
  

 

  
Lecture Notes 

Set 3b: Entropy and the 2nd law 
 
 



3.5 The Boltzmann Distribution revisited 
Before moving on to consider the 2nd law of thermodynamics, I’d like to revisit the Boltzmann 
distribution in light of our discussions of permutations, combinations and arrangements of objects 
and quanta of energy. Let’s consider 6 identical but 
distinguishable particles and a 10 level system as shown in Fig. 
3.12. We ask the question: which of the three distributions shown 
is most probable? To answer this we need to consider the total 
number of arrangements of the particles. It turns out that this is a 
problem somewhat similar to that involving the arrangements of 
pool balls discussed in Section 3.2. In this case, however, as the 
particles are distinguishable, you should imagine labelling each 
particle with a number or letter to distinguish it from the others. 
To calculate the total number of arrangements of the 6 particles, 
we need to make sure that we account for the permutations of 
particles within a given level. That is, if we have three particles 
in a level, arrangement ABC = BAC = CAB etc… Note that each 
of the arrangements in Fig. 3.12 gives the same total energy. 

 
 
What is the total energy of the system in Fig. 3.12 assuming that the energy levels are 
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Fig. 3.12 (Taken from the 
Hyperphysics website). 6 particles 
arranged amongst 10 energy 
levels. 
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spaced by ε? 
 

he number of distinct configurations (microstates), W, associated with N distinguishable 
articles being placed in a set of energy levels so that the occupations of the energy levels are n0, 
1,  n2 etc… is: 
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210 nnn
N  

onsidering the first arrangement in Fig. 3.12, the total number of distinct configurations 
microstates) is therefore 6!/ (5! 1!) = 6. This is because there are 5! permutations of the particles 
ossible in the lowest level but only 1 permutation possible in the highest level. (Note also that as 
! = 1 unoccupied levels do not make a contribution). 

 
How many distinct configurations (microstates) are associated with the second and third 
arrangements shown in Fig. 3.12? Which configuration is therefore most likely? 
 ? 

 



Boltzmann’s distribution formula was derived by maximising the quantity 
!.....!!

!

210 nnn
NW =   (or, 

more correctly, ln (W)) under the condition that the total number of particles and total energy of 
the system remained constant. We shall not attempt this (very difficult) derivation! I shall simply 
quote the result (which you’ve seen before in Section 2): 
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Or, in words: at thermal equilibrium, the total number of particles in level i (i.e. ni) having energy 

ει is a constant, A, multiplied by )exp(
kT

iε
−  (where k is Boltzmann’s constant and T is 

temperature).  
 
If we want to know the relative populations of particles in two different energy levels then we 
have the simple result: 
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where ∆E is ε2 - ε1 (the energy level separation). 
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3.6 Entropy and the 2nd law of thermodynamics 
 
The 1st law of thermodynamics is simply a restatement of the 
conservation of energy principle and may be concisely written as: 
 

 ∆U = Q + W  
 
where ∆U, Q, and W are the change in internal energy of the system, 
the heat output or input, and the work done (or on) the system 
respectively. Remarkably, Carnot (who is pictured to the right) 
developed the 2nd law before the conservation of energy principle had 
been put forward. We’ll encounter very many equivalent descriptions 
of the 2nd law in the coming sections (and we’ll also not infrequently 
encounter the work and genius of Carnot). For now, we’ll start with 
the following statements: 
 
“The entropy of a thermally isolated system increases in any irreversible process and is 
unaltered in a reversible process” (p.79, “Thermal Physics”, CB Finn) 
 
“If a closed system is not in equilibrium, the most probable consequence is that the entropy will 
increase” (p.354, “Matter and Interactions Vol. I”, Chabay and Sherwood). 
 
A more succinct statement of the second law is as follows: “a closed system will tend towards 
maximum entropy”.   
 
