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ABSTRACT
We present a new methodology, based on a combination of genetic algorithms and image morphometry, for matching the outcome of a Monte
Carlo simulation to experimental observations of a far-from-equilibrium nanosystem. The Monte Carlo model used simulates a colloidal solution
of nanoparticles drying on a solid substrate and has previously been shown to produce patterns very similar to those observed experimentally.
Our approach enables the broad parameter space associated with simulated nanoparticle self-organization to be searched effectively for a
given experimental target morphology.

Complex systems in chemistry, physics, biology, ecology,
economics, computer science, and beyond have often been
simulated using cellular automata1,2 and the closely related
lattice gas model technique.3 Both approaches are appealing
modeling paradigms not only because they allow for a piece-
meal specification of the laws that govern a given system’s
dynamics but also because they are intrinsically distributed
tools amenable to computational parallelization. However,
due to the complex nature of the processes that are simulated
with these methods, it is not always possible to analytically
derive specific values for the many model parameters that
control their time-space evolution. This problem gets more
insidious when the intention is for the simulation to quan-
titatively match observations made in the laboratory of ex-
periments where the underlying physics is not wholly under-
stood. Importantly, however, identifying regions of parameter
space which produce good agreement with experiment can
provide significant insight into the key physicochemical
processes underlying the self-organization of the system.

In this Letter we describe how the combination of a Monte
Carlo model4,5 with a genetic algorithm (GA)6 can be used
to tune the evolution of a simulated self-organizing nanoscale
system toward a predefined nonequilibrium morphology. The
prototype system we have chosensa colloidal solution of
Au nanoparticles adsorbed on a substratesnot only produces
a striking array of complex nonequilibrium patterns but has

previously been shown4,5 to be remarkably well-described
by a relatively simple Monte Carlo code. Image morphom-
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Figure 1. Three-dimensionally-rendered atomic force microscope
images showing four of the morphologies that are commonly
observed in our experiments. These are formed by spin-casting
solutions of∼2 nm diameter thiol-passivated gold nanoparticles
onto silicon substrates. With increasing solution concentration from
(a-d), we observe (a) isolated droplets, (b) “wormlike” domains,
(c) interconnected labyrinthine patterns, and (d) cellular networks.

NANO
LETTERS

2007
Vol. 7, No. 7
1985-1990

10.1021/nl070773m CCC: $37.00 © 2007 American Chemical Society
Published on Web 06/07/2007



etrysspecifically, Minkowski functional analysis7sis used
as the basis of the fitness function for the GA. Evolved
simulation parameters produce simulated nanoparticle pat-
terns which closely match the target images taken from
experimental data and replicate a number of morphological
families. Our results provide an important bridge between
simulation and experiment in the study of self-organizing
nanostructured systems and, moreover, bring us closer to the
concept of software control of matter.8

When deposited onto a solid substrate, colloidal nanopar-
ticles self-organize into a variety of complex patterns4,5,9-13

driven in many cases by the evaporative dewetting of the
solvent. The system of interest in this Letter, namely, Au
nanoparticles in toluene deposited onto a native oxide-
terminated Si(111) substrate, has been described at length
in a number of earlier papers5,10,13,14and here we therefore
include only a brief description of the patterns formed. Figure
1 shows a subset of the different morphologies obtained.
These depend on a number of factors including nanoparticle
concentration, the nature of the solvent and substrate (e.g.,

wettability), and the length of the thiol groups used to
passivate the gold particles. Understanding the physical
processes that govern the self-organization of patterns like
those shown in Figure 1 is an area of intense research where
the interplay of simulation and experiment plays a pivotal
role.

Our simulations5,15are based on a two-dimensional Monte
Carlo (Metropolis algorithm) model introduced by Rabani
et al.4 The solvent is represented as an array of cells on a
square grid, each of which represents 1 nm2, and can have
a value of either 1 or 0 to represent liquid or vapor,
respectively. Each gold nanoparticle occupies an area of 3
× 3 cells, and liquid is excluded from the sites where a
particle is present. The simulation proceeds by two pro-
cesses: the evaporation (and recondensation) of solvent and

Figure 2. Calculation of the 2D Minkowksi functionals that form
the basis of the fitness function in the genetic algorithm.7

Figure 3. Genetic algorithm details.

