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Abstract: We describe a multifocal Raman micro-spectroscopy detection 
method based on a digital micromirror device, which allows for 
simultaneous “power-sharing” acquisition of Raman spectra from ad hoc 
sampling points. As the locations of the points can be rapidly updated in 
real-time via software control, this technique is compatible with automated 
adaptive- and selective-sampling Raman spectroscopy techniques, the latter 
of which has previously been demonstrated for fast diagnosis of skin cancer 
tissue resections. We describe the performance of this instrument and show 
examples of multiplexed measurements on a range of test samples. 
Following this, we show the feasibility of power-shared multifocal Raman 
measurements by combining with confocal auto-fluorescence imaging to 
provide guided diagnosis of tumours in human skin samples. 
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1. Introduction  

Surgery is the mainstay of treatment for many cancers and the modality most likely to 
cure patients. The main goal of cancer surgery is to remove the entire tumour while trying to 
leave in place as much healthy tissue as possible. However, one of the most difficult 
challenges is the accurate detection of tumour margins during surgery. Currently there is a 
lack of reliable intra-operative techniques for imaging tumour margins or assessment of 
resections specimens, and failure to remove the tumour cells increases the risk of tumour 
recurrence and need for re-operation, emotional stress to patients and healthcare costs. 

Raman micro-spectroscopy (RMS) is an optical technique based on inelastic scattering of 
light that can measure chemical differences between healthy tissue and tumours. Diagnosis 
models with simultaneous sensitivity and specificity higher than 90% have been demonstrated 
for many cancer types, including skin [1-3], breast [4-6], oesophagus [7], and lung [8,9]. 
Despite being able to measure subtle spectral differences between tissue structures, RMS 
mapping of large biological samples is slow (tens hours to days), making it unsuitable for 
imaging large tissue specimens typically resected in cancer surgery. Adaptive sampling 
techniques can be used for measuring large samples by initially choosing random sampling 
locations, and subsequently generating points iteratively using interpolation information 
between measured points [10]. Another selective-sampling approach is multimodal spectral 
imaging (MSI) based on integrated RMS with stratified sampling points generation by auto-
fluorescence imaging (AF) [11]. Tissue AF imaging, which has high sensitivity, high speed 
and low specificity, was used as a first step to determine the key morphological features of the 
sample with high spatial resolution. This information was then used to automatically select 



and prioritise the sampling points for RMS. With this sampling strategy, the number of 
spectra required for diagnosis of tissue resections of ~1 cm2 was reduced to 800-3000, 
depending on the complexity of the tissue sample [11,12].  

A common approach for reducing further the measurement time in RMS is to increase the 
power of the excitation laser. Although high power CW near-infrared lasers are available (e.g. 
>3W at 785nm), the excitation power is limited to the damage threshold of the order ~200mW 
per sampling point for ex-vivo tissue measurements. An alternative use of the laser power is 
to divide the main laser beam into several beams to allow multiple Raman spectra to be 
measured simultaneously (i.e. “multiplexed” or “multifocal” RMS, terms used 
interchangeably in this paper). If the power density for each beam is similar to the power 
density of the single-beam RMS, which depends only on the total power of the laser, this 
“power-sharing” multifocal RMS can in principle increase the sampling speed by a factor 
equal to the number of laser beams. Working towards this goal, line-scanning excitation has 
been demonstrated for speeding up RMS, and naturally complements the geometry of a 
spectrometer entrance slit [13,14]. Extensions of this power-sharing approach into two-
dimensions have been demonstrated using a grid/array of multifocal excitation points 
generated using either a micro-lens array [15], diffractive optical element [16], liquid-crystal 
spatial light modulator (LC-SLM) [17] For each of the different methods of excitation, a 
corresponding method for spatially filtering the light before dispersion inside the spectrometer 
is usually considered to maintain good spectral resolution and stray-light rejection. For the 
multi-focal grid/array excitation schemes, a matched grid of apertures can replace the single 
entrance slit, and either measures the spectra directly on the CCD simultaneously [15,16], or 
can be switched into pre-defined patterns, overlapping on the CCD and subsequently unmixed 
in postprocessing [17]. More flexible sampling locations, which are not restricted to grids of 
points, and can also be rapidly changed in software, have also been demonstrated using LC-
SLMs [18,19]. Although no spatial filtering was used for the Raman-backscattered light, 
simultaneous measurements of multiple polymer microparticles and bacterial spores was 
reported by guided sampling (bright-field images were used for selection of sampling points). 

