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Abstract
We propose a geometry for a piezoelectric SPM sensor that can be used for combined AFM/LFM/STM. The sensor utilises

symmetry to provide a lateral mode without the need to excite torsional modes. The symmetry allows normal and lateral motion to

be completely isolated, even when introducing large tips to tune the dynamic properties to optimal values.
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Introduction
The heart of any scanning probe microscope (SPM) is its

sensory probe. For a scanning tunnelling microscope (STM)

this is simply an electrically conducting wire with an atomic-

ally sharp apex. For atomic force microscopes (AFM) and

lateral force microscopes (LFM), however, the sensor is more

complex. The atomically sharp probe must be combined with a

force sensor, usually a cantilever, with either piezoelectric or

optical deflection detection. For noncontact AFM (NC-AFM)

and dynamic LFM (DLFM), where the sensor is excited at

or near one of its eigenfrequencies, properties such as

the Q factor, eigenfrequencies, effective spring constant [1] and

other geometrical properties [2] of the eigenmodes become

important.

AFM and LFM sensors have evolved from gold foil with

diamond tip [3] and bent tungsten wires [4] respectively, into a

wide range of specialised sensors. The most common NC-AFM

sensors: silicon microcantilvers [5], and quartz sensors such as

the qPlus sensor (tuning fork) [6] or KolibriSensor® [7], have

all been used for combined AFM/STM [7-9]. Combined AFM/

LFM sensors have been constructed from silicon cantilevers, by

exciting torsional modes to generate the lateral motion needed

for the LFM [10]. The qPlus sensor has been used as an LFM

by rotating the tip on the end of the quartz tuning fork [11], but

no combined AFM/LFM qPlus system has been developed due

to the magnitude of the torsion constant for the tine of the

sensor. A combined AFM/LFM sensor operated in frequency
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modulation mode would enable measurements of conservative

and nonconservative forces simultaneously in the normal and

lateral direction. Such measurements could be used to further

important investigations in single-asperity friction [12], where

the relationship between normal and lateral force is of interest.

In this paper, we suggest the optimum geometry of a quartz

sensor to produce a combined AFM/LFM/STM from a quartz

crystal resonator with many theoretical benefits over other

sensors.

Combining NC-AFM and DLFM
For a sensor to image as both an NC-AFM and a DLFM the

sensor must be able to oscillate both normal to and parallel to

the surface it is scanning. The simplest method for achieving

this is a single oscillator which will oscillate in different direc-

tions depending on the eigenmode excited. Ideally for atomic-

resolution imaging the effective spring constant of the excited

eigenmode should be low [13]. However, as the spring constant

normal to the surface lowers, the risk of the probe snapping to

contact with the surface increases. This produces a problem for

combined AFM/LFM using the principal and first torsional

eigenmode of a cantilever, as the torsional mode can have an

effective spring constant of up to approximately two orders of

magnitude higher than the principal mode [10]. This results in a

difficult tradeoff. To avoid snap to contact, the following condi-

tion must be satisfied [14]:

(1)

where A0 and kN are the amplitude and effective spring constant

of the principal eigenmode, and FTS,N is the tip–sample force

normal to the sample.

For high-resolution AFM imaging A0 should be as low as

possible [13]. However, the signal-to-noise ratio, which is a

function of A0, [15] limits the minimum amplitude. Experiment-

ally, some groups have achieved stable imaging with

amplitudes as low as 20 pm [16]. Thus, to be safe from snap to

contact for atomic forces on the order of −3 nN, it is required

that kN > 150 N·m−1. If imaging, however, is only in DLFM

mode, then A0 is ideally zero. Obviously, Equation 1 doesn’t

hold in this case as it would suggest that we require an infinite

spring constant to stop snap to contact. In this example A0 must

be considered as the distance the tip has moved from its equilib-

rium position due to FTS,N. Therefore, if trying to image in

DLFM mode, the error in the z-position due to normal forces is

inversely proportional to kN, requiring higher minimum normal

spring constants of kN ≥ 1–3 kN·m−1. This would result in

torsional constants on the order of hundreds of kN·m−1, which

is not ideal for LFM imaging.

The torque required to torsionally twist a beam of length L

through an angle θ is given by

(2)

where J and G are the torsion constant and shear modulus of the

beam. In the case of a cantilever beam with a tip of length Ltip

(measured from the central axis of the beam), the lateral dis-

placement of the tip apex, Alat, is Ltipθ. Replacing the torque

with the lateral tip–sample force FTS,L multiplied by the tip

length we get

(3)

Hence, the lateral spring constant

(4)

is inversely proportional to the square of the tip length. Thus,

the tip length becomes an important parameter to consider

alongside the more typical geometrical constants associated

with the normal spring constant.

