboratory/GLP.htm
http://intro.chem.okstate.edu/%201314F00/Laboratory/GLP.htm


 

NOTES 

Introduction to the 1st law of thermodynamics: the conservation of energy 
 
A mathematical statement of the 1st law of thermodynamics is:  
 

dU = dW + dQ     (2.37)  
 
where dU is the change in energy of the gas, dW is the work done on (or work done by) the gas, 
and dQ is the heat energy. The 1st law simply states that the total energy of the system is 
increased either by doing work on the system or by supplying heat to the system – the increase in 
energy is equal to the sum of the work and heat, as must be the case if we are to conserve energy. 
 
Combining equations 2.36 and 2.37, the following equation applies to a reversible process: 
 
     dQ = dU + PdV    (2.38) 
 
We will return to the 1st law and consider it in much more detail in Section 4 of the module. 
 



2.9 Specific heats at constant volume and constant pressure 
 
The specific heat capacity at constant volume, Cv, for one mole of gas is: 
 

(2.39) 
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From the 1st law (Eqn. 2.38), in a constant volume process, dQ = dU. Furthermore, for an ideal 
gas (and only for an ideal gas), the energy of the gas is a function of temperature only. We can 
therefore get rid of the partial derivative in Eqn. 2.39 and write: 
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The specific heat at constant pressure, CP, for one mole is: 
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Combining Eqn. 2.40 with the first law (Eqn 2.38), for an ideal gas the following expression 
holds: 
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Using the ideal gas law: 
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Thus, for an ideal gas: 
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However, using Eqn. 2.41: 
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The ratio of specific heats, γ, is thus: 
 
             (2.47) 3

5=γ
 
CP, CV and problems with classical theory 
 
At this point you might ask what all this has got to do with the equipartition of energy. It is 
important to remember that the formulae for Cp, Cv and γ given in equations 2.41, 2.46 and 2.47 
are based on the fact that U = 3RT/2 for 1 mole of an ideal gas. This is a fundamental result of 
classical equipartition of energy theory (each degree of freedom contributes ½ kT to the average 
energy). We should now address whether this theory does a good job of explaining experimental 
data.  
 
Monatomic gases such as Ar, Xe and Ne have values of γ  which are (within experimental error) 
1.66. This is in excellent agreement with equation 2.47. However, diatomic gases such as H2, O2 
and N2 are associated with values of γ  that are substantially smaller and closer to 7/5. Diatomic 
gases differ from the monatomic gases that comprise an ideal gas because they have internal 
degrees of freedom. A diatomic molecule has two rotational degrees of freedom and therefore 
there is an additional kT contribution to the average energy of the gas. 
 

??
 
Write down the value of CV for a gas comprising diatomic molecules, taking into 
account translational and rotational degrees of freedom. 
 
 

5
7=γTaking the rotational degrees of freedom into account, we get the following result:  

 
At this point the equipartition of energy theorem seems to be doing a good job – the 
experimentally measured values of γ for H2 and O2 are 1.404 and 1.399 respectively. 
 
…..but we’ve forgotten something! 
 

NOTES 



CP, CV and problems with classical theory: Molecular vibrations 
 
Not only can diatomic molecules rotate, they can vibrate. This gives 
another contribution of kT to the average energy (as discussed above, for a 

simple harmonic oscillator, there is a contribution of ½ kT from potential energy, and ½ kT from 
kinetic energy). So, classically, we expect Cv = 7R/2. 
 

 
Write down the value of γ  for a gas comprising diatomic molecules, taking into account 
translational, rotational and vibrational degrees of freedom. 
 
 

??
 
 
 
This is rather puzzling. We seem to get the correct, experimentally measured value of γ for a 
diatomic gas only if we ignore the vibrational degrees of freedom of the molecule. However, this 
is not the only problem. From classical equipartition of energy, the value of γ should be 
temperature independent. Yet, when γ is measured experimentally, there is a clear and strong 
temperature dependence as shown in Fig. 2.22 below. 
 
 

Variation of ratio of specific heats with 
temperature
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Fig. 2.22 Schematic illustration of variation of specific heats for hydrogen and oxygen as a function of temperature. 

The dashed line is the classical prediction (based on the equipartition theorem). 



2.10 Towards quantum theory:   

 

‘Cracks’ in the classical physics framework 
 

 
 
“I have now put before you what I consider to be the greatest  
difficulty yet encountered by the molecular theory…….”  
James Clerk Maxwell, 1869 

 
In order to explain the differences between classical equipartition theory, where each degree of 
freedom for a molecule is associated with an average energy of ½ kT, it is necessary to postulate 
that there must be a mechanism whereby some types of motion (and their associated degrees of 
freedom) are ‘frozen out’ at certain temperatures. Consider the O2 molecule: it has a total of 7 
degrees of freedom: 3 translational, 2 rotational and 2 vibrational. This means the total average 
energy of 1 mole of the gas at room temperature is 7R/2 and the corresponding value of γ should 
be 1.286. However, if we assume that – for some reason (to be explored below) – there are only 5 
degrees of freedom available to the molecule at room temperature then we get the correct result, 
i.e. the experimentally measured value of γ, which is 7/5 = 1.4. Classically, we can’t simply 
remove degrees of freedom like this – the rotational and vibrational energies are distributed 
continuously. The disagreement of theoretical and experimental values for γ is what led Maxwell 
to state that this was “the greatest difficulty encountered by the molecular theory”. 
 
