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A method is presented for acquiring high-spatial-resolu-
tion spectral maps, in particular for Raman micro-spec-
troscopy (RMS), by selectively sampling the spatial fea-
tures of interest and interpolating the results. This
method achieves up to 30 times reduction in the sam-
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od are not limited to tissue imaging however; it is ex-
pected that the method may be applied to other techni-
ques which employ point-by-point mapping of large

A skin tissue section scanned over 10 x faster than full
raster scanning.

substrates.
1. Introduction ser spot (or laser spot across the sample) can make
the mapping process very slow, in particular for
Raman micro-spectroscopy (RMS) is a well-estab- weakly-scattering samples such as tissue sections [1],
lished technique used to study molecular properties for which the signal-to-noise ratio is very low. While
of samples with spatial resolution on the order of mi- photodiode arrays are commonly used in dispersive

crometers. A key feature of RMS is that chemical spectrographs to capture the entire spectrum simul-
components of the sample can be mapped without taneously, the required integration times are still of-

requiring sample preparation or other contrast-en- ten on the order of seconds. With such acquisition
hancing procedures. However, the conventional ap- time required per pixel means that to scan even a
proach of raster-scanning the sample through the la- modestly-sized image (e.g. 1 x 1 mm at 96 x 96 pix-
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els) can take several hours or even days. One appli-
cation in which fast spectral mapping of large sam-
ples is necessary is the intra-operative imaging of tu-
mour margins. Single-point in-situ measurement
based on a handheld Raman probe has already been
successfully used for the diagnosis of breast tumours
[2]. While numerous studies have also demonstrated
the ability of RMS combined with multivariate spec-
tral analysis to provide simultaneous imaging and
quantitative diagnosis of tumours in large tissue spe-
cimens excised during cancer surgery [3-5], the im-
plementation of intra-operative RMS has not been
achieved yet mainly due to the long imaging times.

Techniques such as Stimulated Raman Scattering
(SRS) [6] and Coherent Anti-Stokes Raman Scatter-
ing (CARS) [7] permit significantly shorter exposure
times than conventional Raman scattering. In situa-
tions where the intensity at a particular wavenumber
can be used as an effective contrast mechanism, then
CARS, SRS or Raman imaging using avalanche
photodiodes [8] can be effectively employed. How-
ever, these techniques require very complex and ex-
pensive instruments, can suffer from issues with non-
resonant background [9], and have not, to date, de-
monstrated that they can be used with multivariate
statistical techniques, such as linear discriminant ana-
lysis, that are necessary for the distinction of subtle
changes within the fingerprint region. These issues
limit quantitative analysis of the spectrum compared
to conventional RMS, which, combined with linear
or non-linear multivariate spectral analysis is capable
of objective diagnosis of tissue samples with sensitiv-
ity and specificity greater than 95% for a large num-
ber of tissue types [10]. Similar limitations are found
in of wide-field Raman microscopy when baseline
variations often obscure the small differences in the
Raman bands used for discrimination between dif-
ferent biomolecules [11]. Raman spectral imaging
based on line-mapping [12] can considerably de-
crease the imaging time, up to a factor equal to the
number of simultaneously-measured sampling points,
provided the laser power used for single-point map-
ping can be maintained over the whole line. Recent
studies have demonstrated that an increase of a fac-
tor of 10 can realistically be achieved for imaging tis-
sues, compared to point-by-point scanning [13]. This
factor is still too low for intra-operative use how-
ever.

There are many situations where properties of
the sample can be exploited to speed up imaging.
Hadamard Raman microscopy [14] can speed up the
imaging process by sampling the surface in a differ-
ent, more efficient manner. The technique can im-
prove the signal to noise ratio by sampling from all
points in an image simultaneously, in a manner ana-
logous to Fourier transform spectroscopy, although
this advantage is only present if the limiting factor is
the amount of power that can by withstood by the

sample. As a result, total sample times are reduced,
as longer exposure times are not necessary to
achieve a high signal-to-noise ratio.

