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Abstract: Spectral depth-profiling of optically turbid samples is of high 
interest to a broad range of applications. We present a method for 
measuring spatially-offset Raman spectroscopy (SORS) over a range of 
length scales by incorporating a digital micro-mirror device (DMD) into a 
sample-conjugate plane in the detection optical path. The DMD can be 
arbitrarily programmed to collect/reject light at spatial positions in the 2D 
sample-conjugate plane, allowing spatially offset Raman measurements. 
We demonstrate several detection geometries, including annular and 
simultaneous multi-offset modalities, for both macro- and micro-SORS 
measurements, all on the same instrument. Compared to other SORS 
modalities, DMD-based SORS provides more flexibility with only minimal 
additional experimental complexity for subsurface Raman collection. 
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1. Introduction 

Non-invasive chemical depth-profiling of materials is of high interest in a broad variety of 
applications. A range of vibrational spectroscopy techniques has been developed for this 
purpose, including infrared and Raman spectroscopy. Infrared spectroscopy techniques, such 
as attenuated total reflectance infrared spectroscopy (ATR) [1,2], photoacoustic Fourier 
transform infrared (FT-IR) spectroscopy [3,4] and thermal emission decay–Fourier transform 
infrared spectroscopy (TED-FTIR) [5,6] offer depth discrimination in the 0.1-100 μm range. 
For transparent samples, confocal Raman micro-spectroscopy allows chemical depth-
profiling with micrometric resolution for depths up to ~100 μm [7–9]. Spatial offset Raman 
spectroscopy (SORS) is an emerging technique for measuring the subsurface chemical 
information in diffusely scattering samples, typically from depths of 20 μm – 5 mm range, 
which is beyond the reach of the above mentioned techniques. Since the first demonstration in 
2005 [10], SORS has found many applications in different fields, such as security screening 
[11,12], quality control of pharmaceutical products [13–15], non-invasive medical diagnosis 
[16–19] and food quality inspection [20,21]. Variants of SORS have been developed to allow 
measurements on samples at different scales of subsurface depth. Depending on the range of 
spatial offset, SORS can roughly be divided into two modalities: macro-scale SORS (macro-
SORS) and micro-scale SORS (micro-SORS). The accessible depth of the former technique is 
in the range of 1-5 mm, while micro-SORS provides a higher depth resolution in the range of 



20-1000 μm. The most common method for implementing macro-SORS measurements is 
using fibre optics bundles. In this configuration, optical fibres arranged in one or more 
concentric circles are used for the collection of the Raman spectra, where the spatial offsets 
are determined by the radii of the circles. While this implementation offers important 
advantages related to simplicity and stability, it can also impose limitations for certain 
applications. One such limitation is the lack of flexibility in changing the spatial offsets, thus 
limiting the range of sampling depths. The emergence of inverse SORS allows some 
flexibility in changing the spatial offsets, by delivering the laser beam in the shape of a ring 
and collecting the Raman photons through the optical fibres at the centre of the probe [17,22]. 
Inverse SORS provides more control over the number of spatial offsets, and has become a 
popular technique for macro-SORS measurements [22]. Wang et al. proposed a new probe 
design to achieve adjustable spatial offsets, where the excitation fibre was fixed at the centre 
of a mechanical iris, and the collection fibres were movable with the blades of the iris [23]. 
Nevertheless, the additional optical elements required for setting the offset distances for these 
techniques can complicate the probe design, require movable mechanical parts, and are not 
compatible for implementation into micro-SORS instruments. A simple line-scan SORS 
method has been recently reported that provides simultaneous SORS over a continuous range 
of offsets, but provides significantly lower collection efficiency for the Raman spectra [24]. 