However, the true description of the molecular nature of matter is not based on classical physics 
but on quantum physics. The energies of the vibrations and rotational motion of molecules are 
not distributed continuously. Rather, they are quantised. The explanation of just why the 
experimentally measured values of CP and CV did not agree with classical equipartition theory – 
outlined in the following - played a large role in the development of quantum theory. 
 
Quantum levels and specific heats 
 

 The vibrational energy of a molecule is quantised so that 
instead of the energy being a continuous function, it can 
only adopt certain discrete values. This is analogous to the 
quantisation of the electronic energy levels in an atom. As 
described in Section 2.1 of the lecture notes, the energy 
levels are given by the following formula: 

 

 
 
       (2.48) 0)2

1( ωh+= nEn

Fig. 2.23 Quantised vibrational 
energy levels for interacting atoms. 

These energy levels are equally 
spaced. 



In addition, the rotational energy of a molecule is also quantized. For rotational energy, the 
following formula applies: 
 
            (2.49) IllE 2/+=l )1( 2h

 
where l is the quantum number associated with the rotation (somewhat analogous to n in Eqn. 
2.48) and I is the moment of inertia of the molecule. 
 

NOTES 



 
For both rotational and vibrational motion of the molecule, the occupation of the associated 
energy levels depends on temperature and is given by a Boltzmann factor: exp (-ΔE/kT) where ΔE 
is the energy of the level above the ground state. It is important to bear in mind the following: 
 
 

Rotational energy levels have spacings of a few hundredths of an eV. 
Vibrational energy levels have spacings of a few tenths of an eV. 

 
kT at room temperature (293 K) = 0.025 eV 

 
 
When the temperature is very much greater than a few hundredths of an eV (eg room 
temperature) then very many narrowly spaced rotational energy levels are occupied and we 
approach the limit of a classical distribution of energies. In the classical limit, the average 
rotational energy for a diatomic molecule will be kT (from the equipartition theorem).  
 
However, at room temperature, the probability of occupation of vibrational energy levels above 
the ground state is very low. We are thus well away from the classical limit and would not expect 
the equipartition theorem to be applicable. This is exactly what we find for diatomic gases. 
Instead of having the 7 degrees of freedom expected classically they only have 5 degrees of 
freedom – the vibrational motion of the molecule is associated with energy levels that have a very 
small probability of being occupied at room temperature. We need to go much higher in 
temperature before vibrational effects contribute to the specific heat. Indeed, the temperature is 
generally so high that dissociation of the diatomic molecule (i.e. breakage of the bond between 
the atoms comprising the molecule) occurs before vibrational effects play a large role in 
determining the specific heat of the gas.   

 
  CP 
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Fig. 2.24 Schematic illustration of the variation in specific heat 
for 1 mole of a gas of hypothetical diatomic molecules. The steps 
in the specific heat curve arise from excitation of first rotational, 
and then vibrational motions of the molecule. 

Note that of all the diatomic gases 
only H2 is gaseous at temperatures 
sufficiently low to ‘freeze out’ the 
rotational contribution to the specific 
heat (the other gases solidify before 
this limit). Hence, only hydrogen and 
monatomic gases have values of 
specific heat corresponding to just 
three degrees of freedom. 
 
 



We can use the equipartition of energy theorem to estimate the rate at which a molecule spins due 
to its rotational motion. The energy associated with the rotation of the molecule is ½ I<ω2>. 
Equipartition tells us that the average energy is ½ kT. We can equate these two expressions to 
estimate the mean square angular velocity of the molecule. (NB See Worked Example 12.5 on 
p.448 of Grant & Phillips). 
 

NOTES 

 
 



Black-body radiation and the ultraviolet catastrophe 
 
 
 
(Note that the diagram to the left – and a number of the diagrams used 
in this section – are taken from the “Hyperphysics” website. I strongly 
recommend that you visit this site (and bookmark it!).The URL is: 
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html) 
 

 
A solid surface at high temperature emits electromagnetic radiation spread across a wide 
frequency spectrum. The frequency (or wavelength) at which the peak of the radiation is found 
depends on the temperature of the surface. The temperature dependence of the spectrum explains 
why a tungsten filament, for example, changes colour from red to white hot as its temperature is 
increased . 
 

A surface is described as ideally black if it absorbs all the 
radiation that falls on it. In equilibrium an ideally black 
surface will emit all the energy it absorbs. However, to 
maintain equilibrium we must have an enclosure (otherwise 
the radiation will simply radiate out into space). Imagine a 
closed box with ideally black walls – the radiation within this 
box is known as black-body radiation. 

 
 
Fig. 2.25 Radiation enclosed within 
a box with ideally black walls is 
called black-body radiation. 

 
The spectrum of black-body radiation was to prove to be a 
particularly sharp thorn in the side of classical physics……. 
 
