
  

 

  
Lecture Notes 

Set 4a: The 0th and 1st laws:  
Temperature, heat, and work 

 
 



Thus far……..  
 
As usual, before starting a new section let’s briefly recap what we’ve covered in the previous 
component of the module. Section 3 largely dealt with the concept of entropy. We found that the 
most probable macrostate of a system is that associated with the greatest number of microstates. 
Boltzmann’s expression for entropy, S = k ln (W), therefore encapsulates in a very simple 
formula the fundamental basis of the transfer of heat from a hot to a cold object. Temperature 
may be defined as the inverse of the rate of change of entropy with respect to energy and 
although entropy does not change in an (idealised) reversible process, a closed system tends 
towards maximum entropy.  
 
 However, there remain a number of important questions we need to address: 
 

(i) We’ve defined temperature in terms of both the rate of change of entropy with respect 
to energy and the mean molecular energy. However, how do we measure temperature 
in the real world and how are these measurements related to the absolute temperature 
(i.e. the ‘T’ in exp (-∆E/kT))? 

(ii) How are heat and work related? 
(iii) How is it possible to get useful work from the transfer of thermal energy – i.e. on 

what physical principles is an engine based? How do we run an engine in reverse so 
that it acts as a heat pump? 

(iv) What determines the efficiency of a heat engine or a heat pump? 
(v) Why can’t we build perpetual motion machines and just what is Maxwell’s demon?  

 
4.1 Equilibrium and the Zeroth law 
 
The branch of science called thermodynamics was developed before an understanding of the 
microscopic (atomistic or molecular) nature of matter was achieved. As was noted at the start of 
the module, thermodynamics is concerned with the macroscopic properties of a system: volume, 
temperature, pressure, specific heats,…etc… We’ve now spent quite a lot of time discussing the 
properties of matter from a molecular viewpoint and have shown that properties such as 
temperature and specific heat are fundamentally related to the arrangements of quanta amongst 
the various energy levels accessible to a system. One might then ask whether we should care 
about classical thermodynamics at this point: if we can understand the behaviour of matter using 
statistical mechanics and quantum theory, surely that’s enough? 
 
In fact, that is a rather ‘blinkered’ attitude to adopt! A very important feature 
of thermodynamics is that the relationships between thermodynamic 
variables such as pressure, temperature and volume are not dependent on a 
particular microscopic model. Hence, thermodynamics acts as an important 
check on our microscopic description of matter. Perhaps the best example of 
the power of a thermodynamic approach lies with Carnot’s work on heat 
engines and entropy at the turn of the 19th century. Carnot developed the 
concept of entropy with no consideration of atomic structure and before the 
1st law – the conservation of energy principle – was known! 
 



 

 
Einstein was particularly ‘enamoured’ of thermodynamics, stating in 1949: 
“..classical thermodynamics has made a deep impression upon me. It is the 
only physical theory of universal content which I am convinced, within the 
applicability of its basic concepts, will never be overthrown.” (Quote taken 
from CB Finn, “Thermal Physics”). 
 
 

 
Thermal and thermodynamic equilibrium  
 
Throughout this section we will deal with the 
archetypal thermodynamic system: a piston and 
a gas enclosed in a container with either 
adiabatic walls (no heat in or out) or diathermal 
walls (gas coupled thermally to the 
surroundings) (Fig. 4.1). Considering a gas 
thermally isolated from its surroundings by 
adiabatic walls with no flow of gas into or out of 
the container (a closed system), the gas will 
reach an equilibrium state where its properties 
are spatially uniform and don’t change with 
time.  
 
At this point the gas will be in the equilibrium 
state (P,V). In equilibrium, specifying P, V, and 
the total number of gas molecules fixes all the 
macroscopic properties of the gas (e.g. thermal 
conductivity). 
 

NOTES 
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Fig. 4.1 A gas contained in a container with adiabatic 
walls. A frictionless piston may either do work on the 
gas (if we – the surroundings – compress the gas) or 
the gas may do work on the piston by expanding. 



At thermal equilibrium there are no flows of energy in the system i.e. there are no temperature 
gradients. To have thermodynamic equilibrium we must have reached thermal, chemical and 
mechanical equilibrium where not only are there no temperature gradients but there are no 
unbalanced forces on the system and there are no chemical reactions occurring. 
 
The 0th law 
 
If two systems are put in thermal contact with each other, they will reach thermal equilibrium (for 
example, the blocks considered throughout Section 3).  
 
The 0th law of thermodynamics states that if each of two systems is in thermal equilibrium with 
a third, they are in thermal equilibrium with each other.  
 

This might seem like a rather obvious 
statement but that it’s not a logical 
‘necessity’ may be illustrated by the 
following (rather loosely connected!) 
example: if I owe John £10-00 and Pete 
owes John £10-00 that doesn’t mean that I 
owe Pete £10-00! Without the zeroth law 
we would not be able to make use of 
thermometers. When we make a 
measurement of temperature (on, say, 
system A – see Fig. 4.2) we bring the 
thermometer into equilibrium with the 
system. If the thermometer is in thermal 
equilibrium with System B then – from our 
discussions in Section 3 - we can state that 
System A and System B have the same 
temperature. 
 