Figure 4. Evolved patterns using the Minkowski functional-based
fitness function. The left column shows the target, i.e., experi-
mental, images. The right column shows self-organized patterns
mimicking the experimental data. These patterns were evolved using
the evolutionary algorithm described in the main text. The table
shows the specific Minkowski values for the area (A), perimeter
(U), and Euler characteristic (ø) for both the experimental target
and evolved images as well as the discrepancy, i.e., % error,
between the two.
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the random walks of nanoparticles. The Metropolis algorithm
is governed by the following equations

wherepacceptrepresents the probability of acceptance of an
event,εl, εn, andεnl determine the liquid-liquid, nanopar-
ticle-nanoparticle, and nanoparticle-liquid interactions,
respectively, andµ is the chemical potential of the liquid,
which defines its equilibrium state.15 These parameters
determine the nature of the pattern formed as output.

In order to program the simulated self-organized patterns
to match as closely as possible those observed experimen-
tally, we couple the simulator to a genetic algorithm that
will tune these parameters. GAs are the mainstay of
evolutionary computation and one of the most powerful and
widely used methods in the optimization and machine-
learning toolbox. They are particularly suited to optimization
problems involving very large search spaces and/or complex
objective functions which are not amenable to traditional
numerical analysis. First proposed in the 1970s by John
Holland,16 GAs have earned great popularity both for their

conceptual simplicity and power, as exemplified in a great
many practical applications,17-22 and for their theoretical
foundations.23-25 A genetic algorithm maintains a set of
vectors, called a population of individuals, where each vector
represents a particular set of input parameters for the
simulator. Each vector is passed onto the simulator and the
resulting self-organized pattern compared against the ex-
perimental target, evaluated, and assigned a “fitness” value.
Fit individuals “breed” preferentially. Thus good traits
(parameters) present in specific vectors accumulate and, over
time, the average quality of the population increases.

In order to coerce the Monte Carlo simulator into produc-
ing a particular morphology, a method of measuring similar-
ity between self-organized patterns must be used. In this
paper we employ Minkowski functionals.7 These characterize
a binary pattern in terms of area, perimeter, and Euler
characteristic (a measure of connectivity) (see Figure 2). The
objective function that the GA is set to minimize is derived
by taking the root mean squared error (RMSE) between the
target Minkowski values and those derived from the evolved
patterns. Hence, the fitness of an individual can be seen as
the reciprocal of this RMSE value (as plotted in Figure 5).
As the simulation is intrinsically stochastic, each individual,
i.e., parameter vector, must be evaluated a number of times,
hence the use of mean errors. Also, as each Minkowski
functional can take values over widely different intervals,

Figure 5. Population dynamics of the genetic algorithm. Each experimental image was used as a target in ten independent runs of the GA.
Parts a-d show the average population fitness as a function of time (“generations”) of each run as well as the average evolution (dark line).
The table shows, for each experimental target, details of the fitness achieved by the winning individual in each of the ten runs.

Paccept) min(1, exp(-∆H
kBT )) (1)

H ) -εl ∑
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〈i〉

l i (2)
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we scale each functional to the [0,1] interval so as to give
each of them equal weighting within the fitness function.
The GA is initialized with a randomly generated population,

i.e., multiset, of vectors and we let the evolutionary process
take its course for a number of generations. A generic GA
pseudocode, along with parameters from our system, is
shown in Figure 3.

To test the methodology decribed above, we defined a set
of four patterns, each demonstrating different morphological
families, taken fromexperimental images(see Figure 4).
These four patterns were the “targets” that the GA needed
to reverse engineer by finding a suitable set of parameters
for the MC simulator. For any of the given targets, the GA
was run for 100 generations using a population of 20
individuals. Each individual comprised a candidate parameter
set for the MC simulator. On each target pattern we run the
GA ten times.

In every case, the simulator was run for 1000 Monte Carlo
cycles. Figure 4 shows representative results from the GA
runs that are characterized by the striking similarity to their
respective targets; the results for the island and labyrinth
targets are particularly good and taking into account that both
the experimental and simulated patterns arise from a
stochastic process (i.e., for a given parameter set two distinct
runs will produce similar yet not identical behaviors) the cell
and worm patterns are also remarkably close to their
experimental objective.

As shown in the evolution graphs and the statistics shown
in Figure 5, each run followed a similar evolutionary
trajectory. A good (i.e., visually acceptable) result was

Figure 6. A partial depiction of the logarithmic cluster tree for
the 256-piece dataset.