In this study, we propose a simple, novel design to implement SORS by using a digital 
micro-mirror device (DMD) added to a conventional Raman spectrometer. Here, the 
instrument is based on an optical microscope to allow both micro- and macro-SORS 
measurements. The system enables efficient and flexible collection of SORS signals, with 
software-configurable selection of the spatial offsets, as well as allowing simultaneous 
measurements for multiple offset values. DMDs have been successfully demonstrated for 
multi-object fluorescence spectroscopy [25]. In this paper we demonstrate the versatility of 
the DMD as a software-configurable pattern of reflective pseudo-slits in various SORS 
collection schemes, such as concentric-rings and simultaneous multiple offsets, which can be 
readily realised simply by modifying the patterns displayed on the DMD. In addition, we 
show that the system can function as a macro- or micro-SORS instrument by simply selecting 
the magnification of the microscope objective or lens. 

2. Materials and methods 

SORS spectrometer using a DMD as the offset controller 

A schematic description of the SORS instrument is presented in Fig. 1. The excitation part of 
the system is no different from a conventional backscattering Raman instrument. The beam of 
a 532 nm CW laser (Roithner LaserTechnik GmbH, RTLMSL-532, maximum power of ~20 
mW) was directed via an inverted microscope (Olympus IX-71) and focused onto the sample 
by a microscope objective. To demonstrate the capability of the system for macro- and micro-
SORS, two objective lenses were used: 2 × /0.06 NA (Olympus, Plan N) and 20 × /0.5 NA 
(Olympus, UPlanFL N). The laser power at the sample was ~14 mW. The Raman photons 
were collected by the same objective, and focused by a lens (focal length 200 mm) onto a 
DMD (Texas Instruments, 0.45 WVGA chipset). The DMD was actuated by a DLP® 
LightCrafter 4500 development module from Texas Instruments, which was modified to 
remove projection optics in front of the DMD. This was connected to a PC using mini HDMI 
connection, and controlled by a home-built LabVIEW program using the Vision Development 
module (National instruments). The DMD consisted of a 912 × 1140 array of individually 
addressable micro-mirrors (7.6 × 7.6 µm2). The individual micro-mirrors can be switched to 
one of two states, ‘on’ and ‘off’, corresponding to a tilt of ± 12°. If a binary image is 
displayed to the DMD, it can serve as a reflective spatial filter, allowing light at arbitrary 
spatial positions to be reflected in one direction (say, + 12°), whilst the remaining light is 
rejected (−12°). The DMD was placed in the collection path of the Raman spectrometer at a 



sample-conjugate plane, serving as the offset controller for SORS, as well as a slit/pinhole for 
the spectrometer. An inspection camera was also used to visualize patterns set on the DMD 
by imaging the rejected light. 

The Raman photons reflected by the DMD were collected by another lens (focal length of 
100 mm), passed through a notch filter (NF01-532U-25, Semrock) and then focused again in 
the spectrometer slit plane using a lens with focal length of 60 mm (the actual mechanical slit 
of the spectrometer was fully open). The detection module consisted of a spectrograph 
(Shamrock 303i, Andor technologies, UK) equipped with an 1800 grooves/mm grating and a 
thermoelectrically cooled Raman CCD camera (iDus401, Andor technologies, UK). 

 

Fig. 1. Schematic of the DMD-based SORS instrument. Abbreviations: OBJ, objective; IOM, 
inverted optical microscope; MSC, microscope side-port camera; DCM, dichroic mirror; LCF, 
laser clean filter; NDL, 20mW 532nm Nd:YAG diode laser; DMD, digital micro-mirror 
device; DRC, DMD inspection camera; NF, notch filter; SP, spectrometer; CCD, charge 
couple device detector. The red circles in the magnified images denote the position 
corresponding to the focused laser on the sample, and on the sample-conjugate plane of the 
DMD (equivalent to zero spatial offset). (i) shows a DMD pattern for a standard confocal 
Raman measurement (essentially a reflective pinhole), and (ii) shows one possible SORS 
configuration (semi-annulus). 

