
 

  

 

  
Lecture Notes 

Set 3a: Probabilities, 
Microstates and Entropy 

 
 



Thus far….. 
 
In Sections 1 and 2 of the module we’ve covered a broad variety of topics at the heart of the 
thermal and statistical behaviour of matter. These topics include: distributions and mean values, 
the ideal gas law, Boltzmann factors, the Maxwell-Boltzmann distribution, equipartition of 
energy, specific heats, blackbody radiation, and diffusion and thermal conductivity in a gas.  
 
However, we still don’t yet fully understand why heat flows from a hot to a cold object (and not 
vice versa) nor why molecules diffuse from regions of high to low concentration so that at 
equilibrium they are evenly distributed across the available space. Furthermore, although we 
(correctly) think of temperature as being related to the mean energy of a system, we’ve yet to 
quantifiably define the relationship between temperature and the direction of heat flow. 
 
In this section of the module we’ll explore distributions in even more depth. A key focus will be 
a consideration of the very many arrangements of quanta of energy that are possible even for very 
small numbers of atoms and quanta. This will lead to a discussion of entropy and the – related -
second law of thermodynamics. These are conceptually challenging topics which have a history 
of being ‘misrepresented’ in popular science writing. The final part of this section of the module 
is therefore concerned with attempting to dispel some of the myths associated with the 2nd law.  
 
3.1 Energy transfer 
 
In Section 2 we found that there was a very close connection between temperature and the 
average kinetic energy of the molecules in a system, i.e., ½ m<v2> = 3kT/2 – a fundamental 
result of equipartition of energy theory. Intuitively, we know that a hot block of material will lose 
energy to a colder block of material and we can explain this by reasoning that the average energy 

of the atoms in the hot block is 
greater than the average energy of the 
atoms in the cold block. Therefore, it 
is more likely that an atom in the 
hotter block will lose energy to an 
atom in the colder block.  
 
However, how much more likely is a 
transfer of energy from the hot to the 
cold block? The atoms have a 
distribution of energies. If we 
consider the Maxwell-Boltzmann 
distribution for gas molecules shown 
in Fig. 3.1 it is clear that many 
molecules in the hot gas have 
energies well below the mean energy. 
Similarly, many molecules in the 
cold gas have energies well in excess 
of the mean energy of the gas. 
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Fig. 3.1 Maxwell-Boltzmann distribution of speeds of molecules in 
two (separate) gases – the taller peak is the distribution associated 
with the cooler gas. Note that for both gases a substantial fraction 
of the molecules have speeds well below and well above the mean 
speed.  The question then arises as to why energy doesn’t transfer
from the ‘cold’ to the ‘hot’ gas if the two gases are mixed (rather 
than from hot to cold, as is observed). 



Similarly, why don’t the atoms in a cold block of material tend to transfer their energy to the hot 
block, rather than the other way around? What is it that defines the direction of energy transfer? 
(A closely related question is “what defines the ‘arrow of time’?” – a topic we’ll also discuss).  
 

The direction of heat flow shown in Fig. 
3.2 wouldn’t violate the conservation of 
energy – the 1st law of thermodynamics - 
because the total energy remains the same. 
However, throughout Section 3 of the 
module we’ll be concerned with 
determining just what physical principle 
would be violated if heat were to flow 
from a cold to a hot body so that, at 
equilibrium, the temperature of the hot 
body was increased. Later on, when we 
explore heat engines in Section 4 of the 
module, we’ll see that this principle - 
which is, in fact, the 2nd law of 
thermodynamics - also makes it impossible 
to convert heat into work at a single 
temperature.   
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Fig. 3.2 The direction of heat transfer shown above 
doesn’t violate the 1st law of thermodynamics but is 
prohibited by the 2nd law of thermodynamics. A primary 
aim of Section 3 of the module is to explain the physical 
principles underlying the 2nd law. 

