School of Biosciences

Animal Science
Course Handbook

2016-2017
Please note that all of the information given in this Student Course Handbook was correct at the time of going to press; Schools reserve the right to amend course structures or information and amend, substitute or withdraw modules detailed in this publication. Comments or feedback on the contents of this handbook are welcome, and will be used in the revised edition for 2017-2018. Any comments concerning this publication should be addressed to Kathy Wilson (Programme Manager) at the Sutton Bonington Campus or e-mail Kathy.Wilson@Nottingham.ac.uk.

This handbook is available in alternative formats. Please contact Kathy Wilson by emailing Kathy.Wilson@Nottingham.ac.uk or the Student Services Centre at the Sutton Bonington Campus to request an alternative format.
CONTENTS

1 Dates for Your Diary ... 2
2 Course Handbook ... 3
3 The School of Biosciences .. 3
4 Advice .. 3
5 Student Commitment ... 5
6 Your School and Your Studies ... 5
7 Staff Roles ... 6
8 Academic Staff and Locations .. 9
9 Course Structure, Organisation and Choosing Your Modules 12
10 Course Structure ... 14
11 Table of Modules ... 17
12 Timetable Information ... 20
13 Teaching Methods ... 22
14 Assessment, Progression, Compensation and Reassessment 24
15 Extenuating Circumstances ... 27
16 Plagiarism and Paraphrasing ... 29
17 Personal Academic Development 35
18 Academic Tutoring ... 36
19 Attendance Monitoring ... 37
20 Complaints and Appeals Procedures 38
21 Industry Placements ... 39
 21.1 Year Out & Erasmus .. 40
 21.2 Studying Outside of the UK ... 43
22 Channels of Communication ... 44
23 Student/Staff Consultation ... 45
24 Students’ Access to Academic Staff policy 46
25 Quality Assurance ... 47
26 Coursework and Examination Feedback 48
27 Student Services/Departments ... 50
 27.1 Student Services Centre ... 50
 27.2 Libraries .. 50
 27.3 IT Facilities .. 51
 27.4 Accessibility .. 53
 27.5 Careers and Employability Service 55
28 Health, Safety and Security .. 56
29 Modules (including from Other Schools) 57
 YEAR 1 MODULES ... 58
 YEAR 2 MODULES ... 74
 YEAR 3 MODULES ... 95
30 Appendices: ... 124
1 Dates for Your Diary

Term dates

Autumn Term
Monday 26 September 2016 – Friday 16 December 2016

Spring Term
Monday 16 January 2017 – Friday 7 April 2017

Summer Term
Monday 8 May 2017 – Friday 23 June 2017

Semester dates

Autumn Semester
Monday 26 September 2016 – Saturday 28 January 2017

Spring Semester
Monday 30 January 2017 – Friday 23 June 2017

Exam dates

Autumn Semester
Monday 16 January 2017 to Saturday 28 January 2017 – including Saturday 21 January 2017

Spring Semester
Monday 22 May 2017 to Saturday 10 June 2017 – including Saturday 27 May and Saturday 3 June 2017

Late summer resits
Monday 21 August 2017 to Wednesday 30 August 2017 – excluding Saturday 26 August 2017
2 Course Handbook

This Manual is designed to give you all the information you need to allow you to progress your studies at Nottingham. It describes the various procedures and practices that are in place which are designed to help you achieve your goals. From time to time these have to be changed to meet new requirements put upon us by the University and changes are also made based on student opinion. Therefore at any time if you have a positive suggestion, which can bring about some improvement in what we do, please bring these to the attention of the Student Guild who are represented on a number of School Committees.

3 The School of Biosciences

The School of Biosciences is part of the Faculty of Science and is based mainly on the Sutton Bonington campus; the BSc/MSci Environmental Science and BSc Environmental Biology degrees are located at the University Park campus.

The School of Biosciences has over 80 academic members of staff, 895 undergraduate students and about 550 research and taught postgraduate students. Academic staff are allotted to one of 5 Divisions which reflect specific areas of teaching and research; Agricultural and Environmental Sciences, Animal Sciences, Food Sciences, Nutritional Sciences and Plant and Crop Sciences.

You can find full and detailed information about the School and its staff on our Website – www.nottingham.ac.uk/Biosciences

4 Advice

One of the first people you will meet is your Personal Tutor. Your Personal Tutor will be a member of academic staff with whom you have regular meetings, sometimes as part of a group. Your Tutor is there to give you help and support in person as well as guidance in academic matters. You should make every effort to establish a good relationship. Your Tutor will provide you with advice and details of your exam performance so it is essential that you discuss your progress, in confidence, with him/her at regular intervals.

Here are a few pieces of free advice; they come from fellow undergraduate students and from academic staff who helped us prepare this document.