Here, we build upon the ideas of AF-RMS multimodal spectral imaging [11] and 
simultaneous power-sharing measurements from arbitrary sampling locations [18,19] in order 
to increase the speed and diagnosis accuracy of tissue specimens resected during skin cancer 
surgery. In the first step, confocal AF imaging was used to generate sampling points for the 
multifocal RMS. While a LC-SLM was utilized for creating a power-shared excitation pattern 
for RMS (similar to [17-19]), the spectrometer slit was removed and a digital micro-mirror 
device (DMD) was added to behave as a software-reconfigurable reflective pseudo-“slit”, as 
demonstrated in [20] for fluorescence spectroscopy. While DMDs have been previously used 
in Raman micro-spectroscopy as spectral modulators replacing the CCD [21] or for spatially-
offset Raman spectroscopy [22], here the DMD is used in a novel way as a software 
configurable multi-slit pattern. The DMD can be programmed with an arbitrary binary 
“slit/pinhole” pattern, which is matched to the laser excitation pattern, ensuring that high 
qulity Raman spectra can be obtained from all laser beams (spectral resolution determined by 
the DMD pattern). In this paper we describe the performance of this new instrument, and 
demonstrate the feasibility of power-sharing multifocal MSI for the diagnosis of basal cell 
carcinoma (BCC) tumours in skin surgical resections. 

2. Methods 
2.1 Instrumentation  

A schematic description of the multifocal RMS instrument is presented in Fig.1. A CW 
Ti:Sapphire laser (SpectraPhysics) with ~3W maximum output power at 785nm was expanded 
onto a 512×512 pixel LC-SLM (BNS XY phase series with 785nm dielectric coating, Boulder 
Nonlinear Systems USA). A phase hologram for producing the desired beam pattern was 
generated in LabVIEW, and displayed to the LC-SLM. The LabVIEW program for generating 
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values can be inverted, directing the sampling pattern towards the CMOS camera, which is 
used for calibration. During a measurement,  the Raman-scattered beams are directed towards 
and then focused into a high-throughput imaging spectrometer (Acton LS785, Princeton 
Instruments USA), and dispersed onto a 256×1024 pixel CCD camera (Newton BR-DD, 
Andor UK). As the DMD now acts as the spatial filter for the spectrometer, the mechanical 
slit is opened to 2mm to allow the Raman light from the off-axis sampling points into the 
spectrometer. 

The synchronisation of all components was controlled in LabVIEW, with an interactive 
calibration routine where the position of LC-SLM-generated laser spots was matched with 
points within the microscope camera FOV. The calibration of the DMD was then performed 
in a similar manner using the CMOS camera imaging the reflection of the DMD. The CCD 
vertical offset was also calibrated, such that the position of each dispersed sampling point was 
known relative to the fixed 0th order beam, and could be read out individually into a spectrum 
automatically. 

For the MSI measurements, AF images (405 nm laser excitation, emission 450-480nm 
range) of tissue samples were acquired on a separate microscope (Nikon Ti-Eclipse) equipped 
with a C2 confocal fluorescence scanner. A transformation routine based on brightfield 
images recorded on both the multifocal RMS and confocal AF microscopes was developed to 
move between the stage co-ordinate systems of the two instruments. The AF images were 
segmented using a thresholding method with maximum homogeneity for overall segments, 
and sampling points for RMS were generated based on an algorithm developed earlier [12]. 
Co-ordinates within the FOV (180×60 µm), were grouped into batches of 6 points using k-
means clustering. Additional checks on the co-ordinates were carried out to ensure no vertical 
overlap on the CCD between the dispersed Raman spectra (which would create cross-talk), 
and that each batch had 6 beams to minimize variations in power density of sampling points 
between batches. The factors limiting the FOV were the size of the DMD display, the 
maximum spectrometer slit width (2 mm), and the size of the optics in the collection path 
(25.4 mm diameter). During an automated multiplexed MSI measurement, the stage would 
move to place the 0th order beam at the allocated location on the tissue, and the SLM would 
then automatically update to create the desired excitation pattern for the 1st order beams in the 
batch (with the corresponding DMD pseudo-slits). The CCD then acquired the spectra 
simultaneously during one acquisition window (1-2s integration time, 50 kHz read-out speed) 
using two horizontal tracks per sampling point, before moving to the next batch. 

As there is not only a vertical offset of measured points on the CCD, but also an offset in 
the dispersion direction, the Raman shift axis was corrected for each measured spectrum. This 
was achieved by using the 320 cm-1 Raman peak corresponding to the MgF2 substrate. Due to 
this shift, the spectral range of the Raman measurements differed for each sampling point, and 
thus the spectral range was cropped to 520–1830 cm-1, ensuring the same number of data 
points in each spectrum. 

2.2 Tissue samples 

All skin tissue samples were obtained during Mohs micrographic surgery at the Nottingham 
University Hospitals National Health Service (NHS) Trust. Ethical approval was granted by 
the Nottingham Research Ethics Committee (07/H0408/172) and informed consent was 
obtained from all patients. The samples were kept frozen at -20˚C until used for Raman 
spectral measurements. For each tissue sample, the diagnosis was based on adjacent 
haematoxylin and eosin (H&E) stained tissue sections. In total, samples from 15 patients with 
basal cell carcinoma on the face or neck were included in this study: 10 for the classification 
model and 5 for MSI.  

2.3 Data postprocessing 



Before any processing to the Raman spectral data, the recorded spectra were first calibrated to 
their relative wavenumbers, and the fingerprint region from 600 to 1800 cm-1 was selected 
[25]. Cosmic-rays were then removed from the spectra. All spectra were normalized to zero 
mean and unity of standard deviation.  