NOTES 



 
3.2 An introduction to statistical mechanics 
 
To answer the questions raised in Section 3.1, the statistical behaviour of large assemblies – or 
ensembles – of atoms will need to be explored in some detail. This area of physics is called 
statistical mechanics. We will touch on only the basic concepts underlying statistical mechanics – 
you will cover this topic in much more depth and with much more rigour in your 2nd year course. 
However, even the basic statistical mechanics concepts we’ll cover in the Thermal & Kinetic 
module lead to powerful and extremely important insights into the behaviour of matter.  
 
First, consider a model of a solid which comprises a 
collection of simple harmonic oscillators (see Fig. 
3.3). (You might ask why, after we spent so much 
time discussing gases in Section 2 of the module, 
we’ve now switched to a discussion of solids. We’ll 
return to gases soon enough! Solids are easier to 
consider at the moment because the atoms are fixed in 
place.) We can simplify the model shown in Fig. 3.3 
even further (as first devised by Einstein in 1907).  
 
Instead of considering coupled harmonic oscillators, 
we envisage each atom in the solid as moving 
independently of its neighbours. (This is obviously a 
big assumption but bear in mind that we’re interested 
only in the distribution of energy amongst the atoms 
(the oscillators) – not the detailed dynamics of the 
atomic motion). A second assumption we make (as 
did Einstein) is that each 3D oscillator (i.e. each 
atom) may be replaced with three - also independent – 
1D simple harmonic oscillators (i.e. one for each of 
the x, y, and z directions).  
 

The energies of the simple harmonic oscillators 
comprising the solid are quantized (see Section 2 and Fig. 
3.4): 
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As discussed for the Planck model of blackbody radiation 
(Set 2b of the lecture notes), the energy difference 
between consecutive energy levels is 0ωh  and we’ll 
ignore the zero point energy – that is, we’ll set E0 to zero. 
 
Having set up this model (known, unsurprisingly, as the 
Einstein model), we can now address the key question: 

 
Fig. 3.3 A model of a solid comprising a collection of 
interacting simple harmonic oscillators (movie frame 

taken from Chabay and Sherwood’s website at 
http://www4.ncsu.edu:8030/~rwchabay/mi/ 

mi_vol1_files.html) 
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Fig. 3.4 Quantised energy levels of 

simple harmonic oscillator. 
 



how is energy distributed amongst the available energy states? 
Energy distributions 
 
Consider bringing two identical blocks of material which are at different temperatures (say, T1 
and T2) into contact.  

 
  
What is the final temperature of the blocks (i.e. the temperature when they reach thermal 
equilibrium)? 
 

 
The most probable distribution of energy is ‘intuitively’ that where the total thermal energy is 
shared equally between the two blocks. However, what is the probability that – at equilibrium – 
the first block has more energy than the second, or, indeed, that the first block ends up with all 
the thermal energy? To answer these questions, the possible arrangements of energy quanta must 
be considered. 
 
We have 3N independent 1D oscillators (where N is the total number of atoms in the solid) – we 
now need to determine how many ways there are of distributing a certain number of quanta of 
energy amongst these oscillators. Mathematical principles related to counting combinations and 
permutations of objects will prove to be very useful. Let’s start with a straight-forward example: 
 

   
The arrangement shown in 
Fig. 3.5 is one possible 
distribution of 3 quanta of 
energy amongst two 
oscillators. Sketch the 
remaining possibilities. 
How many possibilities in 
total are there? 
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Fig. 3.5 One way of distributing 3 quanta of energy between two oscillators. 

??



 
 
Counting arrangements: permutations and combinations 
 
Clearly we are not going to count by hand every arrangement of energy possible for 3N 
oscillators in, for example, a mole of material (N ~ 6 x 1023). We need to determine the 
appropriate formula to use and this involves spending a little time thinking about permutations 
and combinations.  
 
A permutation is an arrangement of a collection of objects where the ordering of the arrangement 
is important.  

The number of permutations of r objects selected from a set of 
 n distinct objects is denoted by nPr, where nPr = n!/(n-r)! 

 
 
Consider the following question: 

 
A CD reviewer is asked to choose her top 3 CDs from a list of 10 CDs and rank them in 
order of preference. How many different lists can be formed? 
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Now consider the following case: 
 
 
A CD club member is asked to pick 3 CDs from a list of 10 CDs. How many different 
choices are possible? 
 

