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The assembly of molecular networks into structures such as random tilings and glasses has recently been
demonstrated for a number of two-dimensional systems. These structures are dynamically arrested on experi-
mental time scales, so the critical regime in their formation is that of initial growth. Here, we identify a
transition from energetic to entropic stabilization in the nucleation and growth of a molecular rhombus tiling.
Calculations based on a lattice-gas model show that clustering of topological defects and the formation of
faceted boundaries followed by a slow relaxation to equilibrium occur under conditions of energetic stabiliza-
tion. We also identify an entropically stabilized regime in which the system grows directly into an equilibrium
configuration without the need for further relaxation. Our results provide a methodology for identifying equi-
librium and nonequilibrium randomness in the growth of molecular tilings, and we demonstrate that equilib-
rium spatial statistics are compatible with exponentially slow dynamical behavior.
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I. INTRODUCTION

The properties of two-dimensional supramolecular net-
works have been the focus of growing interest in recent years
with most efforts directed toward the controlled introduction
of translational order into such systems �1,2�. However, there
have been several recent observations of surface-bound su-
pramolecular arrays which assemble into dynamically ar-
rested structures akin to glasses �3–5� which lack transla-
tional order. Such arrangements raise many interesting
questions related to the growth of random systems �6,7�. In
particular it is important to distinguish randomizing effects
which arise from kinetic effects, such as nucleation �8,9�,
from equilibrium disorder due to entropic terms in the free
energy. Entropically stabilized disorder may be regarded as
intrinsic randomness, whereas kinetically driven disorder is
often determined by sample history and preparative condi-
tions. In one recent study �3� a random molecular rhombus
tiling was shown to have equilibrium �maximum-entropy�
spatial correlations, despite being frozen on an experimental
time scale. In such a system the maximum-entropy configu-
ration must form, and be frozen in, during the initial growth,
since the spatiotemporal fluctuations which normally facili-
tate the evolution of kinetically trapped configurations to
equilibrium are absent. However, it is not clear a priori that
there is a set of local rules for molecular attachment which
can lead to the direct growth of a “perfect,” i.e., maximum
entropy, configuration.

In this paper we address this question and show that equi-
librium and nonequilibrium effects in the growth of a rhom-
bus tiling �10–19� may be distinguished using tile-tile corre-
lations of arrays simulated using a lattice-gas model �20�.
Direct growth to a configuration with equilibrium statistics
occurs when entropic terms dominate the free energy, while
nonequilibrium effects result in faceted islands and cluster-
ing of topological defects.

II. MODEL

The parameters which control growth are the tile-tile in-
teraction energy �, the tile adsorption energy �, and the tem-

perature T. We consider �see Fig. 1�a�� a triangular lattice
with sites, labeled i, that are either occupied by half a tile or
vacant. Each rhombus tile occupies two adjacent sites and
lies in one of three orientations �distinguished by different
colors�. For molecules deposited from solution �3� � corre-
sponds to the difference between the net adsorption and sol-

FIG. 1. �Color online� Schematic of �a� lattice and tiles; �b�
defect diffusion mediated by tile detachment and reattachment; �c�
annihilation of a defect pair �left to right� or generation of defect
pair �right to left�. �d� The fraction of empty sites as a function of
time �in units of Monte Carlo sweeps� �kBT=0.3 and lattice size
N=106�. �e� Dependence of cg, ceq, and �c �defined in text and in
�d�� on �.
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vation energies of the molecule ���0 implies a preference
for solvation�. The binding energy per tile for a completely
tiled surface is Ebind=−�2�−��.

Using a Metropolis algorithm �21�, sites are chosen ran-
domly and, if empty, a tile is added with probability e−�E/kBT

for �E�0 and with unit probability for �E�0, where �E is
the associated change in energy. If the site is occupied, tile
removal is accepted with probability e−�E/kBT /3. The factor
of 1/3 ensures that detailed balance is satisfied. The energy
required to remove a tile with p nearest neighbors is
Erem= �p�−��, which, for ��0, may be either positive or
negative depending on the local environment. One Monte
Carlo sweep �MCS� corresponds to the random inspection of
3N sites of the �rhomboid� lattice �N is the maximum number
of adsorbed tiles� and sets the unit of time. Periodic bound-
ary conditions are used and all energies are henceforth ex-
pressed in units of �. This is a generalization, through the
introduction of the parameter �, of a model previously used
to show that rhombus tilings are glassy �20�.