For quartz sensors the obvious choice of cantilever is the

standard qPlus sensor with a normal spring constant of approx-

imately 1.8 kN·m−1. [17,18] For commercially available silicon

cantilevers the spring constants are usually less than 50 N·m−1,

with resonant frequencies of 200–300 kHz. The resonant

frequency of the cantilever scales with L−4 and the spring

constant with L−3. Considering that the torsional eigenfre-

quency can be approximately two orders of magnitude larger

than the normal eigenfrequency, achieving the necessary normal

spring constant by length reduction could push the torsional

eigenfrequency into the gigahertz range, which is impractical.

We instead will consider different rectangular cross sections for

a 200 μm long silicon beam.

A range of rectangular cross sections which would produce a

normal spring constant of 2 kN·m−1 for a 200 μm long beam

have been calculated, using the Euler–Bernoulli beam theory,

see Table 1. This value was chosen to sit in the middle of the

range suggested for the minimum normal spring constant. The

frequency of the first eigenmode has also been calculated.

Using Equation 4, the tip length needed for kL = 2 kN·m−1 was

calculated, using previously tabulated values for J [19]. This tip

length was also calculated for the qPlus sensor.
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Table 1: Dimensions and dynamic properties of silicon microcantilevers that would provide normal spring constants of 2 kN·m−1. Ltip is the tip length
required to provide a lateral spring constant of 2 kN·m−1. qPlus sensor is also included (the frequency is not 32768 Hz, as some features, such as
base deformations and gold contacts, were neglected in the calculations).

Name L (μm) w (μm) T (μm) kN (N·m−1) fN (Hz) Ltip (μm) Ltip/L

Si1 200 112.2 15.0 2 000 515 913 139.1 0.696
Si2 200 47.3 20.0 2 000 687 884 124.6 0.623
Si3 200 24.2 25.0 2 000 859 856 93.1 0.466
Si4 200 14.0 30.0 2 000 1 031 827 57.2 0.286
Si5 200 8.8 35.0 2 000 1 203 798 33.7 0.168
Si6 200 5.9 40.0 2 000 1 375 769 20.5 0.102

qPlus 2 400 130.0 214.0 1 763 32 246 772.9 0.322

Figure 1: (a) Proposed geometry of new sensor. A tungsten tip
connected to the centre of a quartz bar clamped at both ends. (b) First
and (c) second eigenmode of the sensor. The symmetry provides pure
normal motion in the first eigenmode and lateral motion of the tip apex
in the second eigenmode due to the rotation of the tip about the anti-
node of the beam.

The calculated tip lengths range from approximately 10% to

70% of the beam length. As has previously been shown, AFM

sensors with tip lengths of similar scale to the length of the

beam exhibit a large lateral component to the motion of the tip

apex in the first eigenmode [2]. This lateral component is

perpendicular to the torsional eigenmode, thus making it

impossible to truly separate the normal and lateral forces. This

problem is exacerbated if the tip length is further increased to

increase sensitivity to lateral forces by reducing the lateral

spring constant, as snap to contact is not an issue in the lateral

direction. Increasing the ratio of thickness to width reduces the

required tip length, but at the expense of introducing normal

eigenfrequencies above 1 MHz, pushing torsional eigenfrequen-

cies to ranges that most AFM electronics cannot handle.

Non-cantilever geometries
Due to the large difference between the operating frequencies of

normal and torsional modes, and the coupling of unwanted

lateral motion into the normal eigenmode for sensors with the

tip lengths needed to produce low lateral spring constants, we

propose a new sensor geometry. The proposed design, see

Figure 1, is to attach a tungsten tip to the centre of a quartz

beam. The design exploits the intrinsic symmetry of the sensor

to remove any unwanted lateral motion in the principal eigen-

mode (Figure 1b), thus allowing for longer tips. By exciting the

second eigenmode of the beam, lateral motion can be generated

(Figure 1c). The effective spring constant and eigenfrequency

can be calculated, and thus tuned, far more simply than for

torsional modes, by solving the Euler–Bernoulli beam equation

with the appropriate boundary conditions. In principle, by also

exciting a torsional mode, a perpendicular lateral oscillation

could be generated allowing simultaneous measurements in all

three dimensions. This paper will, however, concentrate on just

the first and second eigenmode.

Results and Discussion
Dynamic properties of symmetric sensors
Spring constants
The two most fundamental properties to consider for dynamic

force sensors are the effective spring constants and the eigenfre-

quencies of each imaging mode. For simplicity we will begin

with effective spring constants, as the influence of the inertia of

the tip has only the effect of moving the dynamic spring

constant closer to the static constant [20], removing the ≈3%

error. (Note that this is not true in higher eigenmodes for canti-

lever geometries as the inertia shifts the position of the anti-

nodes [1]. In this system, however, the antinodes are pinned due

to the symmetry of the system.)