Figure 7. Table illustrating the size of the different morphological families found in the dataset. Families containing a larger number of
representative patterns are deemed more designable as it is easier for the GA to find a parameter set realizing the pattern.
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obtained in each of the ten runs performed for each target,
despite the often large standard deviations. Indeed, even for
the “worst” runs, although the numerical fitness is substan-
tially lower than average, the result was still visually
acceptable (though not as convincing, of course, as the
pattern evolved in the “best” run). This surprising feature
can be best explained by performing a detailed analysis of
the fitness function as we recently proposed in ref 20.

We defined a dataset comprising 256 sample images
representing a cross section of the entire range of simulation
parameters. Clustering this dataset using the Minkowksi-
based fitness function taken as a similarity measure results
in a hierarchical tree that organizes simulation results based
on their topological distances. Figure 6 shows the tree we
obtain for our dataset. Note how each of the main clusters
represents a particular type of morphology. There are some
clusters that look visually very similar, yet are quite far apart
in the tree; this draws attention to the fact that the Minkowski
functionals are often more sensitive than human vision, i.e.,
two images that look similiar can have quite different
Minkowksi values. This result provides an explanation for
the observation made above that even for results with a
numerical fitness substantially lower than average, the result
was still visually acceptable.

Particularly interesting to note is that the cluster analysis
shows that the search space can be partitioned into a number
of “families” of morphological likeness. A simple manual
(visual) classification of these into morphological families
in Figure 7 shows the relative size of each class. We note
that in general, those targets scoring higher fitness tend to
be members of the larger families, that is, these patterns are
moredesignable.27 This supports the observation from our
results above that the evolution of, e.g., the “island” target,
achieved much higher fitnesses than the other three targets,
while the “cell” target produced relatively low values.
Interestingly, it has been argued that designability plays a
key role in the evolution of proteins.28,29An analogy can be
made: as is the case for proteins where a complex sequence
f structuref function mapping exists and is molded by
natural selection, the self-organized nanostructures studied
in this paper also present a similar mapping albeit “imple-
mented” in a different way. That is, the nanosystems studied
here can be thought as obeying the following mapping
sequence: experimental conditions/MC parametersf struc-
ture: self-organized patternf function. We argue that future
implementations of intelligent self-organized surfaces could
use a process of artificial selection such as that presented in
this paper in order to evolve toward targetfunction, rather
thanstructureas done in this paper, if the desired functions
were to be embodied in the more designable structures.

This work has presented evolutionary computation as a
method for designing target morphologies of self-organizing
nanostructured systems. We have used Minkowski function-
als to direct the evolution in search of simulated patterns
that closely mimic those observed experimentally. The
simulation is also able to produce a number of patterns that
are more uncommon in experiments, such as branched
structures reminiscent of viscous fingering.30-32 The obvious,

albeit extremely challenging, next step is to couple the GA
directly to an experiment rather than a simulator, in a fashion
similar to the research currently being explored by the
CHELLnet project.33

Acknowledgment. The authors gratefully acknowledge
the support of Marie Curie Actions through their funding of
Grant MRTN-CT-2004005728 and the EPSRC through the
funding of Grants EP/D021847/1 and EP/E017215/1. C.P.M.
was supported by an EPSRC DTA award.

References

(1) Toffoli, T.; Margolus, N. Cellular automata machines - a new
enVironment for modelling; MIT Press: Cambridge, MA, 1987.

(2) Chopard, B.; Droz, M.Cellular automata modeling of physical
systems; Cambrige University Press: Cambridge, 1998.

(3) Santa Fe studies in the science of Complexity; Dooler, G., Ed.;
Addison Wesley Longman Publishers: Reading, MA, 1990.

(4) Rabani, E.; Reichman, D. R.; Geissler, P. L.; Brus, L. E.Nature
2003, 426, 271-274.

(5) Martin, C. P.; Blunt, M. O.; Moriarty, P.Nano Lett.2004, 4, 2389-
2392.

(6) Goldberg, D. E.Genetic Algorithms in Search, Optimization and
Machine Learning; Addison-Wesley Longman Publishing Co., Inc.:
Boston, MA, 1989.

(7) Michielsen, K.; de Raedt, H.Phys. Rep. 347, 2001, 461-538.
(8) Pollack, J. B.; Lipson, H.; Ficici, S.; Funes, P.; Hornby, G.; Watson,

R. In EVolVable Systems: from biology to hardware; proceedings
of the third international conference (ICES 2000); Miller, J., et al.,
Eds.; Lecture Notes in Computer Science; Springer: Berlin, 2000;
pp 175-186.