The CCD has an active area of 127 × 1024 (26 × 26 µm2) pixels. The spectrograph and 
CCD camera were controlled by a home-built LabVIEW program. A MATLAB (MathWorks, 
USA) script was included in the main LabVIEW programme to allow correction of the 
wavenumber axis caused by shifts when the pattern of the collection points on the DMD was 
not vertical. After this correction, the SORS spectra corresponding to the same spatial offset 
could be averaged automatically. 



3. Results and discussion 

Concentric collection geometry for SORS with flexible offset 

Conventional SORS with concentric circle input geometry is usually implemented using 
optical fibre bundles, where the linear arrangement at the bundle end allows the Raman 
spectra to be detected as separated horizontal stripes [26]. This configuration improves the 
collection efficiency of the Raman scattered light compared to a single point collection 
geometry. In this work, instead of an optical fibre bundle, we use a DMD as the offset 
controller for implementation of a concentric geometry collection. Figure 2(a) shows a semi-
circle pattern consisting of 16 collection points displayed on the DMD. The actual size of 
each collection point was 30 x 30 micro-mirrors (~300 μm x 300 μm). Each point was equally 
distant from the point O, which corresponds to the conjugated point on the sample illuminated 
by the laser (zero spatial offset). In order to prevent crosstalk of the Raman spectra, only half 
of the points in the concentric circle were employed as active areas, as spectra from collection 
points at the same height of the DMD would be imaged to the same horizontal tracks of the 
CCD. For the same reason, vertical gaps of 10 micro-mirrors were included. The larger the 
radius of the semi-annulus (selected in the LabVIEW program), which corresponds to a larger 
offset distance, the more collection points were included. The actual spatial offset is 
calculated by the following equation: 
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where S is the radius of semi-circle displayed on DMD, fm and fo are the focal lengths of the 
focusing lens (200 mm in this case) in front of the DMD and the focal length of the 
microscope objective. 

For this concentric collection geometry based on a semi-circle, the area covered by the 
collection points (area covered by the white squares in Fig. 2(a)) represents ~25% of the total 
area of the annular ring (the annular area of radius Ux represents the maximum collection 
area corresponding to a spatial offset Ux – the thickness of the annulus is equal to the size of 
the collection points). This value compares favourably with the typical 20% reported for 
optical fibre bundles (26 tightly-packed collection fibres) [26]. Nevertheless, it is important to 
note that the signal-to-noise ratio of the Raman spectra may be limited by the optical 
throughput of the spectrometer, and in high-performance SORS it is common for the fibre-
bundle to overfill the spectrometer slit. 

However, a key advantage of the DMD-based system is the flexibility in changing the 
value of the offset distance, which is selected in software. The spatial offsets of conventional 
SORS fibre probes are fixed as the collection tracks are built into the bundle. Although 
inverse SORS enables an adjustable spatial offset [22], the use of an axicon optical element 
(i.e. a conical lens) in the laser excitation path to form laser beam rings of varying radii makes 
the probe design complicated. In our case, only a DMD is added in the detection path and 
requires no movable mechanical parts. The range of spatial offsets is determined by the 
dimension of DMD and the vertical number of tracks of the CCD sensor. For our system, the 
spatial offset can be adjusted in the 0-1 mm range when using a 2 × magnification objective 
(focal length 90 mm). 

Figure 2(b) shows an image captured on the CCD when SORS spectra of a uniform 
polystyrene sample (PS) were acquired. The pattern of the peaks in the Raman spectra 
resembles the semi-annulus pattern displayed on the DMD (Fig. 2(a)). The stripes almost fill 
the entire active area of the CCD chip, limiting the spatial offset to 1 mm on the sample (Fig. 
2(a)). The raw Raman spectra of the PS sample collected on the CCD are presented in Fig. 
2(b) (each spectrum corresponds to vertical binning of 5 tracks on the CCD image). As each 
collection point of the DMD works as a reflective slit for the spectrometer, their shift in the 



dispersion direction leads to spectral shifts in the measured spectra. As the shift for each 
collection point relative to the point of zero offset are known, all Raman spectra can be 
calibrated and then averaged to obtain the total Raman spectrum corresponding to the selected 
spatial offset. Figure 2(c) presents an example of a SORS spectrum of PS corresponding to 1 
mm spatial offset (20 seconds acquisition time, 14 mW laser power). 