As the time increases, the fraction of empty lattice sites,
c�t�, reduces from 1 �empty lattice� and eventually relaxes to
an equilibrium phase at a �-dependent constant value of c�t�,
ceq. In the initial growth phase c�t� falls until an abrupt
change in gradient occurs; we parametrize the value of c�t�
as cg �see Fig. 1�d� where the values for cg and ceq are iden-
tified for the �=1.7 curve�. At this point, to a good approxi-
mation, there are no more available vacancies �neighboring
pairs of unfilled triangles� which could directly accommo-
date a tile. However, the lattice is not completely tiled and
triangular void defects are also present. These are topological
defects with two effective charges corresponding to triangles
pointing up and pointing down �14,22,23�. Further relaxation
is mediated by defect diffusion and annihilation �neighboring
defects of opposite effective charges form a vacancy which
may be occupied by a tile—see Fig. 1�c�� �20�. Since defect
diffusion is an activated process �barrier 3−�� there is a
slowing down which gives rise to the clear change in gradi-
ent discussed above. In the equilibrium regime there is a
dynamic balance between the generation of triangular defect

pairs �from the removal of tiles� and their diffusion and an-
nihilation �20�. Finally, we introduce a parameter,
�c�=cg−ceq�, to quantify the difference between the defect
densities in equilibrium and immediately after the initial
growth phase.

III. RESULTS

The dependence of the parameters cg, ceq, and �c on � is
shown in Fig. 1�e� over the parameter range 1.7���2.1.
As expected, ceq increases with increasing � since the energy
barrier for tile detachment is reduced. Interestingly, in the
range ��2 the binding energy Ebind�0, and no tiling would
be expected for an ordered system. However, random tilings
do grow in this regime; the variation of c�t� for �=2 is
shown in Fig. 1�d�, and values for cg, ceq, and �c extracted in
the regime where Ebind�0 ��2.1���2� are shown in Fig.
1�e�. We show below that in this regime entropic contribu-
tions lead to a free energy F given by �NEbind−TS�, where S
is the entropy, which can be negative, favoring a tiling, even
when Ebind�0 �Joseph et al. �24� made similar arguments in
the context of entropically stabilized quasicrystals �13,25��.
Furthermore, in this entropically stabilized regime, �c→0,
implying—as confirmed below—that the initial growth
phase leads directly to an equilibrium regime.

We now consider the differences in nucleation, morphol-
ogy, and tile statistics in the energetically stabilized ���2�
and entropically stabilized ���2� regimes, focusing first on
low values of �. In Fig. 2 we show islands which have been
nucleated and are growing in the initial growth regime. For
0���1, Erem, the barrier for tile removal, is positive even
for p=1, indicating that any nucleated island formed by two
neighboring tiles is stable �note that for ��0 even isolated
tiles are stable nuclei�. Accordingly, the simulated growth in
this regime �Fig. 2�a�� shows a large number of small irregu-
lar islands of tiles. This is an essentially homogeneous
growth regime: very quickly the islands merge forming an
imperfect tiling of the plane.

FIG. 2. �Color online� �a�–�c� Simulated
growth of tilings for varying � with kBT=0.2: �a�
�=0.5, high nucleation density, and irregular is-
lands �c�t�=0.7�; �b� �=1.5, reduced nucleation
density, and facetted islands �c�t�=0.7�; �c�
�=1.8, example of an inhomogeneous tile distri-
bution within strongly facetted island; �d� sche-
matic of growth along a straight interface for
1���2.
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For 1���2 we have heterogeneous growth; as � in-
creases, islands become larger and their number decreases.
Furthermore, the islands that form are faceted and hexagonal
�see Fig. 2�b�� with a clear deficit of tiles in one of the three
possible orientations �colors� in each of the six triangular
segments of the island �see Fig. 2�c��. The faceting occurs
since the smallest energetically stable nucleus requires a
minimum of three tiles in a hexagonal configuration. Out-
ward growth results in the �approximate� propagation of the
hexagonal shape since growth along an edge favors the ad-
dition of a row formed by one of the two tile orientations
with an edge parallel to the island boundary. For example, in
Fig. 2�d�, rows of blue �top-left to bottom-right long axis�
and/or red �bottom-left to top-right long axis� tiles grow, and
where they meet an upward- or downward-pointing triangu-
lar defect is formed. The downward defect is trapped, but the
upward defect may be occupied by a green �vertical long
axis� tile, leading to an excess of defects of one effective
charge �downward pointing in this case� in each segment.
Inspection of the hexagonal island in Fig. 2�c� shows rows of
tiles of two colors with either defects or a tile of the third
color where they meet, consistent with this simple explana-
tion. Thus, the faceting is due to minimization of the bound-
ary energy, but also results in clustering of defects with the
same effective charge. A local imbalance of tiles gives rise to
an increase in entropic free energy and is not expected for an
equilibrium configuration. We note the interesting similarity
between the growth of energetically favored hexagonal til-
ings observed here and the “arctic circle” problem in rhom-
bus tilings subject to hexagonal confining boundaries
�15,16�.

