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5.1 The Einstein Model of a Solid revisited 
 
In Section 3 of the notes a simplified model of a solid as 
put forward by Einstein was introduced. Each atom is 
considered as moving independently of its neighbours 
and, moreover, the three dimensional motion of the 
atom is broken down into three independent one 
dimensional oscillators (oscillating in the x, y, and z 
directions respectively). The energies of these 
oscillators are quantised and given by: 
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2
1( ωh+= nEn (where ω0 is the resonant frequency of 

the oscillator). Thus, the energy difference between 
consecutive levels (eg levels E0 and E1 in Fig. 5.1) is 

0ωh . 
 
 
5.2 Specific heats and equipartition of energy: revision 

 
According to the equipartition of energy theorem what is the average thermal energy per 
degree of freedom? 
 
 
Which means that the average thermal energy of a gas molecule is…..? 
 
 
 
Which in turn means that the average thermal energy of 1 mole of an ideal gas is…? 
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Fig. 5.1 Quantised energy levels for 
a simple harmonic oscillator 
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In a solid there are no translational or vibrational degrees of freedom – only vibrational degrees 
of freedom remain. 

 
 
What is the average thermal energy of 1 mole of a solid according to the equipartition 
theorem? 
 

 
 
The specific heat capacity at constant 

volume is given by Cv = 
VT
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3R for a solid according to classical 
equipartition theory. Note that this value is 
independent of temperature. We now ask 
how this value compares to the experimental 
results and we find, as shown in Fig. 5.2, that 
only at high temperatures is a value of 3R 
observed. 
 
 
 

 
Why is a value of 3R for the heat capacity of a solid found only at high temperatures? 
 
 

??
NOTES 

C (JK-1)

T (K)

3R

C (JK-1)

T (K)

3R

Fig. 5.2 Variation of specific heat with 
temperature for a solid 
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5.3 Modes of vibration in solids 
 
The quantised vibrational energy levels in a solid arise not from the vibrations of individual 
atoms but from collective oscillations of the atoms: normal modes of vibration where all the 
atoms oscillate at the same frequency (see your Vibration & Waves notes and/ or Grant & 
Phillips Chapter 7 for a discussion of normal modes). Each vibrational mode can only have 

certain discrete energy values which are given by the formula: 0)
2
1( ωh+= nEn where ω0 is now 

the (angular) frequency of a particular mode of vibration (and not the resonant frequency of a 
single oscillator). As the temperature is lowered, the probability of exciting a vibrational mode of 

frequency ω0  is reduced by the Boltzmann factor exp ( )0

kT
ωh

− . So, just as we found for the 

specific heats of gases, the specific heat of a solid has a temperature dependence not predicted by 
classical equipartition theory that originates from the quantised nature of the energy levels. 
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5.4 Thermal Conductivity in Solids: Phonons and Electrons 
 
In insulating solids heat is transferred through the solid via 
lattice vibrations. However, the picture of lattice vibrations 
given above is somewhat oversimplified. It is not quite 
correct to think of the vibrational modes as extending 
unimpeded across the entire length of a solid.  
 
There are fluctuations in thermal energy in a solid. These set 
up vibrational waves of slightly different frequency and the 
superposition of these waves produces a wavepacket (Fig. 5.3 
- again, see your Vibrations & Waves notes and/or Grant & 
Phillips Chapter 7). A vibrational wavepacket in a solid is 
termed a phonon. 
 
Just as we can discuss electrons in terms of wave-like or particle-like behaviour, we can think of 
phonons (groups of waves) as particles that travel through the lattice carrying thermal energy. 
The movement of phonons from hot to cold regions of the solid is analogous to the motion of 
molecules causing heat transfer in gases (Section 2c of the notes). Solids are not perfect – they 
contain many defects. These act to scatter the phonons as they travel through the lattice, giving 
rise to a mean free path for a phonon (which is again analogous to the mean free path of a 
molecule in a gas that was discussed in Section 2c). 
 
While heat transfer in insulators (for example, glass) is driven entirely by phonons, the thermal 
conductivity of a metal is very much higher than that of an insulator. This is because the free 
electrons in the metal can transfer heat and as the speed of electrons in the solid is very much 
greater than the speed of phonons the electronic contribution to thermal conductivity dominates. 
 

 

 
Fig. 5.3 Simple schematic illustration 

of a wavepacket 
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Note that the following equation, which we defined in Lecture 9 (Lecture Notes Set 2c) for gases, 
also holds for solids: 
 

dx
dTA

dt
dQ κ−=  

 
where Q is the heat current, κ is the thermal conductivity, A is the cross sectional area, and dT/dx 
is the temperature gradient. 
 
5.5 Thermal Expansion of Solids 
 
The final topic we’ll consider in the Thermal & Kinetic module was introduced at the very start 
of the course (Lecture 1, Set 1 of the notes). As the thermal energy in a solid increases, the mean 
separation of the atoms increases because the force curve is anharmonic (see Fig. 5.4). This cause 
the solid to expand. For a small temperature change ∆T, the change in length, ∆l, of a sample is 
given by: 
 

Tll ∆=∆ α  
 
where l is the original length of the sample and α is the linear expansion coefficient. 
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