 

Fig. 2. (a) Semi-annulus pattern with radius of S displayed on DMD screen as collection zone 
and detection stripes imaged on the CCD camera using semi-circle collection geometry, 20s 
acquisition time. (b) Raman spectra of PS from the 16 collection lines shown in Fig. 2(a), each 
spectrum is the sum of 5 tracks. (c) The average spectrum from the measurement is shown in 
Fig. 2(b). The spectra are horizontally shifted to zero-offset position before averaging. 

Another advantage of the DMD-based SORS instrument is the ability to vary the spectral 
resolution of the instrument. The resolution is determined by the size of the collection 
elements, which is determined by the number of micro-mirrors selected for each collection 
point. Thus, the spectral resolution can be adjusted by varying the number of micro-mirrors 
for each collection point. 

The restriction of using a semi-circle pattern for the collection points applies only when 
Raman spectra are acquired over a broad spectral range. This avoids overlap between the 
spectra corresponding to the same vertical offset on the CCD. Nevertheless, for many 
practical applications of SORS it is common that only few selected Raman bands are used for 
analysis. If the spectral range is reduced such that the spectral overlapping on the CCD is 
avoided, then a full circular pattern of collection points can be used to in order to increase the 
collection efficiency. The condition for avoiding spectral overlap for the Raman spectrum on 
the central CCD track (track passing through the annulus centre) is: 

 sp
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where Δλ is the spectral range of the Raman light, dy/dλ is the linear dispersion of the 
spectrometer and fsp is the focal length of the spectrometer. This expression can also be 
expressed in a simpler form as: 
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where a is the grating period. 
This feature is illustrated in Fig. 3, which presents SORS spectra of a PS sample after 

adding an optical filter blocking light outside the 555 - 565 nm range (equivalent to 779 - 
1098 cm−1 Raman shift range at 532nm excitation). This filter ensures that only light 
corresponding to the two Raman peaks at 1001 cm−1 and 1032 cm−1 (Δλ = 1 nm) reach the 
CCD detector. Considering the parameters of the instrument presented here (a = 555 nm, fo = 
90 mm), the Eq. (3) indicates that at the centre of the annulus, overlap is avoided for any 
spatial offsets Δx larger than 0.16 mm. These results are confirmed by the spectra presented in 
Fig. 3, showing no overlap for the spectra at the centre of the collection annulus when Δx = 
0.3 mm (tracks 4 and 5). However, at the points near the top and bottom parts of the 
collection circle (e.g. tracks 2 and 3), spectral overlap is observed because the collection 
points corresponding to these CCD tracks on the DMD are closer. 

 

Fig. 3. (a) Full-annular collection geometry for SORS spectra and Raman spectra captured on 
the spectrometer CCD; (b) Raman spectra corresponding to selected rows on the CCD, as 
indicated by 1, 2, 3, 4, 5. (c) Mean SORS spectra obtained by averaging the spectra from semi-
annular geometry (top) and full-annular geometry (bottom). Overlapped spectra, such as row 2 
in (b), were excluded. Laser power: 14 mW, acquisition time 5 seconds. 

Macro-SORS of two-layer samples 

To demonstrate the capability and flexibility of DMD-based SORS, a two-layer structure 
consisting of a PMMA sheet as the top layer and PS sheet for the bottom layer was employed. 
Both polymer sheets are homogenous and non-transparent, with transport lengths 0.328 mm 
and 0.309 mm respectively (calculated from optical transmission measurements). As the light 
scattering parameters in the two layers are very similar, the spectral changes observed in the 
Raman spectra can be attributed to the sample geometry and the selection of the spatial offset 
values. Figure 4(b) describes the configuration geometry for the collection part for the SORS 
measurements, where a semi-annulus pattern of collection points was used. The SORS spectra 
measured for the PMMA/PS layered sample are presented in Fig. 4(c), and compared to the 