- Most lecturers teach at a faster pace than you may be used to from school or college.
- Develop good note taking skills early in your university career.
- Lectures are progressive, i.e. each one builds on the last. Missing lectures is therefore dangerous, as is ignoring things that you didn’t fully understand at the time.
- Module Conveners may issue a book list. Check with academic staff and 2nd and 3rd year students which are the most valuable to buy. You may not be able to afford them all. Books on your reading lists can be borrowed from the Libraries.
- You should expect to work outside of class time. This may include reading, rewriting your notes, doing coursework, writing reports, etc.
- Don’t be afraid of asking questions in lectures. Lecturers like to know that students are following what they are saying. The question you ask may be exactly what other students were wondering but were afraid to ask. Most lecturers will provide opportunities for questions. You can also ask for help outside of lecture time.
• Don’t be afraid to approach staff for help. Their offices are accessible to you and they have telephones and email. They are busy people but a large part of their work involves dealing with students. Please see “office hours” section for further details of how to make appointments with academic staff.
• Make use of their time, advice, experience and expertise.
• Remember that activities continue after the exams and that you are required to remain at the University until the end of each semester.
• Never hesitate to see the lecturer if you are having difficulty with his / her module or don’t understand why you were given a particular mark.
• Handing in coursework late means losing marks. 5% will be lost for every working day late.
• The School has a Learning Community Forum with staff and student representatives from each year. Use this system to make constructive comments about your course.
• If you become ill and have to miss more than a couple of days, or a coursework deadline, or if your performance in an exam is affected, go to see your tutor and complete an Extenuating Circumstances Form and on the website: http://www.nottingham.ac.uk/academicservices/qualitymanual/assessmentandawards/extenuating-circumstances-policy-and-procedures.aspx
• Missing an exam for any reason is extremely serious and should be avoided if at all possible. Let your Tutor know IMMEDIATELY and complete an extenuating circumstances form available as above.
• Check your email daily and Moodle updates; otherwise you may miss vital information.
5 Student Commitment

Students are expected to access their e-mail accounts regularly as this is the main means of communication. Please do not use any other personal email account which you may have for communication within the University. If you do, you risk losing out on important information.

You are required to:

- **Read** this handbook and other documents referred to so that you are clear about the structure of your degree course and what is expected of you.
- **Abide** by University Ordinances, Regulations and other codes of practice (e.g. Computing, Safety etc.).
- **Read notices** placed on official notice boards, these provide an important primary channel of general communication and may advertise such information as re-arrangements to the teaching timetable.

> It is wise to carry a diary in which to note appointments with tutors, module conveners, course diary, etc.

6 Your School and Your Studies

Teaching Staff - Lecturers are responsible for teaching components of modules and for setting and marking assignments and examinations.

Each module has a **Convener** who is responsible for its organisation. At the start of the module, the Convener will issue to each student a document describing its aims, content, objectives, transferable skills, methods of assessment, dates for submission and return of coursework and penalties for late submission. Students will be given coursework turnaround details. S/he will also conduct a feedback exercise at the end of the module to gauge student opinion.

Each course has a **Course Director**, responsible for overseeing its structure and smooth running. The Course Director ensures balance between modules and liaises regularly with other staff to ensure that appropriate teaching and learning are provided. The **Course Directors** are directly responsible to the **Assistant Pro-Vice-Chancellor for Teaching and Learning** for ensuring that all levels of the teaching management structure operate efficiently. They should be notified of any significant problems. **Heads of Division** are ultimately responsible for the services provided by their staff.

The **Assistant Pro-Vice-Chancellor for Teaching and Learning** oversees the organisation and management of teaching across the School.

The **Semester 1 Tutor** is responsible for maintaining a balance of work between the core Semester 1 modules. S/he appoints student representatives and holds meetings at which any matters which students may wish to raise can be discussed. Don’t be afraid to make your views known!

A list of the staff who hold these positions are included in this handbook (see Staff Roles section). Students should feel able to approach any of them with concerns they may have about aspects of their education. Your Personal Tutor can advise you and make the appropriate contacts.
7 Staff Roles

<table>
<thead>
<tr>
<th>Role In School</th>
<th>Staff Member</th>
<th>Location</th>
<th>Tel</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head of School</td>
<td>Prof Simon Langley-Evans</td>
<td>MB</td>
<td>16139</td>
<td>Simon.Langley-Evans</td>
</tr>
<tr>
<td>Head of Operations</td>
<td>Dr Sarah Johnson</td>
<td>MB</td>
<td>16000</td>
<td>Sarah.Johnson</td>
</tr>
<tr>
<td>PA to Head of School and School Manager (Academic Administration)</td>
<td>Ms Susan Blencowe</td>
<td>MB</td>
<td>16100</td>
<td>Susan.Blencowe</td>
</tr>
<tr>
<td>Sutton Bonington Programme Manager</td>
<td>Ms K J Wilson</td>
<td>Barn</td>
<td>16002</td>
<td>Kathy.Wilson</td>
</tr>
<tr>
<td>Sutton Bonington Manager</td>
<td>Miss Helen Wells</td>
<td>Barn</td>
<td>86504</td>
<td>Helen.Wells</td>
</tr>
<tr>
<td>4-Year Degree Tutor (Euro. Cert.)</td>
<td>Rachel Jessop</td>
<td>BBSB</td>
<td>16162</td>
<td>Rachel.Jessop</td>
</tr>
<tr>
<td>Marketing Manager</td>
<td>Ms Helen Rotherforth</td>
<td>MB</td>
<td>16607</td>
<td>Helen.Rotherforth</td>
</tr>
<tr>
<td>Sutton Bonington Programme Administration</td>
<td>Mrs Gill Fox</td>
<td>Barn</td>
<td>86501</td>
<td>Gillian.Fox</td>
</tr>
<tr>
<td>IT Support Officer</td>
<td>Mr Dave Walters</td>
<td>JCG</td>
<td>16511</td>
<td>Dave.Walters</td>
</tr>
<tr>
<td>U21 Co-ordinator</td>
<td>Rachel Jessop</td>
<td>BBSB</td>
<td>16162</td>
<td>Rachel.Jessop</td>
</tr>
<tr>
<td>Sutton Bonington Administrator</td>
<td>Mrs E Staves</td>
<td>Barn</td>
<td>86504</td>
<td>Elena.Staves</td>
</tr>
<tr>
<td>Sutton Bonington Senior Administrator</td>
<td>Mrs L Eaves</td>
<td>Barn</td>
<td>86508</td>
<td>Linda.Eaves</td>
</tr>
</tbody>
</table>