 

 
The number of combinations of r objects selected from a set of  

n distinct objects is denoted by nCr, where nCr = 
)!(!

!
rnr

n
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One final example: 

 
Take a collection of 10 pool (billiard) balls, 6 of which are yellow and 4 of which are red. 
How many different arrangements of the coloured balls are possible (eg RRYYYYYYRR)? 
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Arranging quanta 
 
Returning to distributing quanta of energy amongst a collection of oscillators, we can now 
establish a formula for the number of possible arrangements. (What follows is based heavily on 
Chabay and Sherwood, p.348). Take the two oscillator, three quanta problem considered in Fig 
3.5 above. Another possible arrangement (one of the three you should have sketched earlier) is 
shown on the left hand side of Fig. 3.6. 
 
  
 
 
 
 
 
 
 
 
 
 
 
On the right hand side of Fig. 3.6 the dots represent the three energy quanta and the vertical bar 
represents a ‘separator’ between the two oscillators. With N oscillators, there will be N-1 
separators. Counting up the number of arrangements of dots and bars (i.e. the arrangements of 
quanta amongst the oscillators) thus reduces to the pool ball problem except instead of red and 
yellow pool balls we need to arrange ● and | objects. The total number of arrangements of three 

quanta amongst two oscillators is thus: 
!1!3
!4 . More generally: 

 
The number of ways to arrange q quanta of energy amongst N 1D oscillators is: 
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How many ways can 4 quanta of energy be arranged amongst four 1D oscillators? 

=
1 2 1 2

=
1 2 1 2  

Fig. 3.6 We can consider the distribution of 3 quanta of energy between 2 
oscillators as a problem involving the arrangement of 4 objects, namely 3 dots 
representing the energy quanta and a bar representing a ‘separator’ between the 
oscillators. If there are N oscillators there are N-1 bars. 
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3.3 Microstates and Macrostates 
 
Taking another example, five quanta of energy can be arranged in 21 different ways among 3 
oscillators. 
 

• Each of the 21 different distributions of energy is a microstate (i.e. an individual 
microscopic configuration of the system); 

• The 21 different microstates all correspond to the same macrostate - the total energy of 
the system is 5 0ωh . 

 
This is just one example – we could also have considered the distribution of 27 quanta of energy 
amongst 300 oscillators, or the distribution of 107 quanta of energy amongst 1 mole of oscillators. 
Regardless of the number of microstates we’re considering, the following fundamental 
hypothesis is at the very core of statistical mechanics (and thus underlies thermodynamics): 
 

 
FUNDAMENTAL ASSUMPTION OF STATISTICAL MECHANICS 

 
Each microstate corresponding to a given macrostate is equally probable. 

 
 
We can draw an analogy between a game of poker and the concept of microstates and 
macrostates. (NB Do not take this analogy too literally. We’ll see later how it is dangerous to 
associate a concept such as entropy with everyday objects such as decks of cards, arrangements 
of socks in a drawer, or a messy (‘disordered’) bedroom.) Ask yourself what are the chances of 
being dealt the following hand of cards from a well shuffled, 52 card deck: 
 
 
 
 
 
 
 
 
Now, take a new well shuffled deck of 52 cards and deal out five cards. What are the chances of 
being dealt the following hand? 
 

 

 



 
 
The probability of being dealt either of the hands of cards shown on the previous page is exactly 
the same. Why then are we so much happier to be dealt the royal flush rather than what might  
best be described as a ‘junk’ hand? This is because, as eloquently stated by a student during 
Lecture 10, “the rules of the game state that some combinations of cards are worth more than 
others”.  
 
