
Kinetic Instabilities in the Growth of One Dimensional Molecular Nanostructures

J. Ben Taylor and Peter H. Beton*
School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom

(Received 3 July 2006; published 8 December 2006)

We develop a theory for the growth of one dimensional (1D) chains stabilized by anisotropic
interactions, such as hydrogen bonding. Molecular chains are nucleated, grow, and may then undergo a
kinetically driven transition to a two dimensional morphology. Kinetic Monte Carlo simulations show that
extended 1D growth occurs between two temperature limits determined by two distinct kinetic insta-
bilities. The limiting temperatures depend on interaction strength and deposition rate and, for a certain
parameter range, 1D growth is completely suppressed.
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Anisotropic intermolecular potentials arising from hy-
drogen bonding, metal coordination, and dipolar coupling
promote the formation of complex arrangements of mole-
cules adsorbed on metallic and semiconductor surfaces [1–
6]. Depending on the symmetry of the intermolecular
potential it is possible to form rows [1,2], open networks
[3–5], and clusters [6]. Kinetic effects play an important
role in these processes which, under appropriate condi-
tions, occur spontaneously and provide examples of
surface-based molecular self-assembly. It is well known
that kinetic effects control the dimensionality and mor-
phology of growth of adsorbates which interact through
isotropic bonding [7–10]. To date, the interplay between
anisotropic molecular bonding and growth kinetics has
not been explored, but a theoretical framework is now
required for a fundamental understanding of the forma-
tion and temporal stability of self-assembled molecular
nanostructures.

In this Letter we present a theoretical investigation of the
growth morphologies which occur for uniaxially aniso-
tropically bonded molecules and show that the resulting
one dimensional (1D) nanostructures provide artificial
edges at which further adsorbed molecules may be tempo-
rarily bound. A combination of fast edge diffusion [10–12]
and the corner (1D Schwoebel) barrier [13–16] encoun-
tered at the end of the molecular rows, leads to a competi-
tion between 1D growth and nucleation events which
trigger a transition to two dimensional growth. We find
that extended 1D molecular rows, stabilized by anisotropic
interactions, are kinetically stable only over a finite tem-
perature range.

Kinetic effects are modeled using established
Monte Carlo schemes [17–19], modified through the in-
troduction of a uniaxially anisotropic intermolecular po-
tential [Fig. 1(a)]. Adsorbate diffusion is simulated by
allowing molecules to hop from site to site on a hexagonal
grid. Diffusion trajectories are calculated [20] as the mini-
mum energy pathway (MEP) across the potential energy
surface due to the isotropic van der Waals interactions
arising from occupied nearest neighbor sites (defined as

the eight sites adjacent to the initial and final positions for a
particular transition). We assume a Lennard-Jones pair
potential with an equilibrium separation equal to the lattice
constant of the hexagonal net and binding energyEVDW. To
take account of the anisotropic potential, the diffusion
barrier height derived from the MEP is increased by EHB

(2EHB), if the molecule is diffusing from a site which is
stabilized by one (two) hydrogen bonds through alignment
of nearest neighbor molecular axes. It is assumed that
molecule-substrate interactions are weak and do not con-
tribute to the diffusion barrier. This approach is signifi-
cantly different from previous computational studies of
directional growth for which a strongly anisotropic sub-
strate is assumed [21–23].

The simulation of long time scales was implemented
following Refs. [17,18,24]. The probability for molecule i
to hop to site r is taken to be proportional to the Arrhenius
hopping rate, �ri � �0 exp��Eri=kT�, where Eri is the dif-
fusion barrier and �0 is the barrier attempt frequency. The
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FIG. 1. (a) EVDW and EHB —isotropic and anisotropic binding
energies (alignment illustrated by bars). (b)–(e) Variation of
cluster morphology with anisotropic forces: R �
10�15�0 MLs�1, T � 100 K; (b) EVDW � 520 meV, EHB � 0;
(c) EVDW � EHB � 260 meV; (d) EVDW � 130 meV, EHB � 0;
(e) EVDW � 130 meV, EHB � 260 meV.