As growth in this regime continues the islands merge
while maintaining, approximately, the primordial structure
introduced in the nucleation stage. An example is shown in
Fig. 3�a� which shows the tiling that is formed immediately
after all the growing islands merge. Defects in this tiling are
not distributed uniformly as in equilibrium �19�. Figure 3�b�
shows the topological charge density for the tiling of Fig.
3�a�. Defect clustering is evident in the large variations in
topological charge. The original nucleation sites within the
tiling can be identified as singular points in this defect den-
sity �Fig. 3�b��, which confirms the spatial correlation of de-
fect clustering and nucleation sites. Further temporal evolu-
tion governed by defect diffusion and annihilation �20� leads
to equilibration of the tiling �see Fig. 3�c�� when c�t� reaches
its equilibrium value �see Fig. 3�d��.

The tilings are analyzed using a lifting dimension �13,26�
in which an effective height h�r�� is assigned to each vertex
�with in-plane coordinates r�� in the tiling. The height is cal-
culated using the scheme shown in the Fig. 3�e� inset in
which a displacement along a rhombus edge leads to a
change in height of �1. The height correlation function
C�r�= ��h�0�−h�r��2� can be calculated, and for a maximally
random tiling, C�r�= �	K0�−1ln�r�+c has a logarithmic de-
pendence on position, where c is a constant and K0=	 /9
�13�. Figure 3�e� shows the correlation functions during the
simulated growth of the tilings in Figs. 3�a� and 3�c�. For the
tiling in Fig. 3�a� the correlation function is not logarithmic.
For increasing times the correlation functions approach a lin-
ear dependence on ln�r�, with the expected gradient 9 /	2,
confirming that the final configuration �Fig. 3�c�� is equili-
brated. This supports the hypothesis that a logarithmic de-

FIG. 3. �Color online� �a� An inhomogeneous tiling resulting from strongly faceted growth of multiple islands, kBT=0.2, �=1.8, and
N=1.6
105 ��4
104 tiles shown�. �b� Clustering of topological charge shown in a charge density map. The value at a point corresponds
to the number of upward-pointing minus downward-pointing defects within a range of three times the average defect separation. �c� The
tiling after relaxing to an entropically maximized equilibrium state ��4
104 tiles shown�, �d� the corresponding c�t� behavior, and �e�
height correlation functions during relaxation, indicating convergence to maximum randomness �top line: 103 MCSs; second top line: 104

MCSs; middle line: 105 MCSs; second bottom line: 106 MCSs; bottom line: 107 MCSs�.
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pendence is associated with an equilibrium configuration
rather than kinetically controlled randomness, but the expo-
nentially slow approach to equilibrium cannot account for
tilings which are both dynamically arrested and maximum
entropy.

For ��2 nucleated islands do not show faceting or inho-
mogeneities �Fig. 4�a�, inset�, and our simulations show di-
rect growth into a maximum-entropy configuration. In Fig.
4�a� we plot correlation functions for tilings immediately af-
ter the initial growth regime is completed �determined by the
change in gradient in c�t�� and find an approach to a loga-
rithmic dependence on r as � increases. Note from Fig. 1�e�
that �c→0 for ��2, and these results confirm that this
simple parameter provides a reliable indicator for a regime of
direct growth into an equilibrium configuration without the
requirement for defect-mediated relaxation.