 

The Rayleigh-Jeans expression (derived from classical physics) for the energy density associated 
with blackbody radiation is given in Equation 2.50. (A good discussion of the derivation of this 
law is given on the Hyperphysics website for those of you who are interested. Note that the 
derivation is beyond the level of this module and is not part of the examinable syllabus). 
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Eqn. 2.50 is a rather strange – and, for physicists of the time (the late 19th century), exceptionally 
worrying - expression. Note that the density of radiation increases with the square of the 
frequency. Hence, at any temperature, we should expect to find quite an amount of high energy 
X-ray radiation within the cavity (or oven) shown in Fig. 2.25. Furthermore, if we consider a 
graph of this function (see Fig. 2.26), another very perplexing problem immediately arises. 
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Fig. 2.26 A plot of the radiated intensity, ρ(ν) vs frequency for the classical 

Rayleigh-Jeans expression for the spectrum of black-body radiation. Note that as 
the frequency increases, the radiated intensity increases without limit. This is the 

ultraviolet catastrophe. (Figure taken from the “Hyperphysics” website).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.26 and Eqn. 2.50 clearly illustrate that the radiated intensity increases with no limit as a 
function of frequency. That means that as we approach the ultraviolet region of the spectrum and 
go beyond in terms of the frequency of the radiation, the amount of radiated light keeps 
increasing. Hence, as stated above, if we were to open an oven held at a certain temperature and 
look in our eyes would be burnt out from the intensity of very high energy X-ray radiation. 
Furthermore, because the total radiated energy is given by the integral under the curve, the total 
amount of energy in the box is infinite!  

  

 

“This is the prediction of classical physics…it is fundamentally, powerfully, and 
absolutely wrong”.  
RP Feynman, Lectures in Physics, Vol. I  
 
 
 

So how do we ‘mend’ the description of black-body radiation? How do we get rid of the 
ultraviolet catastrophe? These problems occupied the minds of very many scientists at the end of  
the 19th century.   
 
 
 
 
 



 

 
Before we consider how to get rid of the ultraviolet catastrophe, let’s discuss just what is wrong 
with the classical description of radiation that it yields such an absurd result. The radiation in the 
cavity emerges fundamentally from the oscillations of the atoms – the electrons of each atom are 
‘shaken’ and emit radiation related to the frequency at which they’re shaken. As we’ve seen 
before, the oscillators each have a classical average energy of kT. The classical curve for 
blackbody radiation ‘blows up’ for precisely the same reason that the classical description of 
specific heats fails: the energies of the oscillators haven’t been considered correctly.   
 

Planck’s solution to the ultraviolet catastrophe. 
 
If the average energy, <E> of the oscillators is not kT, then what is it? 
Planck’s solution to this question was one of the first and most important 
achievements (although there are very many) of quantum theory. 
 
We can work out the correct quantum mechanical formula for <E> by 
considering the appropriate Boltzmann factors for the populations of the 
energy levels. 
 

 
Using the expression for the Boltzmann factor given in  
Section 2.3 we can write: 
 

(2.51) 
 
where nn is the number of oscillators with energy En 
and n0 is the number of oscillators in the ground state 
(i.e. with 0 energy – we’re neglecting zero point 
energy).  

NOTES 
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Fig. 2.27 The energy levels of a simple 

harmonic oscillator 



Let x =           (2.52) )
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Therefore; 

n1 = n0 x, n2 = n0 x2,……. nn = n0 xn  (2.53) 
 
Before working out the average energy, we need to work out the total energy of the oscillators. 
Consider the first two energy levels above the ground state... 
 

Energy level E1: the oscillators have energy      . The total number of oscillators in this 
level is n1. Hence, the total amount of energy associated with the oscillators in level 1 is: 
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Energy level E2: the oscillators have energy      .. The total number of oscillators in this 
level is n2. Hence, the total amount of energy associated with the oscillators in level 1 is: 
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Add up these contributions for all energy levels to get: 
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Similarly; 
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The average energy, <E> is thus: 
 
            (2.54) 
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By evaluating the sums in the numerator and denominator and substituting in the value of x from 
equation 2.52 we get the following very important expression: 
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Equation 2.55 is the average quantum mechanical  

energy of a collection of oscillators 
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Show that Eqn. 2.55 reduces to the classical expression for the average energy of a 
collection of simple harmonic oscillators in the limit of either very high temperatures or 
very low oscillator frequency. 
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Fig. 2.28 The Planck law expression for the intensity of a black-body 
plotted alongside the classical Rayleigh-Jeans law. Note that the two 

curves agree at very low frequencies. 
 (This figure is also taken from the Hyperphysics website). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.28 shows the Planck law solution for the radiated intensity of a black-body. The 
ultraviolet catastrophe has now been averted - at high frequencies the energy density in the cavity 
is decreasing rather than increasing without limit. Note that the expression for the Planck law: 
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differs from the classical Rayleigh-Jeans expression by the replacement of the factor kT 
(representing the average energy of the oscillators) by Equation 2.55 (note that 
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APPENDIX A: Useful integrals 
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