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ABSTRACT

A structural motif that appears very frequently not only in a wide range of nanostructured systems but also on mesoscopic to macroscopic
length scales is the “cellular network”. We present a quantitative analysis of the morphology of cellular networks formed by thiol-passivated
Au nanoparticles, and, for comparison, organometallic molecules, spin cast onto native oxide-terminated silicon substrates. The structural
parameters determined from Voronoi tessellation and Minkowski functional analyses of the experimental data are compared to those extracted
from Monte Carlo simulations of nanoparticle network formation. The key result of this comparative study is that although the cell positions
are spatially correlated, i.e., they deviate strongly from those expected for a Poisson point set, this correlation arises simply from a coalescence
of neighboring cells during network formation. Complex nonlinear processes such as spinodal decomposition or Marangoni convection are
therefore not always a prerequisite for the formation of spatially correlated networks.

The patterning of surfaces using nonlithographic techniques,
such as those that exploit the dewetting of thin films, has
immense potential for large-scale fabrication of the next
generation of inexpensive electronic devices. When the
specific balance of interfacial energies causes a film on a
substrate to break up, the rupture frequently occurs on a well-
defined length scale. The result is generally a large area that
contains features of uniform size. This is also true of initially
homogeneous mixtures that separate into two phases. In
addition to their possible electronic applications, the physical
and chemical properties of these nanostructured materials
may prove to have important applications in areas such as
catalysis and materials science. Wetting, dewetting, and
phase-separating polymer systems have been studied exten-
sively, and a comprehensive review is presented by Geoghe-
gan and Krausch.1

It is important to note that the emergence of a well-defined
correlation length is not limited to dewetting films and phase
separation. A wide range of apparently different systems
appear to exhibit a preferred length scale for pattern
formation. Patterns on the hides of animals, cellular structures
formed by drying and cracking mud, and the arrangement
of domains in a magnetic material are all examples. In this
letter, however, we shall focus on patterns similar to those
observed in dewetting films. In particular, structures resem-
bling dewetted polymers have been observed in the drying-
mediated self-assembly of CdSe nanoparticles,2 and within
our own group, Au nanoparticles.3 These structures have also
been convincingly reproduced by MC simulation using basic
thermodynamic principles, as shall be discussed later.4 It is

perhaps not surprising that the patterns observed in nano-
particle self-assembly are similar to those observed in
dewetting polymer systems. The evaporation of a solvent is
likely to be influenced by the same factors as a dewetting
liquid; local film thickness fluctuations and small temperature
differences are almost certain to play a part in both systems.
This does not, however, go any way toward explaining why,
as we shall show below, patterns with quantitatively very
similar degrees of order are formed in each system.

The appearance of a ring in the two-dimensional Fourier
transform is frequently cited as evidence for long-range
ordering.5-11 There is still considerable debate on this topic,
particularly relating to polymer films,10-12 where the dew-
etting patterns tend to be attributed to one of two processes:
nucleation and growth of holes, or some type of spinodal
process. It seems likely that different systems, and in fact
the same system under different conditions (as suggested by
Bischof et al.13 and Xie et al.9), can probably evolve by either
mechanism. It would therefore be convenient if we could
examine a pattern and determine from its morphology alone
its probable origin.

There are a number of analytical tools that can be applied
to a pattern to characterize it numerically. These techniques
are especially useful where the structure is cellular, or
conversely, where it consists of a number of separate droplets
(as used by Brinkmann et al.14). Comparing such distributions
of objects with a random (Poisson) distribution can give us
an insight into the degree of order (or disorder) of the system.
The Voronoi tessellation has been used to indicate deviations

NANO
LETTERS

2004
Vol. 4, No. 12
2389-2392

10.1021/nl048536w CCC: $27.50 © 2004 American Chemical Society
Published on Web 10/30/2004



from Poisson statistics in cellular nanoparticle networks.3

More recently, we have used “Minkowski morphometry” (as
described by Michielsen and de Raedt15) to indicate that the
dewetting centers of organometallic clusters on silicon appear
to be nonrandom.16 Performing simulations and comparing
the final results using both statistical crystallography and
Minkowski morphometry can lead us to a better understand-
ing of what clues we can use to identify the formation
mechanisms of real systems.