Building Locations

BBSB = Bioenergy and Brewing Science Building
GB = Gateway Building
MB = Main Building
SL = South Lab Building
SO = School Office, Main Building
JCG = James Cameron Gifford Library
<table>
<thead>
<tr>
<th>Heads of Division</th>
<th>Name</th>
<th>Building</th>
<th>Tel</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Sciences</td>
<td>Prof P Garnsworthy</td>
<td>SL</td>
<td>16065</td>
<td>Phil.Garnsworthy</td>
</tr>
<tr>
<td>Agricultural and Environmental Sciences</td>
<td>Prof S Mooney</td>
<td>GB</td>
<td>16257</td>
<td>Sacha.Mooney</td>
</tr>
<tr>
<td>Food Sciences</td>
<td>Prof Tim Foster</td>
<td>FS</td>
<td>16246</td>
<td>Tim.Foster</td>
</tr>
<tr>
<td>Nutritional Sciences</td>
<td>Prof Andy Salter</td>
<td>NL</td>
<td>16120</td>
<td>Andy.Salter</td>
</tr>
<tr>
<td>Plant and Crop Sciences</td>
<td>Prof M Holdsworth</td>
<td>PCS</td>
<td>16323</td>
<td>Mike.Holdsworth</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key Roles</th>
<th>Name</th>
<th>Building</th>
<th>Tel</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warden Bonington Hall</td>
<td>Dr I Hardy</td>
<td>SL</td>
<td>16052</td>
<td>Ian.Hardy</td>
</tr>
<tr>
<td>Senior Tutors</td>
<td>Prof M R Luck</td>
<td>SL</td>
<td>16309</td>
<td>Martin.Luck</td>
</tr>
<tr>
<td></td>
<td>Dr L Bailey</td>
<td>SL</td>
<td>16255</td>
<td>Liz.Bailey</td>
</tr>
<tr>
<td>Semester 1 Tutor</td>
<td>Dr K Pyke</td>
<td>PCS</td>
<td>13216</td>
<td>Kevin.Pyke</td>
</tr>
<tr>
<td>Exam. Officer</td>
<td>Dr M Elmes</td>
<td>NL</td>
<td>16132</td>
<td>Matthew.J.Elmes</td>
</tr>
<tr>
<td>Study Abroad Co-ordinator</td>
<td>Dr Marcus Alcocer</td>
<td>NL</td>
<td>16103</td>
<td>Marcus.Alcocer</td>
</tr>
<tr>
<td>Biosciences Director of Learning and Teaching</td>
<td>Dr Fiona McCullough</td>
<td>NL</td>
<td>16118</td>
<td>Fiona.McCullough</td>
</tr>
<tr>
<td>Malaysia School Coordinator</td>
<td>Dr Marcus Alcocer</td>
<td>PCS</td>
<td>16013</td>
<td>Marcus.Alcocer</td>
</tr>
</tbody>
</table>

Building Locations

BioB = Bioenergy Building
FS = Food Sciences
GB = Gateway Building
NL = North Lab
PCS = Plant and Crop Sciences
SL = South Lab Building
<table>
<thead>
<tr>
<th>Course Directors</th>
<th>Name</th>
<th>Building</th>
<th>Tel</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>Prof P Wilson</td>
<td>SL</td>
<td>16075</td>
<td>Paul.Wilson</td>
</tr>
<tr>
<td>Agricultural and Crop Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural and Environmental Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural and Livestock International Agricultural Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural and Environmental Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal Science</td>
<td>Dr D Sweetman</td>
<td>SL</td>
<td>16019</td>
<td>Dylan.Sweetman</td>
</tr>
<tr>
<td>Applied Biology & Biotechnology</td>
<td>Dr Nagamani Bora (Mani)</td>
<td>PCS</td>
<td>TBC</td>
<td>Nagamani.Bora</td>
</tr>
<tr>
<td>Environmental Biology</td>
<td>Dr Ruth Blunt</td>
<td>Gateway Building, SB, or B47, Life Sciences, UP</td>
<td>16288</td>
<td>Ruth.Blunt</td>
</tr>
<tr>
<td>Environmental Science</td>
<td>Dr Ruth Blunt</td>
<td>Gateway Building, SB, or B47, Life Sciences, UP</td>
<td>16288</td>
<td>Ruth.Blunt</td>
</tr>
<tr>
<td>Food Science & Nutrition and Food Science</td>
<td>Dr D Gray</td>
<td>FS</td>
<td>16147</td>
<td>David.Gray</td>
</tr>
<tr>
<td>Microbiology</td>
<td>Dr J Hobman</td>
<td>FS</td>
<td>16166</td>
<td>Jon.Hobman</td>
</tr>
<tr>
<td>Master of Nutrition and Dietetics</td>
<td>Dr F McCullough</td>
<td>NL</td>
<td>16118</td>
<td>Fiona.Mccullough</td>
</tr>
<tr>
<td>Nutrition</td>
<td>Dr P Jethwa</td>
<td>NL</td>
<td>16604</td>
<td>Preeti.Jethwa</td>
</tr>
<tr>
<td></td>
<td>Dr J Majewicz</td>
<td>NL</td>
<td>16106</td>
<td>Jon.Majewicz</td>
</tr>
<tr>
<td>Plant Science</td>
<td>Dr Kevin Pyke</td>
<td>PCS</td>
<td>13216</td>
<td>Kevin.Pyke</td>
</tr>
</tbody>
</table>