To confirm that tilings for ��2 are entropically stabilized
we need to establish the equilibrium phase boundary ��T�
between the tiled and empty phases. We establish this by
investigating whether an interface between an equilibrated
tiling and an empty lattice recedes �no growth� or propagates

�growth� �21�. The value of � where this transition occurs is
plotted against temperature in Fig. 4�b�. As discussed above,
for an ordered system no growth is expected for ��2, but
the free energy may be negative when Ebind�0, if
Stile�Ebind /T, where Stile is the entropy per tile, or
��2+TStile. Our simulations �Fig. 4�b�� give Stile=0.32kB in
excellent agreement with the ideal value for the rhombus
tiling entropy density of 0.323 066kB �13,27�.

IV. CONCLUSIONS

These results are highly relevant to recent experiments
�3�. We propose that, in both the energetically and entropi-
cally stabilized regimes, growth proceeds through the initial
regime to the point identified in Fig. 1 where there is a slow-
ing down of the evolution of the tiling. Further evolution is
determined by the barrier to defect propagation, �3−��. If
this is small compared with kBT, equilibration can occur
through defect propagation. However, for many molecular
systems the barrier is at least an order of magnitude greater
than the thermal energy, and the configuration is therefore
dynamically arrested with spatial statistics which are frozen
immediately after the initial tiling of the surface. A broad
range of possible spatial distributions can occur, including,
for ��2, the recently observed maximum-entropy arrange-
ment �3�. However, for lower values of � a configuration
with a frozen-in nonequilibrium spatial distribution of tiles
�comparable to Fig. 3�a�� might be attainable in experiments.

The phase behavior observed in these simulations is sum-
marized in Fig. 4�c� and invites analogy with magnetic Ising
systems since the total energy of a partially tiled surface is
given by

E = −
�

2�
i=1

2N

ni	�
j=1

3

nj − 1
 +
�

2 �
i=1

2N

ni, �1�

where ni=1 �0� for an occupied �unoccupied� site �for a re-
lated example of the application of the lattice-gas model to
adsorbed molecular layers, see Ref. �28��. The index i runs
over all triangular sites and j runs over the three nearest
neighbors of site i. The tile-tile interaction � is analogous to
the spin-spin coupling, normally denoted by J, � is analo-
gous to magnetic field, and ni to spin state. In Fig. 4�c� a
boundary at �=2 shows the threshold above which the inter-
nal energy is positive. However for T�Tc�� /kB there is an
entropically stabilized regime for the random rhombus tiling
�shaded region in Fig. 4�c��. This phase boundary can be
determined in our simulations up to kBT�0.5, which we
identify as an approximate critical temperature for this tran-
sition. The deposition of a molecular layer is thus equivalent
to a quench from high � �analog magnetic field�. The growth
dynamics after such a quench allows an investigation of this
phase diagram for systems where dynamics are slow.

Our results show that equilibrium and nonequilibrium
randomization may be distinguished for the rhombus tiling.
Moreover, we have shown that equilibrium spatial statistics
may occur even for dynamically arrested systems, although
other outcomes such as faceting and defect clustering are
also possible. These results have general relevance for mo-

FIG. 4. �Color online� �a� Height correlation functions calcu-
lated for tilings immediately after the initial growth stage �where
c�t�=cg� at kBT=0.3 with varying � �top line: �=1.90; second top
line: �=2.00; middle line: �=2.02; second bottom line: �=2.04;
bottom line: �=2.05�. �b� Calculations of stationary interfaces
marking the tiled-untiled phase equilibrium. �c� Illustrative repre-
sentation of the �-T parameter space, indicating the region where
tilings are entropically stabilized.
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lecular layers adsorbed at a liquid-solid interface where it has
previously been assumed, correctly in many cases, that a
dynamic equilibrium is established with molecules continu-
ally exchanging between solvated and adsorbed states �see
�29�, for example�. Our results show that such an exchange is
not required for the formation of maximum-entropy arrange-
ments. There are also interesting links between entropically
stabilized growth and several other problems in biophysics
and condensed-matter physics, such as the crystallization of
anisotropic particles �30�. Furthermore, molecular rhombus
tiles provide a new system to explore, both experimentally

and theoretically, equilibrium and nonequilibrium behavior
in connection with “Coulomb” and other exotic phases
which can exhibit fractional excitations �26�, such as frus-
trated magnets with effective magnetic monopoles �31�, qua-
sicrystals �7�, and glasses �6,32�.
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