The dynamic Euler–Bernoulli beam equation

(5)

describes the dynamic deformations of a beam, where E and ρ

are the Young’s modulus and density of the material, respect-

ively. A and I are the area and second moment of area of the

cross section of the beam. f(x,t) is the applied force per unit

length acting on the beam, Φi(x) and  are the spatial and

temporal components of the beam’s deformation for the ith

eigenmode.



Beilstein J. Nanotechnol. 2013, 4, 370–376.

373

As any effect from the tip must be considered at the centre of

the beam we will consider only one half of the beam and use

symmetry (or antisymmetry in the case of even eigenmodes) to

construct the full spatial solution. For both even and odd modes

the boundary conditions

(6)

(7)

are valid. Equation 5 is spatially fourth order, therefore two

further conditions are required. For odd modes:

(8)

(9)

and for even modes:

(10)

(11)

L is the length of the entire beam, and Fnorm and T are the force

and torque applied to the centre of the beam.

Entering these boundary conditions into the general static

spatial solution of Equation 5 (i.e., the final term is zero), gives

the spring constant of the first eigenmode as

(12)

Considering the torque on the centre of the beam T = LtipFlat,

where Flat is a lateral force applied in the x direction at the far

end of the tip, the effective lateral spring constant of the second

eigenmode is

(13)

Full derivations are provided in Supporting Information File 1.

Thus, just as in the case of the torsional mode, the effective

spring constant in the lateral mode can be tuned by tip length.

However, due to the symmetry of the sensor this will not cause

unwanted lateral motion at the tip apex in the first eigenmode.

Eigenfrequencies
When considering the eigenfrequencies of the sensor, the inertia

of the tip plays a very strong role, which cannot be ignored.

Solving Equation 5 for the dynamic case, the same boundary

conditions (Equation 6–Equation 11) hold, where

(14)

and

(15)

ωi is the angular eigenfrequency of the ith eigenmode, and 

is the moment of inertia of the tip. By combining the general

spatial solution with the four boundary conditions as a matrix

equation, equal to a zero vector, we see that resonance occurs

when the determinant is equal to zero (See Supporting Informa-

tion File 1 for full derivation). Giving the following resonance

conditions:

(16)

and

(17)

where

(18)



Beilstein J. Nanotechnol. 2013, 4, 370–376.

374

Figure 2: The effective spring constants (klat for mode 2, and knorm for mode 1) and eigenfrequencies of the first two eigenmodes of a symmetric
sensor. Plotted for 150 μm tungsten tips of varying lengths.

These equations can be solved numerically in terms of dimen-

sionless quantities (βiL, m*, , discussed in Supporting

Information File 1), and dimensions can be added later to get a

value for ωi. In the case of no tip, the ratio between the second

and first eigenmode is 2.757. Whether this ratio rises or falls

when a tip is added depends on the dimensions of both the tip

and sensor. It is clear, however, that such a low ratio between

the eigenmodes is another advantage of the symmetric sensor

over torsional designs as both modes can be tuned to near the

optimal frequency of the detection system.

Optimal geometry for a symmetric sensor
In order for the sensor to be used in currently available

commercial UHV combined AFM/STM systems, it should be

similar in size to the qPlus sensor. However, as the normal

spring constant per unit beam length (with the same cross

section) is 64 times higher than for a cantilever geometry, a

greater length than the 2.4 mm beam of the qPlus sensor is

advisable.

Choosing a 3 mm long beam and a normal spring constant of

2 kN·m−1, as previously suggested, we calculate that the second

moment  o f  a rea  o f  the  c ross  sec t ion  shou ld  be

I = 3.68 × 10−18 m4. A width (y-direction) w of 100 μm would

result in a thickness (z-direction) of t = 76.1 μm, as I = wt3/12.

Such a beam would have first and second eigenfrequencies of

46.7 kHz and 128.8 kHz, respectively. These frequencies will

reduce when the tip is added to the centre of the beam.

Before considering the mass or moment of inertia of the tip and

its effect on the eigenfrequencies of the sensor, it is important to

consider the spring constant of the tip itself. Any bending of the

tip will not be detected by the piezoelectric quartz sensor. Thus,

treating the tip as a cantilever, its spring constant must be much

greater than the effective lateral spring constant for the sensor

(klat), otherwise this will result in incorrect force measurements

in the LFM mode. We consider a maximum tip length of

1.73 mm, i.e., the length that would give klat = 500 N·m−1; thus,

to keep the spring constant of the tip above 10 kN·m−1 the

diameter of the tungsten wire must be greater than 144 μm.