Building Locations

FS= Food Sciences Building
GB = Gateway Building
NL = North Lab Building
PCS= Plant and Crop Sciences
SL = South Lab Building
8 Academic Staff and Locations

<table>
<thead>
<tr>
<th>Name</th>
<th>Room</th>
<th>Telephone Number</th>
<th>Divisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr R Alberio</td>
<td>B223, South Laboratory Building</td>
<td>0115 951 6304</td>
<td>AS</td>
</tr>
<tr>
<td>Dr M Alcocer</td>
<td>49E, 2nd Floor, North Laboratory Bldg</td>
<td>0115 951 6103</td>
<td>NS</td>
</tr>
<tr>
<td>Dr R Anand-Ivell</td>
<td>B216, South Laboratory Building</td>
<td>0115 951 6298</td>
<td>AS</td>
</tr>
<tr>
<td>Mrs A Avery</td>
<td>49D, North Laboratory Building</td>
<td>0115 951 6238</td>
<td>NS</td>
</tr>
<tr>
<td>Dr E Bailey</td>
<td>C21, The Gateway Building</td>
<td>0115 951 6255</td>
<td>AES</td>
</tr>
<tr>
<td>Dr M Bell</td>
<td>B228, South Laboratory Building</td>
<td>0115 951 6056</td>
<td>AES</td>
</tr>
<tr>
<td>Ms M Benloch Tinoco</td>
<td>A18 Biosciences. Main Building</td>
<td>0115 951 6146</td>
<td>MB</td>
</tr>
<tr>
<td>Prof M J Bennett</td>
<td>C06, Plant Sciences Building</td>
<td>0115 951 3255</td>
<td>PCS</td>
</tr>
<tr>
<td>Dr A Bishopp</td>
<td>A15, Plant Sciences Building</td>
<td>0115 951 6108</td>
<td>PCS</td>
</tr>
<tr>
<td>Dr R Blunt</td>
<td>B47, Life Sciences Building or C18 Gateway Building</td>
<td>0115 951 3238</td>
<td>AES</td>
</tr>
<tr>
<td>Dr N Bora</td>
<td>B06, Bioenergy and Brewing Science Bldg</td>
<td>0115 951 6011</td>
<td>PCS</td>
</tr>
<tr>
<td>Dr J Brameld</td>
<td>43, 1st Floor, North Laboratory Bldg</td>
<td>0115 951 6133</td>
<td>NS</td>
</tr>
<tr>
<td>Prof M Broadley</td>
<td>A05, Plant Sciences Building</td>
<td>0115 951 6382</td>
<td>PCS</td>
</tr>
<tr>
<td>Dr K Brown</td>
<td>B30a, Food Science Building</td>
<td>0115 951 6509</td>
<td>FS</td>
</tr>
<tr>
<td>Dr N Chapman</td>
<td>306, South Laboratory Building</td>
<td>0115 951 6082</td>
<td>PCS</td>
</tr>
<tr>
<td>Dr L Coneyworth</td>
<td>58, 2nd Floor, North Laboratory Bldg</td>
<td>0115 951 6124</td>
<td>NS</td>
</tr>
<tr>
<td>Dr D Cook</td>
<td>C04, Bioenergy and Brewing Science Bldg</td>
<td>0115 951 6245</td>
<td>FS</td>
</tr>
<tr>
<td>Prof N Crout</td>
<td>C19, The Gateway Building</td>
<td>0115 951 6253</td>
<td>AES</td>
</tr>
<tr>
<td>Prof C E R Dodd</td>
<td>B30, Food Science Building</td>
<td>0115 951 6163</td>
<td>FS</td>
</tr>
<tr>
<td>Dr S Egan</td>
<td>C21 School of Veterinary Medicine and Science</td>
<td>0115 951 6659</td>
<td>VS</td>
</tr>
<tr>
<td>Dr M Elmes</td>
<td>53, 2nd Floor, North Laboratory Bldg</td>
<td>0115 951 6183</td>
<td>NS</td>
</tr>
<tr>
<td>Dr I Fisk</td>
<td>A28, FS Building</td>
<td>0115 951 6037</td>
<td>FS</td>
</tr>
<tr>
<td>Dr R Ford</td>
<td>C03, Bioenergy and Brewing Science Bldg</td>
<td>0115 951 6685</td>
<td>FS</td>
</tr>
<tr>
<td>Prof T Foster</td>
<td>B29, FS Building</td>
<td>0115 951 6246</td>
<td>FS</td>
</tr>
<tr>
<td>Dr M J Foulkes</td>
<td>312, South Laboratory Building</td>
<td>0115 951 6024</td>
<td>PCS</td>
</tr>
<tr>
<td>Dr R G Fray</td>
<td>C33, Plant Sciences Building</td>
<td>0115 951 6371</td>
<td>PCS</td>
</tr>
<tr>
<td>Dr A P French</td>
<td>C08a, Plant Sciences Building</td>
<td>0115 951 6108</td>
<td>PCS</td>
</tr>
<tr>
<td>Prof P C Garnsworthy</td>
<td>B203, South Laboratory Building</td>
<td>0115 951 6065</td>
<td>AS</td>
</tr>
<tr>
<td>Dr Z Gonzalez-Carranza</td>
<td>C11, Plant Sciences Building</td>
<td>0115 951 6335</td>
<td>PCS</td>
</tr>
<tr>
<td>Dr N Graham</td>
<td>C30, Plant Sciences Building</td>
<td>0115 951 6681</td>
<td>PCS</td>
</tr>
<tr>
<td>Dr D Gray</td>
<td>A29, FS Building</td>
<td>0115 951 6147</td>
<td>FS</td>
</tr>
<tr>
<td>Dr D Greetham</td>
<td>A20 Food Science</td>
<td>0115 951 6578</td>
<td>FS</td>