A total of over 2½ million different possible hands of 5 cards may be drawn from a 52 card deck 
(make sure you can work out precisely how many combinations there are). Each one of these 
hands is analogous to a microstate – a single combination of 5 cards. However, we can define a 
variety of macrostates for the hands of cards. For example, we could have the following: “Royal 
Flush”, “Straight”, “4 of a kind”, “Pair”, “Two Pair”, “Junk” – where “Junk” is a ‘worthless’ 
hand of cards. Although every microstate is equally likely, the macrostate “Royal Flush” is 
associated with very many less microstates than is the macrostate “Pair” or the macrostate 
“Junk”. (You’ll explore this in more detail in Coursework Set 6). Macrostates associated with 
low numbers of microstates are much less likely to be observed.  
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Two interacting atoms: six 1D oscillators 
 
Remember, we’re ultimately trying to establish why the total thermal energy is shared uniformly 
between two blocks, originally of different temperatures, when they’re brought into contact. Let’s 
consider the smallest possible blocks – two interacting atoms. As each atom comprises three 1D 
oscillators this means we have six 1D oscillators in total. Try answering the following questions: 

 
 
How many ways are there of distributing 4 quanta of energy amongst six 1D oscillators? 
 
 
 
If all four quanta of energy are given to one atom or the other, how many ways are there 
of distributing the energy? 
 
 
If three quanta are given to one atom, and one quantum to the other, how many ways are 
there of distributing the energy? 
 
 
 
If the four quanta are shared equally between the atoms, how many ways are there of 
distributing the energy? 
 

?? 
??

NOTES 

?? 
?? 



The results from the questions on the 
previous page are shown as a histogram in 
Fig. 3.7. It is clear that it is most probable 
that the thermal energy is shared equally 
between the two atoms.  
 
Note that there are two ways to consider 
Fig. 3.7: 
(i) if frequent observations of the two atom 
system are made, in 29% of the 
observations (36 out of 126), the energy 
will be split equally; 
 
(ii) for 100 identical two atom systems, at 
any given instant 29% of the systems will 
have the energy split equally between the 
two atoms. 
 
Increasing the number of atoms  
 
What happens if we increase the number of atoms in the system? If we consider only a few more 
atoms (say, 10) and a few more quanta of energy (again, let’s choose 10) it turns out that there are 
635 million ways of arranging the quanta amongst the oscillators. This is for only a few atoms! 
So you can see that the number of arrangements increases very quickly for small changes in the 
number of oscillators. For example, for 300 oscillators (i.e. 100 atoms), there are 1.7 x 1096 ways 
of distributing 100 quanta of energy. However, there is only 1 way of placing all the quanta on 
one particular oscillator (i.e. the quanta are given to one ‘special’ oscillator we’ve chosen).  
 
The probability of finding all the energy ‘concentrated’ on one atom in a 100 atom ensemble is 
thus unimaginably small. For a mole of solid (~ 6 x 1023 atoms), although it is possible that rather 
than finding that the energy is uniformly distributed throughout the system we observe that all the 
energy is concentrated on one atom (or a small group of atoms), we would have to wait on 
average for a period many times the age of the Universe to see this exceptionally unlikely event 
occur. (The phrase ‘exceptionally unlikely’ does not do justice to the staggeringly small odds 
associated with this possibility!).    

 
Again, let’s put this argument on a more quantitative footing 
and examine how the distribution of energy changes as the 
number of atoms is increased. Instead of using single atom 
‘blocks’, let’s first choose two slightly larger blocks – one 
comprising 6 atoms, the other comprising three atoms. 100 
quanta of energy are placed in the blocks (which are, as 
before, in contact, see Fig. 3.8). Note also that the blocks are 
adibatically isolated – i.e. they’re not thermally coupled to 
their environment. 
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Fig. 3.7 A histogram showing the number of microstates 
associated with having 0, 1, 2, 3, or 4 quanta of energy on 
atom 1 of a two atom system.  

 
Fig. 3.8 Instead of single atom 
blocks, we now consider two blocks 
comprising 6 atoms and 3 atoms 
respectively. The total energy to be 
distributed amongst the oscillators 
in the blocks is 100 quanta. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is clear that a plot of the total number of microstates (i.e. W, where W is the product of the 
number of microstates associated with block 1 (Ω1) and the number of microstates associated 
with block 2 (Ω2)) vs the number of quanta of energy in block 1 is peaked at a certain value of 
energy. 