In order to build a spectral dataset for a diagnostic model, raster scanned Raman spectral 
images from the tissue blocks were used. These images, with sizes of 960 x 960 µm2 at 15 µm 
stepsizes, were clustered using k-means analysis, and compared to the adjacent H&E sections. 
The clustered regions were further processed to be well correlated to the H&E sections. For 
those spectra which are known to tissue diagnosis, labels were given with classes of BCC, 
epidermis, dermis and fat. and this process was repeated for tissue blocks from 10 patients.  

The diagnostic model was built with a series steps; firstly, a quality control to remove the 
spectra when the intensities are saturated, as this is normally from the contamination and burnt 
to the samples; secondly, principal component analysis was used to identify the dye and fat 
spectra based on a threshold score corresponding to the second and third principal 
components; finally, a multinomial logistic regression classifier was used to discriminate 
BCC, epidermis, and dermis based on selected Raman spectral features. First, the areas under 
the following bands were calculated after subtraction of local linear baselines: A1 = 772 - 800 
cm-1, A2 = 843 - 865 cm-1, A3 = 825 – 946 cm-1, A4 = 993 – 1022 cm-1, A5 = 1070 – 1115 cm-1, 
A6 = 1235 – 1279 cm-1 and A7 = 1279 – 1327 cm-1.  These band areas were then used to 
calculate the ratios {A1/A4, A2/A4, A3/A4, A5/A4, A6/A7}, which were used as input for a 
multinomial logistic regression classifier. The regularization of the model was performed 
using 5-fold cross validation to justify the performance with target 95% sensitivity. The 
spectral measurements on multiple locations within a single segment were averaged into a 
single spectrum, which is then classified by the model.  

 

3.Results 

3.1 Performance of the DMD as a reflective pseudo-slit for Raman spectroscopy 

The application of a DMD as a reflective slit for Raman spectroscopy has not been 
demonstrated previously to the best of the authors knowledge. Thus the performance of the 
multiplexed RMS instrument in terms of spectral resolution should be tested and compared to 
a traditional mechanical (transmitting) slit. First, spectra of tylenol samples were acquired 
using no spatial light modulation (uniform hologram displayed to LC-SLM), in a single beam 
setup, with the DMD behaving as a simple mirror (i.e. all light directed towards the 
spectrometer). The mechanical slit was opened incrementally, and the full-width at half 
maximum of the 650 cm-1 Raman peak measured for each slit width (chosen due to the 
adequate isolation from other bands). Then, after opening the slit to 2mm, a single first-order 
LC-SLM beam was generated, and Raman spectra were acquired using various sizes of 
pseudo-slit on the DMD. Fig. 2(e) shows that the spectral resolution improves when the size 
of the slit is reduced, both for the DMD and mechanical slits. Furthermore, the spectral 
resolution achieved with the DMD matches the results obtained using the mechanical slit, 
indicating the suitability of the DMD as a reflective slit for multiplexed RMS.  

A departure from the functionality of a traditional slit is that the DMD slit height can also be 
varied, but this does not affect spectral resolution (assuming the DMD is well-aligned with the 
dispersion axis of the spectrometer). The height was chosen to be roughly the same as the slit 
width, as increasing it only slightly improves the signal-to-noise for well-focused laser spots. 
However, this increase also limits the spacing on the CCD vertical axis, and hence the 
minimum distance between two sampling points. For samples with efficient Raman scattering, 
this height can be decreased, allowing an increased number of beams able to fit on the CCD. It 
should be noted that this DMD-based configuration also has the added advantage that any 
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4. Conclusions 

We have described a novel technique for true power-sharing multifocal RMS 
measurements from ad hoc software-generated sampling locations, obtaining spectra of 
sufficient quality to allow automated diagnosis of cancer margins in skin tissue. This was 
achieved by the coupling of a LC-SLM for laser-excitation and a DMD for Raman detection. 
The capability of the DMD as a multi-point reflective slit/pinhole was demonstrated for the 
Raman spectrometer, and shown to behave the same as a traditional mechanical slit. For a 
homogeneous polystyrene film, 24 simultaneous measurements were achievable with the 
current instrument. For mixed crystal samples and chicken skin, an LC-SLM blazing function 
was used to evenly distribute the power between each sampling point, and was able to 
measure spectra with comparable SNR from 10 simultaneous points. In principle, these 
numbers can be increased further with larger FOV optics and higher total laser power. 

For tissue specimens obtained in cancer surgery, the multifocal Raman modality was 
combined with auto-fluorescence imaging for selective-sampling Raman measurements. This 
allows several measurement options for decreasing the overall measurement time. One 
approach is to acquire multiple spectra simultaneously for and obtain diagnosis on each 
individual spectrum, which speeds up the total measurement time by a factor proportional to 
the number of beams. The second option is to average all spectra from each segment to 
produce a higher SNR spectrum for diagnosis, with no added acquisition time. While we 
demonstrated diagnosis on large skin tissue samples, these approaches would be particularly 
useful for faster automated cancer diagnosis on much larger tissue samples obtained during 
breast and head-and-neck cancer surgery.  
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