</tr>
<tr>
<td>Prof S E Harding</td>
<td>A15, The Limes</td>
<td>0115 951 6148</td>
<td>FS</td>
</tr>
<tr>
<td>Dr I Hardy</td>
<td>C26, The Gateway Building</td>
<td>0115 951 6052</td>
<td>AES</td>
</tr>
<tr>
<td>Dr J Harris</td>
<td>C18, Vet School</td>
<td>0115 951 6316</td>
<td>AS</td>
</tr>
<tr>
<td>Dr K Harris-Adams</td>
<td>C311, South Laboratory Building</td>
<td>0115 951 6066</td>
<td>AES</td>
</tr>
<tr>
<td>Dr P J Hill</td>
<td>B21, FS Building</td>
<td>0115 951 6169</td>
<td>FS</td>
</tr>
<tr>
<td>Dr J L Hobman</td>
<td>B22, FS Building</td>
<td>0115 951 6166</td>
<td>FS</td>
</tr>
<tr>
<td>Prof M J Holdsworth</td>
<td>301B, South Laboratory Building</td>
<td>0115 951 6046</td>
<td>PCS</td>
</tr>
<tr>
<td>Prof J Hort</td>
<td>C10, Bioenergy and Brewing Science Bldg</td>
<td>0115 951 6222</td>
<td>FS</td>
</tr>
<tr>
<td>Name</td>
<td>Office Details</td>
<td>Phone Number</td>
<td>Extension</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Rachel Jessop</td>
<td>C05, Bioenergy and Brewing Science Bldg</td>
<td>0115 951 6162</td>
<td>FS</td>
</tr>
<tr>
<td>Dr P Jethwa</td>
<td>55, North Laboratory Building</td>
<td>0115 951 6604</td>
<td>NS</td>
</tr>
<tr>
<td>Miss J Kearns</td>
<td>30, 1st floor, North Laboratory Bldg</td>
<td>0115 951 6756</td>
<td>NS</td>
</tr>
<tr>
<td>Prof I P King</td>
<td>C21, Plant Sciences Building</td>
<td>0115 951 6372</td>
<td>PCS</td>
</tr>
<tr>
<td>Dr J King</td>
<td>C26, Plant Sciences Building</td>
<td>0115 951 3205</td>
<td>PCS</td>
</tr>
<tr>
<td>Dr B Lomax</td>
<td>C24, The Gateway Building</td>
<td>0115 951 6258</td>
<td>AES</td>
</tr>
<tr>
<td>Prof M R Luck</td>
<td>B207, South Laboratory Building</td>
<td>0115 951 6309</td>
<td>AS</td>
</tr>
<tr>
<td>Dr S Lydon</td>
<td>C08, Plant Sciences Building</td>
<td>0115 951 6289</td>
<td>PCS</td>
</tr>
<tr>
<td>Dr J Majewicz</td>
<td>37, 1st floor, North Laboratory Building</td>
<td>0115 951 6106</td>
<td>NS</td>
</tr>
<tr>
<td>Dr G Mann</td>
<td>B208, South Laboratory Building</td>
<td>0115 951 6326</td>
<td>AS</td>
</tr>
<tr>
<td>Dr J Margerison</td>
<td>B209 South Laboratory Building</td>
<td>0115 951 6301</td>
<td>AS</td>
</tr>
<tr>
<td>Dr S Mayes</td>
<td>301C, South Laboratory Building</td>
<td>0115 951 8062</td>
<td>PCS</td>
</tr>
<tr>
<td>Dr F S W McCullogh</td>
<td>26, 1st Floor, North Laboratory Building</td>
<td>0115 951 6118</td>
<td>NS</td>
</tr>
<tr>
<td>Dr K Mellits</td>
<td>B26, FS Building</td>
<td>0115 951 6172</td>
<td>FS</td>
</tr>
<tr>
<td>Dr K M Millar</td>
<td>B67, Vet School</td>
<td>0115 951 6303</td>
<td>AS</td>
</tr>
<tr>
<td>Prof S Mooney</td>
<td>C31, The Gateway Building</td>
<td>0115 951 6257</td>
<td>AES</td>
</tr>
<tr>
<td>Dr E H Murchie</td>
<td>301C, South Laboratory Building</td>
<td>0115 951 6082</td>
<td>PCS</td>
</tr>
<tr>
<td>Dr A Murton</td>
<td>49H, 2nd Floor, North Laboratory Building</td>
<td>0115 823 6592</td>
<td>NS</td>
</tr>
<tr>
<td>Dr T Parr</td>
<td>53A, 2nd Floor, North Laboratory Bldg</td>
<td>0115 951 6128</td>
<td>NS</td>
</tr>
<tr>
<td>Miss J Pearce</td>
<td>49G, 2nd Floor, North Laboratory Bldg</td>
<td>0115 951 6105</td>
<td>NS</td>
</tr>
<tr>
<td>Dr C Powell</td>
<td>C02, Bioenergy and Brewing Science Bldg</td>
<td>0115 951 6191</td>
<td>FS</td>
</tr>
<tr>
<td>Dr S Price</td>
<td>C08 Bioenergy and Brewing Science Bldg</td>
<td>0115 951 6742</td>
<td>FS</td>
</tr>
<tr>
<td>Dr K Pyke</td>
<td>C09, Plant Sciences Building</td>
<td>0115 951 3216</td>
<td>PCS</td>
</tr>
<tr>
<td>Dr D Quain</td>
<td>C08 BABS</td>
<td>0115 951 6160</td>
<td>FS</td>
</tr>
<tr>
<td>Dr C Raaff</td>
<td>26 North Laboratory Bldg</td>
<td>0115 951 6121</td>
<td>NS</td>
</tr>
<tr>
<td>Dr S Ramsden</td>
<td>308, South Laboratory Building</td>
<td>0115 951 6078</td>
<td>AES</td>
</tr>
<tr>
<td>Dr R Ray</td>
