Faculty of Engineering
 

Image of Matthew Wadge

Matthew Wadge

Research Fellow, Faculty of Engineering

Contact

Biography

Dr. Matthew Wadge is a Research Fellow within the Advanced Materials Research Group at the University of Nottingham (UoN). He holds a First-Class BSc (Hons) degree in Biomedical Materials Science, and a Ph.D. in Materials Engineering and Materials Design, also from UoN, having completed his PhD in August 2020. He previously held the post of EPSRC Doctoral Prize Fellow (2020-2021). His research has primarily focussed on the production of thin film coatings via wet chemical and PVD methodologies, specifically magnetron sputtering for a plethora of different applications, including biomaterials, energy storage, water treatment and electrocatalysis. Presently, his fellowship is investigating the development of new high pressure, ambient temperature intermetallic alloys for hydrogen storage systems (H2COOL).

Previous research during his Doctroal Prize Fellowship investigated the self-assembly of microspheres into 3D constructs utilising alkaline titanate structures to do so, with the view to generate a platform technology using these materials. He has received a number of prestigious prizes including: The Armourers and Brasiers' Best PhD Student and Best BSc/BEng Student of the Year Awards (2020 & 2018, respectively), presentation prizes at both National (UKSB, Future Materials, etc.) and International (ESB and WBC) conferences, being named as one of '15 under 30' to look out for in Materials Science by Materials World, as well as being a National Finalist in the IOM3 Younger Persons Lecture Competition (2019).

Matthew has also taken on additional voluntary roles as a STEM outreach ambassador for the Pint of Science festivals (2017-2020). He has helped organise and co-ordinate the Pint of Science festival, first as an event manager (2017-18), then as the city co-ordinator for Nottingham (2018-19), as well as his most recent role as one of the National advisors to the Pint of Science central team (2019-20). He co-ordinated a sell-out festival in 2018/19, with over 1500 attendees; 3rd largest festival turnout in the UK, including a sell-out event (over 400 attendees) with astronaut Dr. Michael Foale CBE.

Matthew holds several professional memberships, including Member of the IOM3 (MIMMM), Fellow of the Institute of Biomedical Sciences (FIBMS), Alumnus of the Armourers and Brasiers, as well as Membership of the UK and European Biomaterials Society and the East Midlands Materials Society. He has reviewed for international journals, including Journal of the European Ceramic Society, Materials, Coatings, Surface & Coatings Technology, and Infectious Disease Reports.

Research Summary

I am currently employed as a Research Fellow working on development of new high pressure, ambient temperature intermetallic alloys for hydrogen storage systems, as well as previously holding an EPSRC… read more

Recent Publications

Current Research

I am currently employed as a Research Fellow working on development of new high pressure, ambient temperature intermetallic alloys for hydrogen storage systems, as well as previously holding an EPSRC Doctoral Prize Fellowship in the production of self-assembling titanate structures. In addition, I am also Laboratory Supervisor to the Thin Films Lab at the University of Nottingham (UoN). I am responsible for the maintenance, modification, training, and use of the three magnetron sputtering rigs within this laboratory, which include: a TEER UDP-650 unbalanced, closed-field magnetron sputtering rig capable of multilayer sputtering due to its four orthogonally mounted magnetrons; a UoN vertically mounted custom rig enabling coating from powder targets; and a UoN custom barrel coating rig enabling handling and coating of powders, which highlighted the importance and use of magnetron sputtering to coat AM powders for improved laser absorptivity. I also have experience in coating and generating metallic, ceramic and glass materials; 2D, 3D and powder substrates; as well as oxide, nitride, and hydride reactive sputtering; publishing widely in these areas.

Past Research

Matthew's research has investigated the formation of a platform technology to employ self-assembled core-shell contructs, to be utilised in various fields, including biomaterials, water treatment, battery, and energy technologies, to name a few. Through simplistic wet chemical treatments, 3D constructs can be formed with macro, micro and nanoporoisities.

Faculty of Engineering

The University of Nottingham
University Park
Nottingham, NG7 2RD



Contacts: Please see our 'Contact us' page