Raman spectra of pure PMMA and PS. Figure 4(c) shows that the Raman band at ~809 cm−1 
assigned to PMMA decreased gradually as the value of the spatial offset increased, while the 
intensity of the Raman bands assigned to PS (e.g. 1001 cm−1) increase. These results show the 
effectiveness of SORS for recovering signals from the deeper layers of the sample, even for 
samples with high light scattering properties such as PS. All spectra in Fig. 4(c) were 
measured by simply altering the S parameter in the LabVIEW program controlling the DMD, 
without changing or adjusting any mechanical or optical elements of the instrument, 
highlighting the ease of use and flexible alteration of spatial offset. 

 

Fig. 4. (a) Schematic description of the two-layer polymer samples used in the experiment for 
SORS demonstration. (b) The semi-annulus collection geometry displayed on DMD and used 
for collection of SORS spectra. (c) A set of spatial offset Raman spectra acquired from the 
two-layer structure consisting of d = 0.9 mm layer of PMMA sheet and 1.0 mm of PS sheet. 
The acquisition time was 20 s for each spectrum. Spatial offset is indicated next to each Raman 
spectrum. All the spectra are shown as raw without any post processing. (d) The ratio of 
Raman band intensity corresponding to the bottom layer (PS) and top layer (PMMA) as a 
function of the spatial offset. Red eye-guiding curves are exponential fittings to the data points. 

Figure 4(d) shows the dependence of the relative intensities of the Raman bands 
corresponding to the bottom layer (PS) to top layer (PMMA) on the spatial offset and the 
thickness of top layer. The data were obtained by integrating the area under the dominant 
Raman peak at 809 cm−1 for PMMA and at 1001 cm−1 for PS, respectively, after background 
subtraction. The plot shows three sets of data points calculated from measured SORS spectra 
from samples with PMMA thicknesses of 0.44 mm, 0.9 mm and 1.24 mm. It can be seen that 
the Raman intensity ratio of PS to PMMA varied as function of spatial offset, and the 
absolute values of the ratio are proportional to the thickness of top layer. As the spatial offset 



increases, the Raman intensity ratio from the sample with thinner top layer increased more 
rapidly, indicating that the thicker the top layer, the more the Raman signal from bottom layer 
will be attenuated. 

SORS measurements with simultaneous multiple offsets 

The software control for the selection of the collection points for the Raman light provides the 
ability to measure SORS spectra for multiple spatial offsets values simultaneously. Using the 
two-layer sample of PMMA film (0.9 mm thickness) on a thick PS film, SORS spectra 
corresponding to a range of spatial offsets were collected in a single acquisition (Fig. 5). The 
collection geometry was modified to a V-shaped chevron pattern (Fig. 5(b)), as the points in 
the arm represent different spatial offsets from the point of laser incidence. 

 

Fig. 5. (a) Two-layer sample structure of PMMA sheet and PS sheet for the multiple spatial 
offsets measurements. (b) The chevron pattern displayed on DMD. Each point in the arm 
represents a distinct spatial offset. (c) Stripes imaged on the CCD sensor using the chevron 
collection geometry. (d) A set of SORS spectra acquired from the two-layer polymer structure 
with PMMA thickness of 0.9 mm. The acquisition time was 20 s. Spatial offset is indicated 
next to the spectra. The spectra from pure PMMA and PS that obtained in separate 
measurements are also shown for comparison. (e) Ratio of Raman intensity of bottom layer 
(PS) to top layer (PMMA) as a function of spatial offset. Red curve is exponential fitting to the 
data points. 