A

B
 

 
Fig. 4.2 If system A is in thermal equilibrium with system 
C (the thermometer) and system B is also in thermal 
equilibrium with system C, then systems A and B are in 
thermal equilibrium with each other. Two systems in 
thermal equilibrium have the same temperature.  

NOTES 



4.2 Isotherms 
 
Returning to the gas and piston system, consider bringing the gas through the following sequence 
of steps. We start with an equilibrium state (P,V) of the gas which is in thermal equilibrium with 
another system. On a graph of P vs V (a PV diagram) we plot a point representing this 
equilibrium state. We then compress the gas to bring it to a new equilibrium state, (P’, V’) which 
is also in thermal equilibrium with the reference system. That is, although we have changed the 
pressure and volume of the gas we have kept its temperature constant. We plot this point on the 
PV diagram. If these steps are repeated, always keeping the temperature of the gas constant, then 
we will plot a curve known as an isotherm (for hopefully obvious reasons) on the PV diagram. 
 
Isotherms for an ideal gas are shown in Fig. 4.3. (Note that the isotherms for a real gas (which 
we’ll come to later on in Section 4) are substantially more complicated than those shown in Fig. 
4.3.) It is clear that a functional relationship between P, V, and T exists, i.e. 
 

T = f (P,V) or  P =f(T,V) or V = f (P,T) 
 
Of the three measureable variables only two are independent and one may be expressed in terms 
of the other two. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.3 Pressure-volume isotherms for an ideal gas. Each curve represents  
a series of pressure and volume measurements taken at a constant gas 
temperature (either 500 K, 400 K, 300 K, 200 K, or 100 K).  

 



Functions of state 
 
When a system is in thermodynamic equilibrium the properties of the system only depend on the 
thermodynamic variables (P, V, T) – the pathway by which equilibrium was reached is irrelevant. 
We say that P, V, and T are functions of state. 
 
 
For example, in equilibrium :  T = f (P, V). 
 
Here, T is a function of state and the expression T = f(P, V) is called an equation of state. 

 
 
Write down the equation of state for an ideal gas in the forms P = f(V,T) and T = f (P, V). 
 ??

?

 
 
Write down an equation which describes the isotherms of an ideal gas. 
 ? 
NOTES 



4.3 Temperature scales and gas thermometers 
 
To experimentally measure temperature we first have 
to find a physical property of our reference system 
that varies with temperature – e.g. the length of a 
column of mercury in a glass capillary or the voltage 
of a thermocouple junction. We then need to assign a 
temperature scale based on the change in the physical 
property. How do we assign this scale, i.e. how do we 
calibrate our thermometer? 
 
We first assume that the physical property (X) varies 
linearly with temperature so that 

 
 X = aT   4.1 

 
where a is a constant. Note that this assumes that the v
This is not necessarily the case. For example, the resi
property related to temperature. However, this resistance
to a constant value at the lowest possible temperatures. 
are only defined in regions where the thermometric p
above. Finally, different thermometers based on differe
fixed points. However, as discussed below, there is a
these problems. 
 
To determine the value of a in equation 4.1 we nee
reproducible value of temperature, T, and assign it a fix
what we choose as our fixed point. A very well defined 
is that associated with the triple point of water i.e. the te
vapour coexist. (There’ll be more on phases later in this
of water the value 273.16 K (i.e. 0.01°C) (we’ll get to ju
 
Constant volume gas thermometer 
 
Gas thermometers always agree at all points on the tem
the material (i.e. the gas) used in the thermometer.  
 
A simple schematic of a gas thermometer and a more de
volume of gas is kept constant by adjusting the height o
is aligned with a fixed reference level. The bulb of 
temperature is to be measured.   
 
  
 
 
 

 
Fig. 4.4 Thermometers 
alue of X at the zero of temperature is 0. 
stance of a platinum wire is a physical 
 remains finite as T is lowered and tends 

Furthermore, temperatures on the X scale 
roperty varies as given by equation 4.1 
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 class of thermometer which surmounts 

d to choose a certain well defined and 
ed value. The question then arises as to 

and completely reproducible temperature 
mperature at which ice, water, and water 
 section). We assign T at the triple point 
st why we choose 273.16 K shortly…..).  

perature scale: they are independent of 

tailed diagram are shown in Fig. 4.5. The 
f the mercury column until the meniscus 
gas is immersed in the system whose 



 
A ‘dead space’ or ‘nuisance volume’ is sometimes referred to when discussing gas 
thermometers. From a consideration of Fig. 4.5 can you suggest from where this ??
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Fig. 4.5 Schematic (left) and more  detailed diagram of constant volume gas thermometer. The diagram on the 
right was taken from Cutnell & Johnson, Wiley Publishing, Physics 5th Ed. (Figure 12.03)  
nuisance volume might arise?  
 

 
Assuming that the triple point of water is 273.16K, write down an equation that relates 
T and P of the gas to T and P at the triple point. 
 