In the sampling methods proposed in this paper,
the next sample point is selected as the location with
the maximum absolute difference between a cubic
spline interpolant and a Kriging interpolant. Cubic
splines are piecewise-defined polynomial functions
which are the smoothest possible functions that in-
terpolate a given dataset; further details on their
properties, construction and the definition of
‘smoothness’ can be found elsewhere [15]. Kriging
also generates an interpolating surface, but rather
than maximizing smoothness, it minimizes the var-
iance in the prediction error [16]. In regions with
few spatial features, the two interpolants should con-
verge on the same result. However, in regions with a
higher level of variation, the difference between the
two interpolants provides an indication of the opti-
mal point to measure next; the algorithm samples re-
gions of uncertainty with high resolution, at the ex-
pense of regions containing relatively few spatial
features. In certain cases, this algorithm may miss
certain small features, by a combination of chance
and the local environment being relatively uniform;
in these cases large numbers of points will need to
be measured to ensure that the surface is accurately
reproduced, and in the ultimate limit, all the points
that would have been taken in a raster image will
have to be measured. While Reuter et al. [17] used
Kriging with a laser fluorometer to map oil spills, ca-
librating the fluorometer using Raman scattering, to
the authors’ knowledge there are no examples in the
scientific literature of selective sampling with mini-
mal a priori information being used with Raman
mapping. It should be noted that this technique is
not limited to Raman imaging of tissue samples
though, and is expected to generalize readily to
other point-by-point mapping techniques.

2. Description of the algorithm

The proposed algorithm is outlined in Figure 1. The
basis for the algorithm is that if two different techni-
ques are used to fit an interpolating surface to a da-
taset, the interpolants will agree in regions where
there are few spatial features and deviate more in
regions with more features. This approach gives a
means by which the algorithm can automatically ad-
just the sampling density based on the presence of
observable spatial features. In this paper the two in-
terpolants are Kriging and a thin-plate spline. It is
necessary to perform a data reduction step to obtain
a single interpolatable value from the spectrum at
each point. For this paper, linear models were
deemed sufficient; the spectrum at each point is pro-
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Figure 1 Flowchart illustrating the sampling algorithm.

jected onto a model and the resulting score is inter-
polated. Depending on the application though, other
non-linear models may be equally, if not more ap-
plicable. Fitting a thin-plate spline and a Kriging sur-
face can become computationally intensive as the
number of measured samples and the number of
possible sampling points grows larger. In tests using
a 3 GHz Intel Core 2 Duo ES8400 processor with
2 GB of DDR2 memory, it took approximately 5 sec-
onds to complete the calculation for 750 measured
data points on a 96 x 96 image. This can lead to con-
siderable wasted time where the imaging system
could be taking a measurement but instead must
wait for the calculations to complete. The authors
propose two solutions to this problem. The first is to
exploit data parallelism by evaluating the Kriging
surface and thin-plate spline on multiple CPU cores
or a graphics processing unit (GPU). Since the eva-
luation of the Kriging surface is the largest contribu-
tor to the total calculation time, and since the inter-
polant for each remaining point can be calculated
independently, the task is expected to scale well. In-
deed, almost linear time reduction for this particular

part of the calculation can be expected, as the time
for data transfer will be negligible. The use of a
GPU to accelerate this task is expected to be parti-
cularly cost-effective. The other solution to this pro-
blem is to sample at the point furthest from all other
points that have already been measured (a ‘scatter’
point) while the interpolant calculations are ongoing,
so as to maximise the use of the microscope. This
process is sped up by exploiting a kd-tree [18, 19].
Sometimes it is desirable to intentionally sample
scatter points to avoid focusing too heavily on local
features. The probability of the point being ‘scat-
tered’ rather than sampled using the interpolants is
termed the scatter probability. The authors’ experi-
ence has shown that a scatter probability of around
0.5 appears suitable for many different samples.