There are very many pitfalls associated with unclear language when considering entropy and the  
2nd law. Sloppy thinking and poorly worded statements of the laws of thermodynamics (which 
I’ll do my very best to avoid) have led to many ‘abuses’ of the concept of entropy – some of 
these are described briefly in the final section of this set of the lecture notes. Before proceeding, 
we’ll define some of the terms in the statements above: 
 
“thermally isolated system”: by this we mean a system surrounded by adiabatic walls – there is 
no heat flow into or out of the system; 
 
“closed system”: this means that there is no energy (or matter) flow into or out of the system – 
the Universe as a whole is the archetypal example of a closed system but small portions of the 
Universe can also be considered closed systems under certain circumstances (e.g. when isolated 
using adiabatic barriers). 
 
 “…will tend towards maximum entropy…”: this is a very important phrase -  the tendency is for 
entropy to increase, but echoing our discussion of Boltzmann factors in Set 2 of the notes, the 
system can be constrained from reaching the maximum entropy state – the microstates may be 
inaccessible. (Indeed, S = k ln W and the Boltzmann factor expression given in Section 2 are just 
different statements of the same law). 
 



The concepts of ‘reversibility’ and ‘irreversibility’ will be encountered a considerable number of 
times in the remainder of the module. We return to an introductory discussion of reversibility in 
Section 3.6. 

    
One common misconception with regard 
to the 2nd law is that the entropy of an 
object always increases. That this is 
incorrect can be shown by considering 
the system shown in Fig. 3.13. As heat is 
transferred from Block A to Block B, the 
temperature of Block A  is reduced and 
that of Block B is increased. Hence, the 
entropy of Block A is reduced in this 
case. However, the net entropy of the 
closed system is increased.  
 
 
The net increase in entropy arises 
because the most probable energy 
distribution is that which maximizes the 
total number of microstates (sections 3.3 
– 3.5).  
 
 
 

It is worth noting at this point that although we’re concerned with energy distributions, the 
concept of microstates is equally applicable to spatial distributions of particles. The analysis of 
diffusion processes in Set 2c of the notes illustrated that particles diffuse from regions of high to 
low concentration, so that at equilibrium no concentration gradients exist and the particles have 
spread out to fill the available space. The equilibrium spatial distribution is associated with a 
uniform, homogeneous ‘spread’ of particles.  
 
This homogeneous spread is analogous to the uniform distribution of energy quanta observed for 
a system at thermal equilibrium. In both cases the uniform distribution of particles arises because 
the entropy for that macrostate far outweighs that of other less homogeneous arrangements. For 
the same reason that we don’t observe cold objects becoming colder when placed in contact with 
a hot object, the odds against particles moving from a homogeneous distribution to an 
inhomogeneous, ‘ordered’ arrangement are such that on average we’d have to wait for a period 
very many times the age of our Universe to see such an arrangement appear for a mole of atoms. 
Particles spread out to fill the available space uniformly because the largest number of 
microstates (by far) is associated with this ‘disordered’ macrostate. 
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Fig. 3.13 A small amount of heat is transferred from Block A 
to Block B which are both contained within an adiabatic 
enclosure. The temperature of block A is lowered whereas 
that of Block B is increased. The number of accessible 
microstates in system B is increased whereas there are fewer 
accessible microstates in Block A  following the energy 
transfer. Hence, although the entropy of Block B increases 
that of Block A  is reduced. 
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3.6 Reversibility 
 
One of the statements of the 2nd law given above notes that the entropy of a thermally isolated 
system is unaltered in a reversible process. What precisely is meant by reversible in the context 
of thermodynamics? 
 
In a reversible process the system must be capable of being returned to its original state with 
no other change in the surroundings. 
 

The ‘classic’ example of a reversible process involves the piston-
gas system shown in Fig. 3.14. Here a gas undergoes an 
infinitesimally small compression due to an infinitesimally small 
weight, dm, which is placed on the frictionless piston. If the 
weight is then removed, the gas expands back to its original 
volume and the temperature returns to its original value. This is a 
reversible process. 
 