 
??
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Ideal gas scale 
 
When the amount of working gas is reduced to the smallest possible value, all gas thermometers 
give the same temperature for a give system irrespective of the gas used. From the material 
covered in Sections 1 and 2, it should hopefully be clear why this is so. We define the ideal gas 
scale as follows: 
 
            4.2 
 

Ideal gas scale 
 
The limit is performed by carrying out an extrapolation as shown in Fig. 4.6. 
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Fig. 4.6 All gases at sufficiently low pressure obey the equation of state of an 
ideal gas. An extrapolation of the P vs T graph for a constant volume gas 
thermometer to P = 0 therefore yields the zero of temperature on the ideal 
gas scale, T = -273.15° C. 



From Fig. 4.6, absolute zero is defined as – 273.15° C. The value of 273.16 K appearing in the 
ideal gas scale (equation 4.2) was chosen so as to ensure that there are 100 K between the 
experimentally measured  temperatures of the ice and steam points (the boiling and frezzing 
points of water at atmospheric pressure). The celsius scale is given by: 
 

T(°C) = T(K) - 273.15 
 
It is essential to note at this point that the temperature defined according to the ideal gas scale is 
identical to the absolute thermodynamic temperature scale which we have used throughout the 
module thus far (in equations such as ½ m<v2> = 3kT/2, pi ∝ (-∆E/kT), etc…). Just why this is 
the case will be explored when we consider heat engines and a process called the Carnot cycle. 
 
Two fixed points 
 
Before the 1950s, temperature scales were based not on one fixed point (as for Eqn. 4.2) but two. 
Hence, two constants had to be fixed by specifying the temperature at two fixed points: the steam 
and ice points. An alternative equation to Fig. 4.2 was then used for the temperature scale: 
 

X = aT + b    4.3 
 

NOTES 



4.4 Heat and work 
 
We now move on to consider some of the questions that drove the inception and development of 
thermodynamics: how can we use thermal processes to generate mechanical work?; what 
distinguishes heat from work?; what is the maximum efficiency we can expect from a heat engine 
and how is this related to entropy? 
 
Determining the work done in a process 
 
Returning to the gas + piston system, back in Section 2.8 of the notes we wrote down the 
following expression for the work done by an expanding gas:  
 

dW = - PdV     Eqn. 4.4 
 
It is worthwhile to remember at this point that our convention with regard to whether work is 
considered as a positive or negative quantity is as follows:  

if the surroundings do work on the gas (e.g. the piston compresses the gas) then this is 
positive work;  
if the gas does work on the surroundings (e.g. the gas expands pushing back the piston) 
then this is negative work. 

 
Equation 4.4 gives the quantity of work done on (or by) the system for an infinitesimal change in 
volume. To get the total work done in a process we need to integrate: 
 
 
           Eqn. 4.5 
 
 
where Vi and Vf are the initial and final volumes of the gas. 
 
Work done by an expanding gas: path dependence 
 
We now need to address an issue of key fundamental importance. We know that P, V, and T are 
functions of state – is the work done also a function of state? That is, is the amount of work done 
independent of the path we choose to follow in a thermodynamic process? This question may be 
answered by considering three different pathways: an isothermal (constant temperature) process, 
an isobaric (constant pressure) process, and an isochoric (constant volume) process.  
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Isothermal path 
 
Fig. 4.7 is a PV diagram for an isothermal process where a gas is expanded from V1 to V2. The 
curve shown on the PV diagram is simply the isotherm at temperature T.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Given that PV = nRT for an ideal gas, derive an expression for the work done by the gas 
when it expands from V1 to V2. 
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Fig. 4.7 PV diagram for a gas expanding isothermally from volume V1 to volume V2 
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Isobaric path 
 
Now let’s consider a different pathway in the PV diagram. Consider pathway 3 → 2 in Fig. 4.8. 
This is an isobaric expansion (as it is carried out at constant pressure). 
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ig. 4.8 The pathway from point 3 to point 2 on the PV diagram represents an isobaric 
xpansion. 
te down an expression for the work done in an isobaric expansion of the ideal gas 
hway 3 → 2 on the PV diagram shown in Fig. 4.8). 
 



Isochoric path 
 
The path 1 → 3 in Fig. 4.8 is an isochoric process – there is no volume change. 

 
 
Write down an expression for the work done in the isochoric process (path 1 → 3) 
shown in Fig. 4.8. 
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??
ork done: area under the curve 

n addition to deriving expressions for the amount of work done in these various processes, the 
ork done has a simple graphical interpretation: it is the area under the curve.   

 
On the PV diagrams below shade in the region of the PV diagram that corresponds to 
(i) the quantity of work done in an isobaric expansion from V1 to V2; (ii) the quantity of 
work done in an isothermal expansion from V1 to V2 at temperature T. 
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Heat, work and the 1st law 
 
As discussed in detail in Section 2a of the notes that the internal energy of an ideal gas is a 
function of temperature only. 

 
 
What is ∆U for an isothermal compression of an ideal gas? What is the corresponding 
value for an isothermal expansion? 
 

 

??

 
Therefore, from the 1st law, how are the values of dQ and dW related in an isothermal 
process for an ideal gas? 
 

 
?
?
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