3. Experimental methods

Raman maps were captured using a custom-built mi-
croscope setup consisting of a microscope (Eclipse-
Ti, Nikon) and automated sample stage (H107 con-
trolled by Proscan II controller, Prior Scientific).
The laser (Starbright XM, Torsana) had a wave-
length of 785 nm and an output power of up to
500 mW. The microscope objective was either a Ni-
kon 50 x E Plan with a numerical aperture of 0.75 or
Leica 50 x N Plan with a numerical aperture of 0.55,
depending on the need for a longer working dis-
tance. Raman light was dispersed using a spectro-
graph (77200, Oriel) onto a CCD (DU401-A-BR-
DD, Andor Technology). Control software was writ-
ten in-house using LabVIEW 8.5 and Matlab
R2009a. The laser was not interrupted or shuttered
during translation of the sample. All calculations
were performed in Matlab R2009a, and all param-
eters were set to their respective defaults unless
stated otherwise. Kriging was performed using the
DACE toolbox [20] which was modified to permit
the definition of a ‘nugget’ [21]. The Kriging param-
eters were set using the recommendations of the
accompanying user manual; the fitting function was
a Oth-order polynomial and the correlation function
was Gaussian. The ‘theta’ parameter for the correla-
tion function was initialized to 100 and bounded be-
tween 10 and 104. The cubic spline was calculated
using the Thin Plate Spline code of TravisWeins [22],
and PCA analysis was performed using the PCA ap-
proximation code of Mark Tygert [23], based on
work by Rohklin et al. [24]; 10 iterations were used
to estimate the principal components.

The algorithm was tested on two types of sample:
polystyrene microspheres and human skin tissue sec-
tions. The polystyrene microspheres were 1pum in
diameter and cast onto a soda-lime glass microscope
slide by placing one drop of the microspheres dis-
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persed in water onto the slide and allowing the drop
to dry. For the mixed paracetamol and polystyrene
sample, one paracetamol tablet (Value Health Para-
cetamol 500 mg Caplets, Galpharm International
Ltd.) was ground into powder and a small amount of
the powder dispersed onto the drop containing the
microspheres before it had an opportunity to dry.
The drop was then left to dry as before. The skin
tissue sections were obtained from the University
Hospitals NHS Trust, Nottingham as part of the rou-
tine treatment of basal cell carcinoma by Mohs mi-
crographic surgery. Tissue blocks were excised by
the surgeon, mounted on a holder using a tissue mi-
mic (OCT Compound, Tissue-Tek), frozen using
cryogenic spray (Frostbite, Surgipath) and sectioned
with a microtome (20 um thickness, CM 1900 UV,
Leica). The sections were then mounted on magne-
sium fluoride disks and kept in the freezer until they
were to be used. Adjacent sections were stained
using hematoxylin and eosin (H&E’), and evalu-
ated by a trained histopathologist. Testing of the al-
gorithm on all samples was performed by rastering
the laser across the surface of a sample to obtain a
full Raman map, and then simulating a sampling
procedure. In this procedure, points were selected
from the image, the data at each selected point in-
corporated into the interpolant datasets, the interpo-
lants calculated and the next point selected. This
testing methodology necessarily placed a limitation
on the size of the spectral maps that could be rea-
sonably captured, as obtaining higher resolution

fully-rastered maps required an impractically long
time. The integration time for capturing an image of
polystyrene microspheres was 0.25 s per point with a
laser power at the sample of 310 mW and a spot size
of approximately 2 um diameter. The integration
time for tissue sections was 2 s per point with laser
power at the sample of 70 mW and a similar spot
size.

4. Results and discussion

4.1 Testing the algorithm using polystyrene
microspheres

In order to demonstrate the capabilities of the selec-
tive sampling method, the algorithm was first tested
on randomly-located polystyrene microspheres. The
data reduction method was to normalize the dataset
by subtracting the mean and dividing by the standard
deviation, and then to obtain the second principal
component of the normalized dataset. The normal-
ized data was then projected onto this component to
yield a score. The second principal component was
used rather than the first, since the first corresponded
primarily to the glass substrate, whereas the second
component served to highlight the regions containing
polystyrene. In a practical application, it would be ne-
cessary to determine the model prior to measuring
the dataset. As this paper is not concerned with the

Table 1 Performance of the selective scanning algorithm when applied to polystyrene microspheres. Data std is the stand-
ard deviation of the sample itself, whereas RMSE std is the standard deviation of the root-mean-squared error. The last
column represents the number of undersampled points required to equal the performance of theselective sampling algo-
rithm, in % of the number of points used in selective sampling. Note that only a single measurement was taken for the
‘B’ samples, so mean and standard deviation cannot be calculated.