<td>303, South Laboratory Building</td>
<td>0115 951 6094</td>
<td>PCS</td>
</tr>
<tr>
<td>Dr C E D Rees</td>
<td>B23, FS Building</td>
<td>0115 951 6167</td>
<td>FS</td>
</tr>
<tr>
<td>Prof K Ritz</td>
<td>C22 Gateway Building</td>
<td>0115 951 6288</td>
<td>AES</td>
</tr>
<tr>
<td>Dr T P Robbins</td>
<td>C27, Plant Sciences Building</td>
<td>0115 951 6329</td>
<td>PCS</td>
</tr>
<tr>
<td>Dr A Rosenthal</td>
<td>A24 Food Sciences</td>
<td>0115 951 6038</td>
<td>FS</td>
</tr>
<tr>
<td>Prof A M Salter</td>
<td>32A, 1st Floor, North Laboratory Bldg</td>
<td>0115 951 6120</td>
<td>NS</td>
</tr>
<tr>
<td>Dr D Scott</td>
<td>B19, FS Building</td>
<td>0115 951 6221</td>
<td>FS</td>
</tr>
<tr>
<td>Prof G Shaw</td>
<td>C29, The Gateway Building</td>
<td>0115 951 3206</td>
<td>AES</td>
</tr>
<tr>
<td>Dr C Siettou</td>
<td>C304 South Laboratory Building</td>
<td>0115 951 6306</td>
<td>AES</td>
</tr>
<tr>
<td>Prof K D Sinclair</td>
<td>B210, South Laboratory Building</td>
<td>0115 951 6053</td>
<td>AS</td>
</tr>
<tr>
<td>Dr M S Sjogersten</td>
<td>C27, The Gateway Building</td>
<td>0115 951 6239</td>
<td>AES</td>
</tr>
<tr>
<td>Dr D L Sparkes</td>
<td>330, South Laboratory Building</td>
<td>0115 951 6074</td>
<td>PCS</td>
</tr>
<tr>
<td>Dr D Stekel</td>
<td>C20, The Gateway Building</td>
<td>0115 951 6294</td>
<td>AES</td>
</tr>
<tr>
<td>Dr C Stevenson</td>
<td>A57, Vet School</td>
<td>0115 951 6055</td>
<td>AS</td>
</tr>
<tr>
<td>Dr R Stoger</td>
<td>B232, South Laboratory Building</td>
<td>0115 951 6232</td>
<td>AS</td>
</tr>
<tr>
<td>Miss R Stow</td>
<td>40, 1st floor, North Laboratory Bldg</td>
<td>0115 951 6170</td>
<td>NS</td>
</tr>
<tr>
<td>Dr A Swali</td>
<td>A20, Ground Floor, FS Bldg</td>
<td>0115 951 6578</td>
<td>FS</td>
</tr>
<tr>
<td>Dr R Swarup</td>
<td>C31, Plant Sciences Building</td>
<td>0115 951 6284</td>
<td>PCS</td>
</tr>
<tr>
<td>Dr D Sweetman</td>
<td>B234, South Laboratory Building</td>
<td>0115 951 6019</td>
<td>AS</td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
<td>Phone Number</td>
<td>Code</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>--------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Dr J A Swift</td>
<td>57a, Second Floor, North Lab</td>
<td>0115 951 6178</td>
<td>NS</td>
</tr>
<tr>
<td>Dr R Tarlington</td>
<td>School of Veterinary Medicine and Science</td>
<td>0115 951 6273</td>
<td>VS</td>
</tr>
<tr>
<td>Dr M Taylor</td>
<td>52, 2nd Floor, North Laboratory Bldg</td>
<td>0115 951 6104</td>
<td>NS</td>
</tr>
<tr>
<td>Dr A Waterfall</td>
<td>B224, South Laboratory Building</td>
<td>0115 951 6307</td>
<td>AS</td>
</tr>
<tr>
<td>Dr S Welham</td>
<td>24, North Laboratory Building</td>
<td>0115 951 6129</td>
<td>NS</td>
</tr>
<tr>
<td>Dr D Wells</td>
<td>C07, Plant Sciences Building</td>
<td>0115 951 6108</td>
<td>PCS</td>
</tr>
<tr>
<td>Dr H West</td>
<td>C28, The Gateway Building</td>
<td>0115 951 6268</td>
<td>AES</td>
</tr>
<tr>
<td>Mrs E Weston</td>
<td>A22, FS Building</td>
<td>0115 951 6146</td>
<td>FS</td>
</tr>
<tr>
<td>Dr G White</td>
<td>B227, South Laboratory Building</td>
<td>0115 951 6068</td>
<td>AS</td>
</tr>
<tr>
<td>Dr K Whitehead</td>
<td>28A, 1st Floor, North Laboratory Bldg</td>
<td>0115 951 6136</td>
<td>NS</td>
</tr>
<tr>
<td>Prof P Wilson</td>
<td>332, South Laboratory Building</td>
<td>0115 951 6075</td>
<td>AES</td>
</tr>
<tr>
<td>Prof Z A Wilson</td>
<td>A03, Plant Sciences Building</td>
<td>0115 951 3235</td>
<td>PCS</td>
</tr>
<tr>
<td>Prof J Wiseman</td>
<td>B205, South Laboratory Building</td>
<td>0115 951 6054</td>
<td>AS</td>
</tr>
<tr>
<td>Dr B Wolf</td>
<td>A27, Ground Floor, FS Bldg</td>
<td>0115 951 6134</td>
<td>FS</td>
</tr>
<tr>
<td>Dr S Young</td>
<td>C25, The Gateway Building</td>
<td>0115 951 6256</td>
<td>AES</td>
</tr>
</tbody>
</table>