Figure 1 shows three images from different experimental
systems. Panel (a) shows a dewetting pattern in organome-
tallic clusters on silicon. Statistical analysis of this structure
initially suggests that it could result from an ordered
formation mechanism.16 Both the Voronoi tessellation and
Minkowski functional grain growth analysis show a strong
deviation of the distribution of cell centers from a random
distribution. The entropy of the tessellation (defined asS)
-∑nPnlnPn, wherePn is the probability of a cell havingn
sides) is 1.38, compared to the expected value of 1.71 for a
Poisson distribution. Furthermore, the second moment about
the mean (or variance,µ2) of the number of cell sides is
lower than expected, at 1.03. A Poisson distribution is
associated with a variance of 1.78.

Many Au nanoparticle networks similar to those in panel
(b) have been examined in our group, and again, numerically
similar deviations from Poisson statistics have been high-
lighted using the Voronoi tessellation.3 Panel (c) shows a
section of a polystyrene (PS) dewetting pattern,11 which is
extremely similar to the structure in panel (a). The same
deviations from disorder are seen time and again across many
systems, and these are just a few examples. So are these
structures the result of some kind of universal ordering, or
could there be another explanation? The study of nanoparticle
simulations can provide new perspective on the topic.

The model used for our simulations is based on that of
Rabani et al.,4 whereby the solvent is represented as a two-
dimensional lattice gas, and fluctuations in solvent density
are controlled by the Metropolis algorithm.17 In brief, each
cell of a square lattice,i, may contain either liquid (l i ) 1),
vapor (l i ) 0), or nanoparticle (ni ) 1), and the presence of
a nanoparticle excludes the presence of solvent. A single
lattice site represents a square of side 1 nm (approximately
equal to the correlation length,ê, of the solvent), and the
particles are represented by squares of side 3 nm.

To perform the simulation, each solvent cell is examined
in turn, and an attempt is made to convert the cell from liquid

to vapor (or vice-versa) with an acceptance probabilitypacc

) min[1, exp(-∆H/kBT)], where∆H is the change in energy
that would result from such a conversion. This energy change
is calculated from the total energy of the system:

whereεl, εn, andεnl are the attraction strengths between two
adjacent sites that are occupied by solvent, nanoparticle, or
solvent and nanoparticle, respectively. The equilibrium state
of the solvent is defined byµ, the chemical potential, andT,
the temperature of the system. As observed in our experi-
ments, the final morphology of a pattern is controlled mainly
by the vapor pressure of the solvent, the particle concentra-
tion, and the particle mobility (resulting from particle-
substrate interactions). Other factors such as humidity were
not controlled during experiments and have not been included
in the simulations. Although our recent experiments suggest
that humidity may play a (secondary) role in nanoparticle
organization, the AFM data described here are reproducible
for a wide range of samples prepared under conditions of
different ambient humidity. (Note that recent light scattering
experiments18 carried out during spin coating of the solvent-
nanoparticle film indicate that the drying process takes of
order 1 s.)

Our simulations differ from those of Rabani et al., in that
not only nearest but also next-nearest neighbors are taken
into account when calculating the energy change associated
with a particular solvent transition. This modification was
necessary to compensate for anisotropy observed in the
heterogeneous limit of slow, nucleation-driven evaporation.
Without the inclusion of next-nearest neighbor interactions,
vapor “bubbles” tend to form as squares with their sides
aligned to the lattice. This is simply because a solvent cell
on a liquid-vapor interface that is diagonal (at 45° to the
square lattice) has two liquid nearest neighbors, rather than
three in the case of a horizontal or vertical interface. Hence
diagonal interfaces are less stable and tend to retreat rapidly
until they form the corner of a square. This is clearly an
unnatural state of affairs, as in reality the solvent is an
isotropic medium, which should result in vapor bubbles that
are approximately circular.