While any straight line (including a vertical line) would provide the same collection 
efficiency as the V-shaped arrangement, the chevron pattern allows the selection of larger 
spatial offset values. The points in the two arms are symmetric with respect to the horizontal 
line across the point corresponding to the laser spot (zero offset), so the spectrum for each 
spatial offset is the sum of the two spectra corresponding to the collection points in the two 
arms. Figure 5(c) displays the spectral stripes imaged on the CCD sensor. It can be seen again 
that the pattern on the CCD closely matches that of the DMD image (Fig. 5(b)). The SORS 
spectra (Fig. 5(d)) acquired from the two-layer polymer sample show that for the spectra 



corresponding to larger offsets, the contribution of the 1001cm−1 Raman band corresponding 
to the PS substrate increases while the intensity of the 809 cm−1 band assigned to PMMA 
decreases. Under these experimental conditions, the signal to noise ratio of the spectra is 
lower compared to the circular collection pattern described in Figs. 3 and 4 because the 
collection efficiency is reduced. Nevertheless, these results demonstrate the flexibility of 
carrying out simultaneous SORS measurements over a broad range of offset values. 
Simultaneous SORS measurements with multiple offsets can be implemented in the 
conventional SORS setup based on fibre optic bundles by arranging the fibres in concentric 
annuli of different radii [26]. While the fibre bundle configuration provides better collection 
efficiency, the DMD-based SORS collection system allows measurements of a higher number 
of offsets set at smaller intervals. Furthermore, it is much simpler to switch between point, 
concentric and multi-offset collection geometries as the only changes required are in 
software. Similar to Fig. 4, the concentric circle configuration may be used in the DMD-based 
SORS if the spectral range is sufficiently narrow to avoid spectral overlap for the collection 
points of equal height. 

Micro-SORS for two- and three-layer samples 

Micro-SORS has been recently proposed for subsurface spectral analysis and attempting to 
resolve the chemical composition of thin (50 −500 μm thick) stratified layers in a sample [27–
29]. There are several variants of micro-SORS, the basic principles of which have been 
introduced by Conti et al [30]. Defocusing micro-SORS is the most basic and easiest way to 
implement micro-SORS technique, as it can be readily implemented on conventional Raman 
microscopes without any modifications. While several studies have demonstrated that this 
technique can provide chemical analysis for layered samples, the interpretation of the results 
can be difficult because the relationship between the defocusing distance and the actual 
values of the spatial offset is not very clear. To overcome these difficulties and obtain 
improved depth-discrimination, full micro-SORS spectra can be measured by delivering the 
excitation laser beam to an offset point by an extra objective and collecting the Raman 
scattered light along the optical axis of the microscope using the microscope objective. In this 
case, the offset value is unambiguously defined [30]. Recent studies have indicated that this 
full micro-SORS provides higher relative enhancement of Raman bands corresponding to the 
deeper layers compared to the defocusing micro-SORS [30]. However, the implementation of 
full micro-SORS is difficult and the collection efficiency of the Raman signal is very low 
(due to the single point measurement geometry). While axicon lenses can be used to vary the 
spatial offset in macro-SORS, this has not been implemented in micro-SORS because of the 
obvious implementation difficulties. 

Our DMD-based SORS instrument overcomes these difficulties as micro-SORS can be 
implemented as easily as macro-SORS on the same instrument by simply changing the 
microscope objective. Here, micro-SORS was implemented in the same Raman microscope 
system by simply replacing the 2 × objective used for macro-SORS with a 20 × (0.5 NA) 
objective for micro-SORS. The collection efficiency can be maintained above 25% by using 
the semi-annulus collection geometry as discussed previously (the full-annulus configuration 
can be used for 50% collection efficiency if the spectral range is restricted). To evaluate the 
instrument, we first tested the performance of the instrument when measuring SORS spectra 
of a two-layer sample using a thin PMMA film (200 μm thick) on a thick PS layer (1 mm). 
The SORS spectra obtained based on the semi-circle collection geometry are shown in Fig. 6. 
Figure 6(b) shows that increasing the spatial offset value leads to an increase in the intensity 
of the Raman bands associated to the PS substrate (e.g. at 1001 cm−1) and decrease intensity 
of the PMMA Raman bands (809 cm−1). The DMD provides unprecedented control over the 
values of the spatial offset values, from 15 μm to 120 μm, (with steps as small as 15 μm). 
Figure 6(c) presents the intensity ratio of the 1001 cm−1 (PS) and 809 cm−1 (PMMA) as a 



function of spatial offset, showing the typical trend of enhancement of the signals from 
deeper layers of the sample when the spatial offset increases. 