Divisional codes

AES Agricultural & Environmental Sciences
AS Animal Sciences
BBS Bioenergy and Brewing Science Bldg
FS Food Sciences
MB Main Building
NS Nutritional Science
PCS Plant and Crop Sciences
VS School of Veterinary Medicine and Science
9 Course Structure, Organisation and Choosing Your Modules

The Academic Year

The academic year at Nottingham is based on 2 semesters (autumn and spring) spread over three terms.

The following definitions might be helpful to you:

- **Credits** indicate a quantity of assessed learning. They contribute to a cumulative indication of modules which a student has completed. One credit equates to approximately 10 hours of study.
- A **Module** is a specified programme of study which is self-contained and attracts a specified number of credits. Examinations are held at the end of most modules. A ten credit module accounts for approximately 100 hours of your time, of which usually no more than 40 hours will be spent in the lecture room or laboratory.
- A **Course of Study** is a set of modules satisfying the requirements for a particular degree and attracting 320 credits for an Ordinary Bachelor degree and 360 credits for an Honours degree.

- The levels in a course of study leading to an Honours degree are as follows

 - Year 1 (120 credits) Level 1
 - Year 2 (120 credits) Level 2
 - Year 3 (120 credits) Level 3

And for a Master of Nutrition and Dietetics or MSci degree

 - Year 4 (120 credits) Level 4

Credits achieved in Year 1 are for progression purposes only and will not contribute to the final degree classification.

- A **semester** is a division of the academic year. It consists of twelve weeks of teaching, coursework and revision, plus two (Autumn Semester) or four (Spring Semester) weeks of assessment and consultation.

 Note: Although each academic year is divided for teaching purposes into two semesters, there is still a three-term pattern of attendance, with breaks at Christmas, Easter and during the summer.

- A **year** is a period of study consisting of an Autumn Semester followed by a Spring Semester. **Assessment** may be by means of written examination papers, oral examinations or coursework. Progression and/or degree classification are based on the outcome of the assessment.

- A **mark** module a numerical indication of the quality of the assessed work completed by a student in each. Marks awarded are subject to the approval of the Board of Examiners and are ratified by an External Examiner.
Choosing optional modules*

At module advisory days you will be asked to complete a module registration form that details your chosen optional modules for ALL PERIODS, i.e. for modules totalling 120 credits. All entries must include the module code. **All optional choices must be approved and signed by your Course Director.** You will have an opportunity at the beginning of the Autumn/Spring Semesters (the “Two week change of mind period”) to make adjustments to your choices for that semester; you will also need to check that there are no timetable clashes.

Your choice of modules must normally total 60 credits per semester, and in any event not less than **50 credits** or more than **70 credits** per semester. To determine how a Full Year module contributes to the number of credits in a given semester, check the semester credit split for that module in the Module Catalogue modulecatalogue.nottingham.ac.uk/Nottingham

IT IS YOUR RESPONSIBILITY to see that your combination of modules accords with the Regulations for your course and teaching timetable. **Failure to do so could prevent you from progressing to the next year of the course or from graduating.** Once you have chosen your optional modules and they have been approved, IT IS YOUR **RESPONSIBILITY** to ensure that you read the Declaration, sign the form and hand it to School Office staff. After that date changes to Full Year and Autumn Semester choices will not be allowed. **Failure to hand in the form by the date displayed may lead to incorrect examination entries and records.**

There are some courses in Year 1 where there are no optional modules; however this information is useful for Years 2 and 3.

Modules outside Biosciences

If you wish to register for an optional module from outside the School of Biosciences, you should write the module details on your Module Entry Form and obtain a signature in the “Agreed” box from the School that offers the module, as confirmation that the offering School accepts your registration (or email and provide email confirmation).