We will consider a tip diameter, Dtip, of 150 μm, an easily

available diameter of tungsten wire. The moment of inertia

of the tip for the even modes should be calculated about

the centre of the beam, t/2 from the bottom of the tip,

and hence a distance of (Ltip + t)/2 from the centre of

mass of the tip. Thus, the moment of inertia of the tip can

simply be calculated by the parallel axis theorem as

. By using Equa-

tion 13 and Equation 16–Equation 18, the spring constants

and eigenfrequencies of the first two modes have been plotted

in Figure 2 for a range of tip lengths. For plotted tip

lengths the ratio of the spring constant of the tip to klat is at its

minimum 23.5.

Examining the plot it is clear that tip lengths near 1.47 mm are

unusable as the two eigenfrequencies are too close. This would

make it difficult to selectively excite them, as well as require

long averaging times in bimodal operation to remove any

correlation between the modes. The benefit of increasing the tip

length is a reduction in lateral spring constant, which comes at

the price of lower eigenfrequencies. A tip length of 1mm would
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provide eigenfrequencies of f1 = 11.8 kHz and f2 = 17.2 kHz,

with klat= 1.50 kN·m−1. These frequencies are of the same order

of magnitude as qPlus sensors with long tips, thus the sensor

could be used in commercially available qPlus systems with no

modifications to the electronics.

It is also important to consider the minimum amplitudes achiev-

able by the sensor, particularly in the lateral mode. As little is

know about the optimum amplitudes in DLFM, this issue is

to be treated approximately. The lateral amplitude of the tip

apex is

(19)

By considering that the tip is approximately half the length of

the beam (L/2), and (dΦ2(L/2))/dx ≈ (4Aantinode)/L (approxim-

ating Figure 1c as three straight lines), where Aantinode is the

amplitude of the antinode, the ratio between Alat and Aantinode is

on the order of 2. Other detection parameters are also of the

same order of magnitude as for a qPlus sensor. Thus, as qPlus

sensors have achieved imaging with amplitudes as low as 20 pm

[16], similar amplitudes are in theory possible for the LFM

mode of the symmetric sensor. Such amplitudes are an order of

magnitude smaller than inter-atomic distances.

Experimental viability
The experimental viability of this method depends on the equip-

ment available to produce the sensor. Firstly, no quartz crystal

resonators of the proposed geometry are commercially avail-

able. The closest commercially available sensor is a double-

ended tuning fork available from Statek (DETF Force Sensor,

http://www.statek.com). By fixing the bottom tine it is possible

to reproduce the required symmetry. However, these sensors are

too large for most commercial qPlus systems with a total width

of 15.2 mm and a beam length of 8.44 mm. Also the beams are

recessed with respect to the top of the resonator by 0.86 mm,

preventing tip lengths below this. A second possible option

would be to attach two identical tuning forks end-to-end by

using a similar method to Heyde et al. [21]; however, the glue

used to attach the tines will have different mechanical prop-

erties to the quartz and also depend on the quantity, placement,

and curing conditions. This will affect the repeatability as well

as the shape of the eigenmodes, and hence the spring constant.

Thus, ideally custom resonators would need to be made.

Secondly, the correct placement of the tungsten wire is vital.

The tip needs to be positioned in the centre of the 3 mm beam,

which is just 100 × 76.1 μm in cross section, and needs to be

mounted perfectly normal to the beam. Misplacement of the tip

breaks the symmetry thus affecting operation. Reproducible tip

placement requires three dimensional micromanipulators, which

can be prohibitively expensive for some groups.

A final consideration should be taken regarding the connection

of a separate electrode for the tunnel current. Two options are

available, first a thin (about 15–50 μm) loose wire could be at-

tached to the tungsten tip, as is often done for qPlus sensors.

This is inadvisable as it also breaks the symmetry of the sensor.

Another method would be to add a thin insulating layer to the

top side of the resonator and on top of that a new electrode,

such as the method developed by Nauga Needles [22]. This

maintains the symmetry; however, great care needs to be taken

to consider the possibility of capacitive cross-talk between the

tunnelling and deflection channels [23].

Conclusion
We have demonstrated a new geometry of a piezoelectric sensor

for use in combined AFM/LFM, which utilises symmetry to

bring the eigenfrequencies and spring constants of the two

modes closer together. This allows both modes be tuned to the

optimal parameters for operation. The symmetry also removes

issues with unwanted lateral motion in normal oscillating

modes, allowing longer tips for tuning the lateral spring

constant of the LFM operation. By attaching an extra electrode,

the sensor can also be used for STM, providing a truly multipur-

pose SPM sensor.

Supporting Information
Supporting Information File 1
Full derivations of dynamic properties for a symmetric

sensor

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-4-43-S1.pdf]
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