To implement this modification, the first and third terms
of eq 1 are calculated over eight neighbors, with the next-
nearest neighbors being given a weighting of 1/x2, as
opposed to unit weighting for the nearest neighbors. A re-
normalization factor is also introduced for these terms, so
that the same parameters can be used as in the nearest
neighbor model and the results compared directly. This was
manually determined to be 0.562 by matching the nucleation
rate in the heterogeneous regime.

As in the Rabani model, the nanoparticles perform a
random walk on the lattice, and are only able to move into
“wet” areas of the substrate. The effective particle mobility
is controlled by the number of times each particle is
examined in one solvent cycle. This ratio of particle steps
to solvent steps, the “mobility ratio” (MR), takes values
between 10 and 70 in our simulations.

Figure 1. Three AFM images from experiments, showing (a) area
of dewetted organometallic clusters, (b) Au nanoparticle networks
on silicon, and (c) a polystyrene (PS) layer spin-coated from solution
in toluene (from [11]). Panel (c), by P. Mu¨ller-Buschbaum, used
with permission. © 2003 IOP Publishing Ltd.

H ) -εl ∑
<ij>

l il j - εn∑
<ij>

ninj - εnl∑
<ij>

nilj - µ∑
il i

(1)

2390 Nano Lett., Vol. 4, No. 12, 2004



Figure 2 shows three frames from one of our simulations,
along with a radially averaged two-dimensional Fourier trans-
form of the final frame. It is apparent from panel (a) that
the nucleation sites are uncorrelated; the vapor bubbles are
clustered in some areas, and other areas have little or no
nucleation. This is not surprising, as the program dynamics
are entirely stochastic and do not take into account any inter-
actions beyond the next-nearest neighbors. In panel (b), we
can see the bubbles have expanded somewhat, and several
have collided with other bubbles, either leaving a thin wall of
particles, or in some cases almost completely merging to-
gether to leave only isolated particle groups. In the final
frame (c), the structure is foam-like and best described as a
cellular network. Qualitatively, this structure appears ordered,
much like many that have been observed in experiments,
and it is similar to Figure 1(b). More importantly, the two-di-
mensional Fourier transform (d) reveals the familiar ring which
is often cited as evidence for long-range ordering. This is
clearer from the radial average, which has a very distinct
peak.

As a more quantitative examination of the same pattern,
Figure 3(a) shows a Voronoi tessellation of the final structure,
along with Figure 3(b) a plot of the probability of finding a
cell with a given number of sides. This interestingly reveals
an entropy of 1.48, which is not quite as low as the
organostannoxane network but still significantly lower than
the Poisson value. In this instance, it is also worth noting
that the number of cells is considerably smaller than in the

sample used for the organostannoxane calculations, so the
error in this measure is larger.

Panels (c) and (d) of Figure 3 show another simulation
image, alongside the AFM image of the dewetting pattern
of organometallic clusters on silicon from Figure 1(a). When
compared, the two images appear to have very much in
common. Moreover, when Minkowski functional grain
growth analysis is applied to the simulation image, the
resulting plots are virtually indistinguishable from those
obtained from the experimental image. Figure 4(a-c) shows
these plots of the area (A), perimeter (U), and Euler
characteristic (ø) as a function of the normalized edge length
of square grains for both images. It is clear that the plots
follow each other very closely, as do the difference plots,
(d-f).

Tessellation analysis of the simulation image gives values
of variance and entropy that correspond to those of the
organostannoxane networks to within one decimal place (µ2

) 1.03 andS ) 1.41). Although the systems are different,
in that our simulation patterns result from evaporation and
the patterns in (d) result from dewetting, their morphology
is not only qualitatively similar but alsoquantitatiVely
indistinguishablewithin reasonable error margins.

