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4.4 Heat and Work (continued from Set 4a of the lecture notes) 
 
In the following sections we’ll determine the heat input/output, the work done, and the change in 
internal energy for a number of important processes involving the change of state of a gas.  
 
Isochoric heat transfer 

In an isochoric process the volume of the gas 
is kept constant. To work out the amount of 
heat, Q, transferred to the gas for a given 
change in temperature, ∆T, we use the 
following simple formula: 
 

Q = CV∆T = (3R/2)∆T      4.6 
 
where we assume that we have 1 mole of an 
ideal gas (see Section 2 of the lecture notes for 
a discussion of specific heats). 
 

 
If  Q is (3R/2) for the isochoric process 
shown in Fig. 4.9, by how much does 
the internal energy change? 
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Fig. 4.9 Isochoric heat transfer. 
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Isobaric heat transfer 
 
In this case the pressure is kept constant and 
the gas is free to expand/ contract. To 
determine the heat input in this case we use 
another simple formula: 
 

Q = CP∆T = (5R/2)∆T         4.7 
 

 
Write down an expression for the work 
done by the gas in the isobaric process 
shown in Fig. 4.10. 
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Fig. 4. 10 Isobaric heat transfer 
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4.5 Adiabatic compression and expansion of an ideal gas  
 
In what we’ve considered thus far, heat was transferred into or out of the gas. What happens if 
the compression of a gas is carried out under adiabatic (i.e. ‘no Q’) conditions? 
 

 
 
Is it possible for the temperature of a gas to rise if there’s no heat input? 
 
 
 
For an adiabatic process, from the 1st law, how are the change in internal energy and the 
work done on the gas related? 
 
 
If the temperature of an ideal gas changes by dT, by how much does its internal energy 
change? 
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Equation of an adiabatic 
 
We know that an isotherm for 1 mole of an ideal gas is defined by the equation PV = RT. In the 
following we’ll derive an equation that relates pressure and volume for an adiabatic process. Note 
that adiabatic processes will be of particular importance when we discuss heat engines in later 
sections. 
 
The differential form of the 1st law is dU = dW + dQ. For an adiabatic process dQ =0 and hence 
the change in internal energy and the work done are equivalent. The infinitesimal work done is 
given by: 

dW  = - PdV 
 
We also know that for an ideal gas, dU = CVdT. (Note that this is true of any process for an ideal 
gas - it doesn’t matter whether the volume is kept constant or not. The internal energy of an ideal 
gas depends only on temperature).  
 
Equating dU and dW : 
 

CVdT = - PdV                                           4.8 
 

We’re dealing with 1 mole of an ideal gas which means that PV = RT.  
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Integrate equation 4.9. 
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Dividing the integrated form of Eqn. 4.9 through by CV we get: 
 

cV
C
RT

V

=+ lnln     4.10 

 
where c is a constant. We’ve shown in Section 2 of the notes that CP = CV + R  (Eqn. 2.45). 
Hence, we can write Eqn. 4.10 as: 
 

 
 

 
          4.11  
    
 
where c2 is another constant (designated c2 because it is a different constant from c). Rewriting 
Eqn. 4.11 taking into account the properties of logs: 
 

TVγ−1 = constant    4.12 
 

or, 
 

      PVγ = constant                                   4.13 
 
 
Equations 4.12 and 4.13 represent the equation of an adiabatic. 
 
 
PV curve for an adiabatic and an isothermal process 
 

 
 
 
On the diagram in Fig. 4.11, the adiabatic for 
the ideal gas has a slope γ times that of the 
isotherm for the ideal gas. 
 
In Coursework Set 9 you will be asked to 
prove this. 
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Adiabatic work 
 
We found in Section 4.4 that, in general, work is path dependent.
A question we need to answer is whether the "work is path dependen
statement is true if we have an adiabatic process – i.e. a process where 
there is no heat input or output from the system. At the beginning of the 
19th century Joule, prompted by measurements carried out by Benjamin 
Thompson, carried out a number of experiments to determine the precise 
‘form’ of heat.  
 
Joule’s apparatus is shown in Fig. 4.12 below. The water is stirred by 
falling weights turning a paddle wheel. Importantly, the water is isolated 
from its surroundings by the adiabatic walls of the container. 

 
 
Joule found that no matter how the adiabatic 
work was performed, it always took the same 
amount of work to take the water between the 
same two equilibrium states (whose 
temperatures differed by ∆T). This led Joule to 
surmise: 
 
if a thermally isolated system is brought from 
one equilibrium state to another, the work 
necessary to achieve this change is independent 
of the process used.  
 
 
This seems to contradict what was said above – it appears that the work done in this case is path 
independent. There is no contradiction for the following reason: ∆U = Q + W. If Q = 0 (as is the 
case for adiabatic work) then ∆U = W. The change in internal energy is always a function of state 
(regardless of whether the process is carried out adiabatically or not).  
 

Adiabatic work is path independent. 
 
Expression for work done in an adiabatic process 
 
In the lectures we will derive an expression for the work done in an adiabatic process. This 
expression is: 
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4.6 The distinction between heat and work 
 
An important – and involved – question to address is the distinction between heat and work. 
Keeping with the spirit of our earlier discussions regarding the fundamentally probabilistic nature 
of thermal energy transfer we will distinguish between heat and work from a microscopic 
viewpoint. Note that a complete explanation requires a detailed consideration of statistical 
mechanics which is well beyond the scope of this module. However, relatively straight-forward 
qualitative arguments can be made which provide a reasonable insight into the distinction 
between heat and work. 
 
When energy is added to a system in the form of heat we increase the random motion of the 
constituent molecules. However, when we increase the energy by performing work we displace 
molecules in an ordered way. A good example is that of a spring – stretching the spring (i.e. 
doing work on the spring) moves all the atoms in an ordered manner whereas simply heating the 
spring will not produce ordered motion of the atoms.  
 
Another way of thinking of the distinction between heat and work is to consider the energy levels 
of the particles. If we consider the simple harmonic oscillator discussed throughout Section 3 of 
the notes, if energy is added to the oscillator in the form of heat then the populations of the 
energy levels will change i.e. there are differences in the number of arrangements of energy 
quanta which we can have. However, work doesn’t change the populations of the energy levels, it 
merely shifts the energy levels (see slides for Lecture 14).  
 
It now might appear that to have a change in entropy of a system an input of heat is always 
needed because this will provide a change in the populations of the energy levels (i.e. a change in 
the number of accessible microstates). This is not true – an important example of where a change 
of entropy occurs in the absence of any heat input is the free expansion of a gas. In a free 
expansion there is no temperature change and no heat enters the system. However, the volume of 
the gas increases and therefore a greater number of possible arrangements of the molecules in 
space is possible – this produces a change in entropy.  
 
When we consider heat engines and the Carnot cycle in the following sections, the distinction 
between work and heat will again be important. In particular, we will consider the conversion of 
heat energy into useful mechanical work – there are fundamental limits (due to the 2nd law of 
thermodynamics) on the efficiency of this conversion process. 
 
 



 

NOTES 