PRL 97, 236102 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
8 DECEMBER 2006

0031-9007=06=97(23)=236102(4) 236102-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.97.236102


mean hopping rate for a simulated molecule is then the sum
of the rates for transitions to all unoccupied neighboring
sites. The overall occurrence of events in the system, �tot, is
the average rate of deposition plus the sum of the hopping
rates for all molecules, �tot � RA�

P
i;r�

r
i , where R is the

deposition rate in monolayers (ML) per second and A is the
number of simulated lattice points. The simulated system
evolves sequentially through the random selection of
events, chosen according to the event frequency weighted
by ��1

tot . After each event, the simulated ensemble is up-
dated through movement of the selected molecule i to site
r, or the deposition of a new molecule onto an unoccupied
site chosen at random. All results were calculated using a
lattice of 100� 100 points with periodic boundary
conditions.

Adsorbate rotations are handled separately, after each
diffusion event. A molecular axis is free to rotate until an
anisotropic bond is formed, upon which the axis is ren-
dered immobile. Once this and any other anisotropic bond
has been broken (through translational motion), it is again
unfixed in orientation. If any such axis can rotate to form an
anisotropic bond, it is considered to do so spontaneously,
with any choices in bonds or molecule rotations made
randomly.

We first consider qualitatively the influence of aniso-
tropic interactions upon cluster morphology. Figure 1(b)
shows a simulated cluster formed by molecules with iso-
tropic interactions. The introduction of an anisotropic in-
teraction [Fig. 1(c)] results in the preferential growth and
alignment of molecular axes along the principal directions
of the lattice. Figures 1(d) and 1(e) demonstrate the effect
of introducing anisotropic forces with weaker isotropic
forces. In Fig. 1(e) cluster growth is biased to the point
that purely 1D rows are formed.

The occurrence of 1D structures, such as Fig. 1(e), are of
particular interest. To this end, simulations were performed
to monitor the point at which a transition from purely 1D to
2D growth occurred. Results from these simulations are
given in Fig. 2, which shows the probability of forming a
purely 1D structure as a function of the number of depos-
ited molecules, over a range of temperatures. For these
calculations, EVDW � 200 meV, EHB � 600 meV, and the
deposition rate was set as R � 10�15�0 MLs�1, corre-
sponding to 0:01 MLs�1 for �0 � 10 THz. The probabil-
ities for each temperature were obtained by averaging over
1000 simulations. We find pure 1D growth only in a limited
range of temperatures with upper and lower bounds TH and
TL. As we show below, 1D growth is kinetically unstable
outside this temperature range.

Figure 2(a) shows results for high temperatures, T > TH.
The upper curve shows that for T � 290 K pure 1D growth
is obtained. As the temperature is increased the probability
of 1D growth falls rapidly due, primarily, to the mechanism
identified in the inset to Fig. 2(a). In this process, referred
to as Type I, nucleation occurs between two molecules

which hop off the end of the 1D cluster, over an energy
barrier equal to EHB, and diffuse along the edge of the line.
If two such molecules meet, the nucleation of a new line
occurs. This line grows along the edge of the preexisting
1D cluster and the growth is no longer classified as purely
1D. This process is independent of deposition rate and, in
the absence of deposition, controls the temporal stability of
1D lines.

Figure 2(b) shows results for a low temperature regime,
T < TL. Again, the uppermost curve, T � 166 K, shows
that pure 1D growth occurs. However, in this case the
probability of 1D clusters falls as the temperature is re-
duced, rather than increased as in Fig. 2(a). The transition
away from pure 1D growth occurs through the mechanism,
denoted Type III [see Fig. 2(b) inset]. Here the relevant
nucleation event is driven by two molecules which have
been captured on the edge of the preexisting 1D cluster and
are diffusing along its length, but have not yet been ab-
sorbed onto the cluster end. Unlike the Type I mechanism
this process is strongly dependent on deposition rate. A
further mechanism termed Type II, which is a hybrid of the
Type I and Type III processes, can also occur but is only
significant within the parameter range where TL and TH
converge to a common value (see below).