It is important not to assume that a reversible process requires an 
adiabatic enclosure. If the adiabatic enclosure in Fig. 3.14 is 
replaced with a container with diathermal walls it is also possible 
to have a reversible change. For example, let the temperature of 
the surroundings increase by an amount dT – energy will flow in 
through the walls of the container. If the surroundings are then 
slowly cooled to the original temperature the gas will contract 
back to its initial volume. This is again a reversible process.  
 
Note that a reversible process is an idealization – it is not 
possible to have a completely reversible change in a real system. 
Nevertheless, as will be shown below, the concept of a reversible 
process somewhat remarkably allows us to treat many processes 
that are not reversible of themselves.  

 
Quasistatic changes 
You might ask yourself whether a reversible process must therefore always involve 
infinitesimally small changes – what if we want to reversibly change, for example, the pressure of 
a system by a large amount? Well, we can make a large change as long as we break it down into 
a sequence of very small steps. The key feature of this sequence is that the system must remain in 
equilibrium at all times. If this is the case then the process is referred to as a quasistatic process. 
If, for example, we decided to push the piston down very rapidly this would most certainly not be 
a quasistatic process – there would be finite temperature and pressure gradients, and turbulence 
would likely play a role. 
 
Hence, a reversible process involving a large change in the properties of the system must proceed 
via a sequence of quasistatic steps. Reversing this process step-by-step would then produce the 
same initial state. Processes which don’t involve quasistatic states are irreversible. However, are 
quasistatic processes always reversible? 

 
 

Fig. 3.14 A gas contained in an 
adiabatic enclosure with a 
completely frictionless piston. A 
small mass, dm, is placed on the 
piston to produce an 
infinitesimally small pressure 
change..  



 
 
When might a quasistatic process not be reversible? 
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?? 
he concept of reversibility will crop up a considerable number of times in the remainder of the 
odule. 
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3.7 Reversible and irreversible processes: calculation of entropy 
 
There now appears to be an inconsistency between a statement of the 2nd law given in Section 3.5 
and Eqn. 3.7. The statement in question is: “the entropy of a thermally isolated system increases 
in any irreversible process and is unaltered in a reversible process”. However, Eqn 3.7 holds only 
for a reversible process involving a very small amount of heat, dQ – how do we calculate the 
entropy change in an irreversible process?! (Remember that a reversible process is an idealization 
– every real process is irreversible). There are some rather subtle thought processes underlying 
the use of Eqn. 3.7 to calculate entropy changes in irreversible processes which are best 
illustrated with an example (taken from Finn, p. 75). 
 
We want to calculate the entropy change of a beaker of water when it is heated from 293 K (i.e. 
about room temperature) to 373 K (Fig. 3.15). The beaker is placed on a heat reservoir (i.e. a 
‘heat bath’ which is so large its temperature does not change) and its temperature raised to 373 K 
(steps 2 and 3 in Fig. 3.15). The beaker is then removed from the reservoir and placed in a jacket 
with adiabatic walls so there is no longer any heat flow into or out of the system. 
 

    
As this is an irreversible process (due to the large 
temperature gradients set up as the water is 
heated) it is not possible to apply Eqn. 3.7 directly. 
However, the water is in well-defined equilibrium 
states at the start and end of the process. We 
imagine a reversible process that moves the state 
of the water between these two end points. 
 
To apply Eqn. 3.7 the irreversible process shown 
in Fig. 3.15 can be broken down into a series of 
reversible steps. Starting with the water at T = 
293K, the beaker  is placed on a reservoir with a 
temperature of T + ∆T (= 293.1 K). The 
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Fig. 3.15 Raising the temperature of a beaker of water from 293 K to 373 K in one step is an irreversible process. 
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Fig. 3.16 Increasing the temperature of a beaker 
of water via a series of reversible steps. 
temperature difference is so small that the system 
emains in equilibrium as its temperature changes. A reservoir with T = 293.2 K is then placed 
ext to the beaker and the temperature of the water again increases with the water remaining in 
quilibrium (see Fig. 3.16).   