 

Fig. 6. (a) Two-layer sample structure of PMMA sheet and PS sheet for micro-SORS 
measurements. (b) Raman spectra of a two-layer sample consisting of a 200 μm thick PMMA 
film on thick PS substrate, acquired using the DMD-based micro-SORS system. The 
acquisition time was 20s for each spectrum. Reference Raman spectra from pure PS and 
PMMA are also displayed in the top and bottom for comparison. (c) Raman intensity ratio of 
PS (1001 cm−1) to PMMA (809 cm−1) as a function of spatial offset, calculated from the 
spectra shown in Fig. 6(b). The data points are fitted with exponential decay function, shown 
as red curve in the plot. 

To demonstrate further the potential of the DMD-based SORS instrument, Fig. (7) 
presents micro-SORS spectra of a three-layer sample, based on a PMMA top-layer (200 μm 
thick), PS mid-layer (100 μm thick) and hydroxyapatite powder (HA) bottom-layer (>1 mm). 
The data in Fig. 7(b) shows that when the measurement is carried out with no spatial offset 
(confocal imaging mode), the Raman spectrum contains only bands corresponding to the 
PMMA top layer. As the offset is increased to 25 μm, bands at 1001 cm−1 and 960 cm−1 
assigned to the PS mid-layer and HA bottom-layer begin to emerge. Further increase of the 
spatial offset leads to an increase in the intensity of the Raman bands associated to the PS and 
HA and a decrease of the bands assigned to PMMA (e.g. 809 cm−1). 



 

Fig. 7. (a) Schematic of a three-layer sample for micro-SORS experiment. (b) SORS spectra 
acquired using the semi-annulus collection geometry. The acquisition time for each spectrum 
was 20 s. Spatial offset is indicated next to the spectra. The spectra from pure PMMA, PS and 
HA (obtained in separate measurements) are also shown for comparison. (c) Raman intensity 
ratio of PS (1001 cm−1, black squares) and HA (961 cm−1, blue dots) to PMMA (809 cm−1) as a 
function of spatial offset, calculated from the spectra shown in Fig. 7(b). The data points are 
fitted with exponential decay function, shown as red curves in the plot. 

4. Conclusion 

Macro- and micro-scale SORS have been implemented on the same Raman micro-
spectrometer, facilitated by the relatively inexpensive addition of a DMD in the detection 
optical path. The DMD allows the system to be flexible and efficient in collecting the SORS 
signal using software-controllable spatial offsets, requiring no changes to the optical system 
or mechanical adjustment. Single-point, annular and multi-offset (chevron-shaped) collection 
geometries can be easily achieved by altering the pattern displayed on the DMD. These 
collection geometries allow high collection efficiencies for the Raman spectra (collection area 
as high as 50% for the full-annular configuration) or simultaneous measurements of SORS 
spectra at multiple offsets in a single-shot acquisition. In addition, the implementation of 
micro-SORS can be achieved on the same instrument by selecting a higher magnification 
objective. Macro- and micro-SORS measurements for two- and three-layered samples (layer 
thicknesses in the 100μm-1000μm range) were presented to demonstrate the potential and 
flexibility of the DMD-based SORS. Although this instrument has a limited range of spatial 
offsets (0-1 mm), this limitation is imposed by the optical microscope. In principle, the DMD 
can be implemented in Raman spectrometer using lenses with longer focal lengths than the 
microscope objectives used in this study, and optimized designs may allow a wider range of 
offsets. 
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