Identity Width/um Height/um X/pixels  Y/pixels  Data std RMSE Equivalent nr.
mean =+ std of points in
undersampling (%)
Al 492 492 128 128 0.633 0.41 £0.02 183
A2 134 123 128 128 1.08 0.34 £0.01 105
A3 70 49 128 128 0.74 0.11 £0.01 120
A4 145 137 128 128 1.08 0.31£0.01 71
AS 118 100 128 128 1.24 0.30 £0.02 97
Ab 127 126 128 128 0.57 0.170 £ 0.007 90
A7 140 94 128 128 2.11 0.28 £0.01 137
A8 178 150 128 128 1.14 0.31 £0.01 90
A9 170 166 128 128 2.77 0.40 £ 0.01 145
Al10 162 122 128 128 4.43 0.64 £ 0.03 145
All 116 121 128 128 0.782 0.29 £0.01 90
B1 973 706 256 256 0.992 0.68 112
B2 263 231 256 256 6.72 0.53 146
B3 390 389 256 256 2.55 0.57 116
B4 806 650 256 256 0.579 0.11 86
BS 155 150 256 256 1.52 0.77 121
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details of the model, other than that one exists and
that it gives good contrast in the resulting image, a
principal component of the dataset itself was used.

The root-mean-squared error between a full ras-
ter scan of the surface and a final interpolation is
used as a figure of merit. The results can be seen in
Table 1; samples A1-A11 have a resolution of 128 x
128 and samples B1-B5 have a resolution of 256 x
256. The 128 x 128 samples were each tested 8 times
and the mean and standard deviation of the root-
mean-squared error taken, so as to characterize both
the performance and the repeatability. The 256 x 256
samples were too large to undergo so many repeats
within a reasonable time frame, so only a single run
was performed for each sample. 2150 measured
points were taken for the 256 x 256 samples, corre-
sponding to a speed-up of over 30 x. Comparisons
were also made with undersampling. Resampled
images with increasingly high resolutions were taken,
until the root-mean-squared error was below that of
the newer algorithm. The number of points for under-
sampling and the newer algorithm were then com-
pared.

Sample sizes were selected semi-arbitrarily in or-
der to achieve step-sizes on the order of 1 um, but
significantly larger (e.g. Al) and smaller (e.g. A3)
step sizes were also used, as well as obtaining sam-
ples with significantly differing step sizes in the X-

and Y-axes (e.g. A7). It would be expected that lar-
ger samples give rise to larger errors, as there will be
less spatial correlation between pixels, but this effect
seems to be relatively small compared to the differ-
ences between samples. Readers are recommended
to use sample sizes such that the smallest features of
interest approximately correspond to a single pixel,
but the data suggests that having a sample up to 0.5
to 4 times this size has little or no effect on the algo-
rithm’s performance.

An estimate for the noise inherent in the meas-
urement was obtained by performing a raster scan
of a surface, followed by another identical scan of
the same surface. The second principal component
model was taken for the first scan, and applied to
both the first and second scans. The root-mean-
squared error between the two resulting images was
then taken. For a 128 x 128 image, with a data range
of 9.11, the root-mean-squared error due to noise
was 0.10, or 1.14% of data range.