Our simulations are completely stochastic. The patterns
produced are known to be the result of random nucleation
due to local thermal fluctuations, yet there still appears to be
some kind of ordering. Put together, this evidence points
strongly to one conclusion: deviation from Poisson statistics,
and the appearance of a well-defined correlation length, does

Figure 2. Results from the heterogeneous (nucleation) regime, with
kBT ) εl/4, εn ) 2εl, εnl ) 1.5εl, µ ) - 2.25εl, MR ) 30, and a
nanoparticle coverage of 20%, showing the early stages of pattern
formation in a 4008× 4008 pixel system after (a) 99 MC steps,
with a distribution of nucleation sites that is clearly uncorrelated,
(b) 199 MC steps, illustrating coalescence of neighboring nucleation
sites, and (c) 899 MC steps, the stable end result, which is best
described as a cellular network. Pane (d) shows a radially averaged
two-dimensional Fourier transform of (c), with a clear peak resulting
from the ring visible in the inset.

Figure 3. Statistical analysis showing (a) a Voronoi tessellation
of Figure 2(c) highlighting the cellular structure and (b) a graph
indicating the probability of a cell having a given number of sides
in the tessellation. Panel (c) shows another simulation image, this
time 3000× 3000,kBT ) εl/3, MR ) 50, and a coverage of 35%,
and panel (d) is an 8µm area of dewetted organostannoxane clusters
(from which 1(a) was taken), shown alongside panel (c) for ease
of comparison. The qualitative similarity between these two images
is striking.

Nano Lett., Vol. 4, No. 12, 2004 2391



not necessarily indicate an ordered formation mechanism. So
how do these deviations arise when the processes involved
are known to be entirely stochastic? Brinkmann et al. raised
the question of the origin of apparent ordering in Alq3 droplet
on H-terminated Si(100),14 and came to conclusions based
on droplet coalescence. Although the droplet system is almost
the inverse of those systems presented here, similar reasoning
may apply. Observing the progress of our simulations has
led us to propose the following suggestion for a possible
mechanism.

First, in a nucleation-driven dewetting or evaporation
scenario, it is understood that the system conditions (tem-
perature, volatility, or the balance of interfacial energies and
viscosity) will lead to a specific nucleation rate. That is to
say, there will be a certain number of nucleation events per
unit area per unit time. As vapor bubbles (or dewetting
centers) expand, there will be a smaller area available for
nucleation. Furthermore, the area remaining will be less likely
to host a nucleation event as the concentration of particles
(or the thickness of the film) will be proportionally greater.
As a result, the nucleation rate will drop off relatively rapidly
as the holes in the film expand. This means there is a limited
time window in which nucleation can occur. This reduces
the maximum possible size of a vapor bubble and also
narrows the overall hole size distribution.

Second, nucleation occurring close to the edge of an
existing vapor bubble, or the coincidence of several nucle-
ation events in the same region, will generally lead to a
coalescence event. The degree to which this coalescence
occurs will depend on the dynamics of the system; in a
system containing particles that are highly mobile (or a fluid
that has a low viscosity and a strong dislike for the substrate)
coalescence of holes is much more likely. An important point
to note however, is that the closer together two nucleation
events are (in both space and time), the more likely the
resulting holes are to coalesce. This will effectively “wipe
out” the clustering that is inherent in a Poisson distribu-
tion, even in a relatively immobile or viscous system.

These two points lead directly to the result that is seen so
often: a cellular structure, with a narrow distribution of cell
sizes, and a low degree of small-cell clustering. We cannot
say definitively that structures that display these character-
istics are not the result of spinodal processes, but it seems
clear that deviations from Poisson statistics do not provide
sufficient evidence for long-range ordering.

Supporting Information Available: Figure 1 regarding
the inclusion of next-nearest neighbors in simulations. This
material is available free of charge via the Internet at http://
pubs.acs.org.
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Figure 4. Minkowski functional grain growth analysis for the organostannoxane dewetting pattern (open circles) and the simulated nanoparticle
image of Figure 3(c) (triangles). Panels (a-c) show the plots of area, perimeter, and Euler characteristic respectively, with the expected
behavior for a Poisson distribution shown by the solid line. Panels (d-f) show the deviation from the Poisson lines in each case. It is clear
that not only do both patterns have a strong deviation from the Poisson distribution but they also follow each other quite closely.
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