 
 
In Fig. 3.9, to the nearest integer, where on the x-axis is the maximum of the distribution 
curve located? Why?  
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Fig. 3.9 A histogram showing the total number of microstates (arrangements of quanta of 
energy) vs. the number of quanta of energy in block 1. Note that the histogram has a well 
defined width and mean value. A total of 100 quanta of energy have been distributed between 
the blocks (which comprise six and three atoms (18 and 9 oscillators) respectively). 
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Fig. 3.10 illustrates what happens when the number of atoms in each block shown in Fig. 3.8 is 
increased by an order of magnitude. Note that the distribution has narrowed appreciably. Fig. 3.9 
represents a system containing less than 100 atoms. If we were to carry out this calculation for a 
typical macroscopic system comprising of the order of 1023 atoms, the distribution would be 
extremely narrow (..another understatement!). For a macroscopic system, the probability of 
finding the system in a state other than the most probable (which involves an equal sharing of the 
energy amongst all the oscillators) is an unimaginably small number. The width of the 
distribution is, in fact, proportional to 1/√N where N is the total number of oscillators. 
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Fig. 3.10 When the number of atoms is increased by an order of magnitude, the mean of the 
distribution doesn’t change but its width decreases considerably. This distribution is for a system 
containing less than 100 atoms. For a typical macroscopic system comprising ~ 1023 atoms, the 
distribution will be extremely narrow. The probability of finding the system in a state other than 
that where the energy is shared equally between the two blocks is unimaginably small. 
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3.4 Thermal equilibrium and entropy 
 
For two systems that are not at thermal equilibrium, there will be a flow of energy until a balance 
is reached and the flow of energy ceases. Having considered the distribution of microstates for 
the two block system, we are now in a position to understand just why energy flows so that a 
balance is reached, i.e. so that both blocks reach the same equilibrium temperature (rather than 
one block ending up with all the energy).   
 
In Fig. 3.11, the logarithms of Ω1 (the number of microstates associated with Block 1), Ω2 (the 
number of microstates associated with Block 2), and W, the total number of microstates (= Ω1Ω2) 
are plotted against the number of quanta of energy in Block 1. (Although one reason for the 
introduction of logarithms is that they make the consideration of very large numbers rather more 
straight-forward, there is a more fundamental reason which will be outlined below.) Note that the 
maximum of ln(Ω1Ω2) is located at the same position on the x-axis as was the peak in Fig. 3.10. 
This is not so surprising – if Ω1Ω2  has a maximum at xmax then so too will ln(Ω1Ω2). 
 

 
 
 
If Block 2 were three times the size of  Block 1, what value on the x-axis would correspond 
to the maximum of ln(Ω1Ω2) ? 
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Fig. 3.11 Plot of natural log of microstates vs quanta of energy in Block1. 



 
A definition of entropy 
Entropy is a measure of the number of possible microstates available 
to a system. Boltzmann’s expression for entropy is a very simple (yet 
far-reaching) equation: 
 
 

S = k ln (W)   3.2 
 
where W is the total number of accessible microstates (note the word 
‘accessible’ – we’ll have more to say on this later!) and k is 
Boltzmann’s constant. 
 

As for the expression given for the Boltzmann factor in Section 2.3 of the notes, I strongly 
recommend that you commit Eqn. 3.2 to memory! In fact, as we’ll soon see, the Boltzmann factor 
expression (i.e. the probability of occupying a state equals α exp (-∆E/kT), where α is a constant 
and ∆E is the energy of the state above the ground state) and Eqn 3.2 are just two different ways 
of expressing precisely the same physical law.  
 
Due to the properties of logarithms, we can get the total entropy of a system by simply adding up 
the entropies of the individual parts of the system:  
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To summarise….. 
 
If we now collate the various ideas outlined in this component of the module, we can write down 
the following important statement. 
 
 At thermal equilibrium, the most probable energy distribution is that associated with the 
greatest number of possible microstates. This distribution maximizes the total entropy of the 
system. 
 
In the next set of lecture notes we’ll focus on defining just what we mean by the term ‘system’, 
consider the importance of reversiblility when considering entropy, introduce the concept of 
increasing entropy in a closed system, and discuss in some detail the 2nd law of thermodynamics. 

 