Table 1 demonstrates that the root-mean-squared
error is consistently well below the standard devia-
tion for all samples. In addition, the standard devia-
tion of the RMSE is low, indicating that the selection
of the first two random points does not significantly
affect the eventual outcome. Comparison with un-
dersampling is generally favourable or comparable;
the nature of the experiment (i.e. continuously at-
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Figure 2 (online color at: www.biophotonics-journal.org) Raman mapping of randomly-distributed polystyrene micro-
spheres (sample B3). (a) Brightfield image, scale bar is 100 um. (b) A plot of the second principal component score for a
full raster scan of the area depicted in (a), with a resolution of 256 x 256. (¢) A 256 x 256 resolution image interpolated
from the sampled locations, which are highlighted using magenta dots. (d) A difference image equivalent to (¢)—(b). (e)
An undersampled version of (b), with effective resolution of 48 x 48, resampled to 256 x 256 using a thin-plate spline. (f)
A difference image equivalent to (e)—(b). Edge plots are cross-sectional profiles through the white lines illustrated on the
main plot, and all axes scales, are equivalent for (b), (c), (d), (e) and (f). Colourmap scales are equal for (b), (¢) and (e),
and colourmap scales are also equal for (d) and (f), but the scale is smaller to better demonstrate differences.
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tempting different undersampled images with in-
creasing resolution) favours undersampling slightly
since in the cases where there is little to be gained
by increasing the number of sampling points, the
new algorithm will be fixed in the number of points
whereas undersampling will have many ‘attempts’ to
get the lowest possible figure. It was deemed that
this was a fairer comparison than the alternative of
slightly favouring the newer algorithm. Despite this,
in a majority of cases the new algorithm is superior,
and clearly so. In only two cases does undersampling
require fewer than 90% of the number of points
used for the selective sampling algorithm, whereas
there are many cases where undersampling required
more than 120% of the points needed for the newer
algorithm.

An illustration of the algorithm’s performance is
given in Figure 2(b) and (c), which also demonstrates
that the algorithm samples a larger number of points
near features of interest (the spot diameter is for
illustration only, and does not accurately reflect the
laser spot size). A difference image, Figure 2(d), is
also provided, along with a map, Figure 2(e), that
was obtained by undersampling the image, in order
to demonstrate the additional benefit of selective
sampling over simply reducing the number of sample
points. This benefit is more obvious when comparing
Figure 2(d) and (f); undersampling clearly leads to
significantly larger erroneous features. Further illus-
trations with different samples are provided in the
supplementary information.

4.2 Selecting the chemical features of interest

As previously noted, this algorithm is designed to
operate in situations where the parameter of interest
is scalar at all points in the image; for example, the
location of a particular spectral component, or the
Raman intensity at a particular wavenumber. Alter-
natively, multivariate measurements can be used to
reduce the spectrum to a single number, such as pro-
jection onto the first principal component or deter-
mining the probability of finding a desired analyte.
This criterion is fulfilled in many applications; the
user is interested in the spatial distribution of a par-
ticular chemical, for example, or a particular combi-
nation of molecular spectra. This ability of the algo-
rithm to search for features of interest in an image is
demonstrated in Figure 3. The sample consists of a
mixture of paracetamol and polystyrene micro-
spheres on a soda-lime glass substrate, and the same
dataset is used each time. The full raster image has a
resolution of 128 x 128. In the first case, the linear
model is the second principal component; upon in-
vestigation this appeared to strongly emphasize spec-
tra with strong contributions from polystyrene, and
the root-mean-squared error was 2.55% of data
range. The second case used the third principal com-
ponent as the model, and strongly emphasized para-
cetamol; root-mean-squared error was 1.00% of data
range. A comparison can be made between the
white light image and the two resulting hyper-spec-
tral maps, to confirm that the spectral features being
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Figure 3 (online color at: www.biophotonics-journal.org) Selection of spectral features of interest for a three-component
sample consisting of polystyrene microspheres, paracetamol powder and a soda-lime glass substrate. Red indicates a high
principal component score, blue is low. (a) Bright-field image, scale bar is 50 um. (b) An interpolated image where the
second principal component has been used as the data reduction model. Sampling points are indicated with black dots.
(¢) An interpolated image where the third principal component has been used as the data reduction model. Sampling
points are indicated with black circles. (d) Plot of the second principal component. (e) Plot of the third principal
component.
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detected in the maps really do correspond to real-
world features. Other principal components and a
SCREE plot for the first 10 principal components is
available in the supplementary information.