These mechanisms are distinguished by three important
time scales: (i) �dep the average time between deposition
events, (ii) �on the average time a molecule spends on the
side of a line before hopping onto the row end, (iii) �off the
average time before a molecule hops off an end onto the
cluster edge. The latter two time scales, and associated
energy barriers, are illustrated in Fig. 3(a).

At high temperatures (T > TH) Type I thickening is
prevalent. As the temperature is decreased (TL < T <
TH), the hopping of molecules off the end of the line slows
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FIG. 2. Probability of forming a 1D cluster (see inset for
parameters) for different growth temperatures. Symbols corre-
spond to simulations and continuous curves to theory (see text).
In the range 166 K–290 K the growth is 1D. Insets show three
mechanisms which limit pure 1D growth through the nucleation
of new rows.
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exponentially (�off ! 1) and the Type I process is sup-
pressed. In this regime deposited molecules become bound
to and diffuse along the edge of the row and may still hop
over the 1D Schwoebel barrier to the row end. Through this
process the line continues to grow. However, at low tem-
peratures (T < TL) additional molecules are, on average,
adsorbed on the row edge before diffusion onto the row end
can occur, resulting in a Type III process. This is due to the
long characteristic time for diffusion along the cluster edge
and the high probability of reflection by the 1D Schwoebel
barrier at the row end (�on ! 1).

In Fig. 2 we also plot theoretical predictions for the
probability of 1D growth, based on a calculation of the
probabilities, pI, pII, and pIII for the nucleation events
governed by the Type I, Type II, and Type III mechanisms,
respectively. The excellent agreement between the theory
and simulations confirms that the mechanisms we identify
control the kinetic stability of 1D growth.

Our theoretical curves are derived under the two primary
assumptions that the time for a free molecule to be cap-
tured by a cluster is negligible and that molecules do not
hop away from a cluster once captured by a side or end.
Within these assumptions �off and �on are given by Eqs. (1)
and (2), respectively.

 �off � �2�0 exp��EHB=kT���1 (1)

 �on � n�side � n��SB � �side�=�N � 2�: (2)

With respect to Eq. (1) the factor of 2 accounts for the four
possible transitions (two from each end) and a geometric
factor which results from the fact that, for the choice of a
hexagonal array, a molecule crossing the barrier EHB is
temporarily stabilized in an intermediate site before either
hopping back onto the end or, with equal probability, onto
the cluster edge (see Fig. 3). The time scale �on, compa-
rable to the form proposed in Ref. [16], is a function of the
number of molecules forming the 1D line, N. �side and �SB

are the average residence times for a molecule hopping
between equivalent sites on the row edge and a molecule
hopping away from a site at the end of a row edge,
respectively [see Fig. 3(a)]. Explicitly,

 �SB � ��1
0

�
exp

�
�
�EVDW

kT

�
� exp

�
�
�EVDW

kT

��
�1

(3)

 �side � ��1
0

�
2 exp

�
�
�EVDW

kT

��
�1
: (4)

The coefficients � and � are geometric factors determined
by the shape of the isotropic potential and for the Lennard-
Jones form considered here are � � 0:927, � � 0:593
(note that �>�). The parameter n in Eq. (2) is the average
number of molecular steps before capture by the end of the
line and can be calculated using finite difference equations
[25,26], yielding n � 2�N � 2��1� ��=�� 1, where � �
�0�SB exp���EVDW=kT� is the probability of crossing the
Schwoebel barrier.