(9) Ge, G.; Brus, L.J. Phys. Chem. B2000, 104, 9573-9575.
(10) Moriarty, P.; Taylor, M. D. R.; Brust, M.Phys. ReV. Lett. 2002, 89,

248-303.
(11) Narayanan, S.; Wang, J.; Lin, X.-M.Phys. ReV. Lett. 2004, 93,

135503.
(12) Bigioni, T. P.; Lin, X.-M.; Nguyen, T. T.; Corwin, E. I.; Witten, T.

A.; Jaeger, H. M.Nat. Mater.2006, 5, 265.
(13) Blunt, M. O.; Martin, C. P.; Ahola-Tuomi, M.; Pauliac-Vaujour, E.;

Sharp, P.; Nativo, P.; Brust, M.; Moriarty, P. J.Nat. Nanotechnol.
2007, 2, 167.

(14) Blunt, M. O.; Suvakov, M.; Pulizzi, F.; Martin, C. P.; Pauliac-Vaujour,
E.; Stannard, A.; Rushforth, A. W.; Tadic, B.; Moriarty, P. J.Nano
Lett. 2007, 7, 855.

(15) Martin, C. P.; Blunt, M. O.; Pauliac-Vaujour, E.; Vancea, I.; Thiele,
U.; Moriarty, P. Unpublished. We have recently found that by using
a simple modification to the chemical potential term in eq 2, it is
possible to simulate classes of patterns observed experimentally but
not reproduced by the standard Rabani et al. algorithm. Here we use
only the original Rabani et al. algorithm4 modified as described by
Martin et al.5 to include next-nearest-neighbor interactions.

(16) Holland, J. H.Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and
Artificial Intelligence; University of Michigan Press: Ann Arbor,
MI, 1975.

(17) Miller, J. F.; Job, D.; Vassilev, V. K. Principles in the Evolutionary
Design of Digital Circuits, Part I.Journal of Genetic Programming
and EVolVable Machines2000, 1 (1), 8-35. Miller, J. F.; Job, D.;
Vassilev, V. K. Principles in the Evolutionary Design of Digital
Circuits, Part II.Journal of Genetic Programming and EVolVable
Machines2000, 3 (2), 259-288.

(18) Thompson. InProceedings of the First International Conference on
EVolVable Systems, 1996.

(19) Mitchell, M.; Crutchfield, J.; Das, R. InProceedings of the First
International Conference on EVolutionary Computation and its
Applications, 1996.

(20) Krasnogor, N.; Siepmann, P.; Terrazas, G. InProceedings of the
SeVenth International Conference of AdaptiVe Computing in Design
and Manufacture, 2006.

(21) Kruska, J. B.Proceedings of the American Mathematical Society,
1956; Vol. 7 (1), pp 48-50.

(22) Horn, J. InProceedings of IEEE Congress on EVolutionary Computa-
tion, 2005; Vol. 2, pp 1800-1807.

(23) Shapiro, J. L.Theoretical Aspects of EVolutionary Computing;
Springer: Berlin, 2001; pp 87-108.

Nano Lett., Vol. 7, No. 7, 2007 1989



(24) Poli, R.; McPhee, N. F.; Rowe, J. E.Genetic Programming and
EVolVable Machines, 2004, 5 (1), 31-70.

(25) Krasnogor, N.; Smith, J. E.J. Mathematical Modelling Algorithms,
in press.

(26) Lozano, M.; Herrera, F.; Krasnogor, N.; Molina, D.EVol. Comput.
J. 2004, 12 (3), 273-302.

(27) Hogg, T.Nanotechnology1999, 10 (3), 300-307(8).
(28) Li, H.; Helling, R.; Tang, C.; Wingreen, N.Science1996, 273(5275),

666-669.
(29) Wong, P.; Frishman, D.PLoS Comput. Biol.2006, 2 (5), e40.

(30) Yosef, G.; Rabani, E.J. Phys. Chem B2006, 110, 20965-20972.
(31) Hele-Shaw, H. S.Nature1898, 58.
(32) Pauliac-Vaujour, E.; et al. in preparation.
(33) Cronin, L.; Krasnogor, N.; Davis, B. G.; Alexander, C.; Robertson,

N.; Steinke, J. H. G.; Schroeder, S. L. M.; Khlobystov, A. N.; Cooper,
G.; Gardner, P.; Siepmann, P. A.; Whitaker, B. J.; Marsh, D.Nat.
Biotechnol.October2006, 24 (10).

NL070773M

1990 Nano Lett., Vol. 7, No. 7, 2007