Of more interest for this particular illustration is
the distribution of sampling points. There are 750
sampling points in total for each image, correspond-
ing to approximately 20 x fewer sampling points
than a full raster scan. The points are observed to
cluster around ‘complex’ regions in the image, where
the interpolant varies significantly. As these regions
will be subject to increased sampling density, they
will consequently be measured with a higher overall
accuracy than other less-variable regions of the im-
age, demonstrating that the algorithm can search for
certain spectral features in an image and maximize
the time spent sampling those features in particular.

4.3 Tissue sections

In this section, skin tissue sections were imaged
using the selective sampling technique to evaluate
the potential for imaging large tissue sections on a
timescale suitable for intra-operative use (10—
30 minutes). The second principal component was
used as a model for data reduction as it discrimi-

nated well between tissue structures, and all data
were normalised as before. As before, the algorithm
was assessed by selecting points from a fully-rastered
dataset. The noise level was estimated by taking the
second principal component of one 96 x 96 pixel Ra-
man map and applying it to both that map and an-
other taken at the same points over the same sam-
ple. The root-mean-squared error was then taken
between the two datasets. In the case of a skin tissue
sample, the root-mean-squared error was 7.73 and
the data range was 56.1, therefore the root-mean-
squared error due to noise is 13.8%, which is consid-
erably higher than in the case of polystyrene sam-
ples.

An illustration of the algorithm’s performance on
a skin tissue samples is presented in Figure 4, along
with an adjacent H& E image. Figure 4 shows the
comparison between tumour regions (the darker re-
gions in the H& E image) and the second principal
component map for both rastered and interpolated
sampling. There is a clear visual correlation between
high second principal component scores and tumour
regions, consistent with previous literature results
[13]. In addition to the correlation between the Ra-
man spectral image and H & E stain, the high signal-
to-noise ratio of the measurements is capable of en-
abling accurate identification of individual skin struc-
tures. Typical Raman spectra corresponding to var-
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Figure 4 (online color at: www.biophotonics-journal.org) Demonstration of a 96 x 96 spectral image being reconstructed.
Red indicates a high principal component score, blue is low. (a) Adjacent H& E image, scale bar is 200 um. Basal cell
carcinoma tissue is stained darker, on account of the larger cell nuclei. (b) Spectra measured at locations indicated in (c)
and the second principal component used to plot images (¢) and (d). (¢) Full raster scan, with data reduction method being
a projection onto the second principal component (total 9216 spectra). (d) Reconstructed image with the same data reduc-
tion method, using only 750 sampling points. Sampling locations are indicated with magenta dots. (e) A difference image,
equivalent to (¢)-(d). (f) An undersampled version of (¢), with effective resolution of 48 x 48, resampled to 256 x 256
using a thin-plate spline. (e) A difference image, equivalent to (¢)—(f). Edge plots are cross-sectional profiles through the
white lines illustrated on the main plot, and all axes scales, are equivalent for (c), (d), (e), (f) and (g). Colourmap scales
are equal for (c¢), (d) and (f), and colourmap scales are also equal for (e) and (g), but the scale is smaller to better demon-
strate differences.
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ious regions identified in the spectral image showed
a strong similarity with the Raman spectra of dermis
and basal cell carcinoma reported previously [3]. Ra-
man spectra of the large dermis regions are domi-
nated by contributions from collagen I (proline
bands around 855 cm~! and 937 cm~!, and a large
band around 1267 cm™~! corresponding to the amide
III region). Spectra from the epidermis contain
stronger contributions from nucleic acids at 788 cm™!
and 1096 cm™!; because basal cell carcinoma is de-
rived from epidermal cells, the Raman spectra of
these cells have also stronger bands associated with
nucleic acids. Compared to the polystyrene micro-
sphere samples, the distribution of sampling points
in skin sections shows a reduced tendency to cluster
at the edges of surface features (see Figure 4(d)).
Because polystyrene has a very strong Raman cross-
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Figure 5 (online color at: www.biophotonics-journal.org)
A skin tissue sample imaged using the selective sampling
algorithm. (a) Interpolated map of fat regions. Red pixels
have high fat content. (b) H&E stained image of an adja-
cent skin section; white regions indicate fat cells. Scale bar
is 500 pm long. (¢) Spectrum of the fat model used for data
reduction, with two sample spectra for comparison. Sam-
pling locations are indicated with symbols in (a).