 
When the water is at a temperature T and it is heated to a temperature T + ∆T, the heat entering 
(reversibly) is dQ = CP ∆T where CP is the heat capacity at constant pressure. From Eqn. 3.7 (if 
we now consider infinitesimally small changes in temperature): 
 

T
dTCdS P=      3.8 

 
Eqn. 3.8 is the entropy change of the water for each reversible step. To get the total entropy 
change it is necessary to integrate between the lower and upper limits of temperature (namely, 
293 K and 373 K). Thus, the total change in entropy, ∆S is: 
 

∫=∆
373

293 T
dTCS P  

 
I’ll leave you to do the integration as an exercise. The reason we can determine changes of 
entropy in this fashion is related to the concept of a function of state which is covered in Section 
4 of the module. 
 

NOTES 



3.8 Some ‘abuses’ of the 2nd law and the concept of entropy 
 
Finally, one of the most misunderstood concepts in popular science writing is that of entropy. 
Lazy use of terms such as ‘order’, ‘disorder’, and ‘reversibility’ has led to very many 
misconceptions regarding the 2nd law. For example, very many cranks (and some scientists who 
should have known better) have dreamt up perpetual motion machines which disobey the 2nd law 
– these machines have their own special category: ‘ perpetual motion machines of the second 
kind’ to distinguish them from perpetual motion machines ‘of the first kind’ which disobey the 1st 
law of thermodynamics! In the next section of the module one of the topics with which we’ll be 
concerned will be heat engines and refrigerators – hopefully after you study that section of the 
course you should be able to debunk many of the designs for perpetual motion machines that 
have been proposed and continue to be proposed on a daily basis by those who refuse to accept 
the 2nd and 1st laws of thermodynamics. (A brief introduction to the nonsense of perpetual motion 
machines can be found at: http://manor.york.ac.uk/htdocs/perpetual/perpetual.html. There are 
very many other sites on the web related to this concept!). 

 
A key ‘abuse’ of the 2nd law is in its application to arrangements of macroscopic 
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objects such as socks in a drawer, books on a desk, cards in a deck, and the 
contents of a room. An eloquent discussion (by Prof. Frank Lambert) of just how 
wrong it is to apply the concept of thermodynamic entropy to these situations may 
be found at: http://jchemed.chem.wisc.edu/Journal/Issues/1999/Oct/abs1385.html. 
(Note that links to these sites are provided on the module website). I will not 

epeat the arguments of Prof. Lambert in detail here. His ‘take home’ message is that simply 
earranging macroscopic objects does not result in an increase in the number of microstates 
ccessible to those objects – hence there is no increase in thermodynamic entropy. That your sock 
rawer ‘evolves’ from an ordered, tidy state (perhaps!) to a disordered mess has absolutely 
othing to do with entropy. 

 ‘loose’ and completely incorrect statement of the 2nd law is as follows: 
the entropy of a body always increases’. An easy way to address this 
isconception is to ask how a ‘fridge works. Heat is extracted from a 

fridge, therefore there must be an entropy decrease somewhere. The 
roblem with the statement as written is that it mixes up net entropy 
hanges with the entropy change of an element of a system. It is the net 
ntropy of a closed system that increases – the entropy of individual 
lements of that system may either increase or decrease. We’ll return to a 
onsideration of fridges in Section 4 of the module. 

http://manor.york.ac.uk/htdocs/perpetual/perpetual.html
http://jchemed.chem.wisc.edu/Journal/Issues/1999/Oct/abs1385.html


 
Finally, the most insidious abuse of the 2nd law is by 

 
creationists who use it to apparently debunk the theory 
of evolution. The argument runs as follows:  

1. Humans and animals are complex, ordered 
beings 

2. Entropy is a measure of disorder 
3. The 2nd law states disorder always increases. 
4. Therefore order can’t ‘evolve’ from disorder – 

Darwin must have got things wrong 
 

I’ll leave you to work out the (gaping) holes in this argument. For more debate on this subject see 
http://www.talkorigins.org/faqs/thermo.html. 
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