Assuming events can be modeled by Poisson statistics,
pX, representing the probability of a 1D line undergoing a
Type X transition before the addition of another molecule,
may be written as

 pI ’ 1� exp
�
�

pc�dep

�on � �off

�
(5)

 pII ’ 0:5pmeetpedge

�
�on

�on � �off
� 1� exp

�
�
�on

�off

��
(6)

 pIII ’ 0:5pmeetp2
edge

Z 1
0

1

�dep
exp

�
�

t
�dep

�
exp

�
�

t
�on

�
dt:

(7)

Here we have introduced the probabilities pmeet�N� ’ �1�PN�2
a�2 �1� �a� 1�=�2��1 � 2���1�=�N � 2� [25,27],

pedge�N� � �2N � 1�=�2N � 7� (	1 for large N), and
pc�N� � 0:5pmeet�N � 1��1� exp���on�N�=�off��. These
represent, respectively, the probability that two molecules
on the side of a cluster will meet, the probability that a
deposited molecule will be captured by an edge (as op-
posed to an end) of a 1D cluster, and the conditional
probability that a Type I process will occur if a molecule
is already adsorbed on the row edge.
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FIG. 3. (a) Schematic showing characteristic times (�SB, �side)
and associated barriers (� , X, 
) for single translation steps
along edge of 1D line (� and � are constants discussed in text).
Time scales �on and �off also identified schematically. (b) and
(c) show the temperature dependence of forming 1D clusters
composed of 60 molecules with varying (b) anisotropic bond
strength and (c) deposition rate for fixed EHB � 300 meV.
Symbols show the results of simulations, with the lines giving
the associated theoretical curves [Eq. (8)].
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Defining the probability of a line of length N thickening
by any mechanism before a deposition event results in the
lengthening of the line, P�N� � pI � pII � pIII, the proba-
bility of obtaining a 1D cluster of length N, P1D�N�, is

 P1D�N� � 1�
XN
N0�2

"
P�N0�

YN0�1

i�1

1� P�i�

#
: (8)

This expression, which contains no free parameters, is
plotted in Fig. 2.

Further simulations have been undertaken to determine
the dependence of TL and TH on deposition rate and
anisotropic bond strength. Strictly, these bounding tem-
peratures are dependent on the length of the 1D line, but
for long lines the dependence is weak. The probability of
obtaining a 1D cluster for N � 60 is plotted against tem-
perature for varying anisotropic bond strengths [Fig. 3(b)]
and deposition rates [Fig. 3(c)]. The temperature TL is
unaffected by varying EHB, since Type III thickening is
independent of anisotropic bonding. Conversely, TH de-
creases as EHB decreases. In fact, the temperature range
over which 1D clusters are formed vanishes for EHB=EVDW

below	1:8. In this case, the Type I to Type III transition is
bridged by Type II thickening. The region of stable 1D
growth (TL < T < TH) is also dependent on the deposition
rate [Fig. 3(c)]. A lower deposition rate gives rise to a
reduction in both TL and TH, since the time available for
edge diffusion increases, reducing the probability of Type
III thickening but increasing the chances of Type I
thickening.

Figure 4 more clearly demonstrates the conditions for
which 1D growth (as described for Fig. 3) is expected, for
varying temperatures and anisotropic interactions. These
conditions are represented by the shaded region for which
R � 10�15�0 MLs�1. Also shown are the boundaries for
the equivalent region for R � 10�21�0 MLs�1.

Overall our results confirm that growth of 1D nano-
structures is induced by uniaxially anisotropic intermolec-
ular interactions. However, while anisotropic forces are
important, they do not necessarily lead to 1D structures.
A crucial role in the 1D growth process is also played by
temperature and deposition rate. While our discussion has
been focussed on a particular class of surface-based self-
assembly, we note that many molecular adsorbates have
strongly anisotropic interactions. Our approach is therefore
likely to have wider relevance to the morphology and
dimensionality of organic thin film growth.
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FIG. 4. Regions of stable 1D growth.
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