section, the transition between the spectrum of poly-
styrene and substrate is very sharp, meaning that the
sampling points will be clustered strongly in this re-
gion. In contrast, the skin sections have compara-
tively subtle transitions, as well as smaller Raman
cross sections and hence noisier spectra, meaning
that the sampling is less prone to cluster around
small regions.

4.4 Practical implementation

A typical example of a tissue section imaged using
the selective sampling algorithm is presented in Fig-
ure 5 in which the data reduction model targeted re-
gions of fat. 750 points have been sampled from a
grid with a resolution of 100 x 100 pixels, and the
sampled area is 1 x 1 mm; total sampling time was
less than 30 minutes. The spectral feature used for
the selective sampling was the score of each Raman
spectrum calculated by projecting the spectrum on
the Raman spectrum of typical fat regions found in
skin tissues, which was measured on a different sam-
ple. Comparison between the Raman map and the
H&E stained image shows that the targeted fat
regions are detected with high contrast. Selected Ra-
man spectra corresponding to fat and dermis regions
are provided, along with the model used for data re-
duction, showing that high-signal-to noise spectra
were recorded at each point of the image.

5. Conclusion

This paper outlines the development of a new sam-
pling technique for the fast spectral imaging of large
samples. This method has significant advantages
compared to conventional raster-scanning: reduced
time (in excess of 30-fold in some cases), preserva-
tion of high signal-to-noise spectra, and it also en-
ables selection of the spectral features of interest.
These advantages are more pronounced in samples
with an appreciable degree of spatial correlation,
especially cases where there are comparatively large
uniform regions separated by well-defined bound-
aries. This situation might be observed, for instance,
in the case of a nodular tumour, permitting the use
of this technique in certain types of tumour margin
evaluation. The primary assumption underlying this
method is that there is a certain degree of spatial
correlation in the image; points nearby are expected
to have similar values. If this assumption does not
hold then the method will be reduced to sampling all
of the points in the image in order to achieve an ac-
ceptable estimation. Note however that this worst-
case scenario still involves sampling the same num-
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ber of points as a conventional raster scan, so even
in samples with minimal spatial correlation, the algo-
rithm is still worth employing, provided the time ta-
ken to move the stage is negligible. If the integration
time per pixel is low then a galvanometer or piezo-
driven stage is recommended; galvanometers readily
boast step responses of less than a millisecond
(GVS001, Thor Labs) and piezo stages can be ob-
tained with travel distances in excess of a few milli-
meters and a maximum-range settling time of a few
tens of milliseconds (P-629.1CD, Physik Instru-
mente). Good performance has been demonstrated
on several polystyrene microsphere substrates of dif-
ferent resolutions, along with mixed-component sam-
ples where individual chemical components could be
identified and selectively sampled. The potential of
this technique for sampling tissue sections is also de-
monstrated, but it should also be noted that the
technique depends strongly on the discrimination
ability of the multivariate model. That said, while
other fast Raman imaging techniques can be used to
provide contrast between different tissue structures,
this selective scanning technique can do so while re-
taining chemical accuracy in the fingerprint region of
the spectrum, a feature that supports accurate medi-
cal diagnosis and quantitative analysis. While the fo-
cus of this paper was on Raman spectroscopy and
tissue imaging, it should be noted that these techni-
ques can be applied to other point-by-point imaging
techniques, especially those where a large amount of
data must be captured at each pixel location.
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