A complete list of modules within the University can be found in the Catalogue of Modules at modulecatalogue.nottingham.ac.uk/Nottingham
10 Animal Science

Course Director: Dr Dylan Sweetman
Contact details: e: Dylan.Sweetman@nottingham.ac.uk or t: 0115 951 6019

See “taught” column to check the semester in which modules are taught

Qualifying Year (Year 1)
Compulsory
Students must take all modules in this group

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Taught</th>
</tr>
</thead>
<tbody>
<tr>
<td>D211A2</td>
<td>Animal Biology</td>
<td>10</td>
<td>Autumn</td>
</tr>
<tr>
<td>D211F3</td>
<td>The Biosciences and Global Food Security</td>
<td>10</td>
<td>Autumn</td>
</tr>
<tr>
<td>D211P1</td>
<td>Genes and Cells: 1</td>
<td>10</td>
<td>Autumn</td>
</tr>
<tr>
<td>D212P3</td>
<td>Applied Genetics</td>
<td>10</td>
<td>Spring</td>
</tr>
<tr>
<td>D212Z5</td>
<td>Introductory Physiology</td>
<td>20</td>
<td>Spring</td>
</tr>
<tr>
<td>D21BG1</td>
<td>Biosciences Tutorials (Academic Development) and Foundation Science</td>
<td>20</td>
<td>Full Year</td>
</tr>
<tr>
<td>D21BN1</td>
<td>Introduction to Nutrition</td>
<td>20</td>
<td>Full Year</td>
</tr>
<tr>
<td>D21BN2</td>
<td>Biochemistry – The Building Blocks of Life</td>
<td>20</td>
<td>Full Year</td>
</tr>
</tbody>
</table>

Year 2 and 3 there are 2 pathways

Part I (Year 2) - Production and Nutrition Pathway

Core Modules for Production and Nutrition Pathway (80 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Taught</th>
</tr>
</thead>
<tbody>
<tr>
<td>D223A7</td>
<td>Applied Animal Science</td>
<td>20</td>
<td>Autumn</td>
</tr>
<tr>
<td>D223N8</td>
<td>Principles of Animal Nutrition</td>
<td>10</td>
<td>Autumn</td>
</tr>
<tr>
<td>D223Z7</td>
<td>Reproductive Physiology</td>
<td>10</td>
<td>Autumn</td>
</tr>
<tr>
<td>D224A6</td>
<td>Endocrine Control Systems</td>
<td>20</td>
<td>Spring</td>
</tr>
<tr>
<td>D224G1</td>
<td>Professional Skills for Bioscientists</td>
<td>20</td>
<td>Spring</td>
</tr>
</tbody>
</table>

AND a maximum of 40 credits from this group

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Taught</th>
</tr>
</thead>
<tbody>
<tr>
<td>C12321</td>
<td>Animal Behaviour</td>
<td>10</td>
<td>Autumn</td>
</tr>
<tr>
<td>D223A6</td>
<td>Economic Analysis for Agricultural and Environmental Sciences</td>
<td>10</td>
<td>Autumn</td>
</tr>
<tr>
<td>D223A8</td>
<td>Physiology of Electrically Excitable Tissues</td>
<td>20</td>
<td>Autumn</td>
</tr>
<tr>
<td>D224A1</td>
<td>Agricultural and Food Marketing</td>
<td>10</td>
<td>Spring</td>
</tr>
<tr>
<td>D224Z6</td>
<td>Principles of Animal Health and Disease</td>
<td>10</td>
<td>Spring</td>
</tr>
</tbody>
</table>

Students intending to apply for "Accreditation in Nutrition" must check with the Course Director which modules they should take.
Part II (Year 3) - Production and Nutrition Pathway

Compulsory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Taught</th>
</tr>
</thead>
<tbody>
<tr>
<td>D23PRO</td>
<td>Undergraduate Research Project</td>
<td>40</td>
<td>Full Year</td>
</tr>
</tbody>
</table>

Students must take all credits from this group:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Taught</th>
</tr>
</thead>
<tbody>
<tr>
<td>D23BA1</td>
<td>Livestock Production Science</td>
<td>20</td>
<td>Full Year</td>
</tr>
<tr>
<td>D23BN2</td>
<td>Animal Nutrition</td>
<td>20</td>
<td>Full Year</td>
</tr>
</tbody>
</table>

AND 40 credits from this group

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Taught</th>
</tr>
</thead>
<tbody>
<tr>
<td>D235A4</td>
<td>Rural Business Management</td>
<td>10</td>
<td>Autumn</td>
</tr>
<tr>
<td>D235A8</td>
<td>Companion Animal Science</td>
<td>10</td>
<td>Autumn</td>
</tr>
<tr>
<td>D235Z1</td>
<td>Biotechnology in Animal Physiology</td>
<td>10</td>
<td>Autumn</td>
</tr>
<tr>
<td>D235Z5</td>
<td>Applied Bioethics 1: Animals, Biotechnology and Society</td>
<td>10</td>
<td>Autumn</td>
</tr>
<tr>
<td>D235Z7</td>
<td>Coordinated Physiological Functions</td>
<td>10</td>
<td>Autumn</td>
</tr>
<tr>
<td>D236A2</td>
<td>Management Consultancy</td>
<td>10</td>
<td>Spring</td>
</tr>
<tr>
<td>D236Z4</td>
<td>Systems Neurophysiology</td>
<td>10</td>
<td>Spring</td>
</tr>
<tr>
<td>D236Z5</td>
<td>Reproduction and Fertility</td>
<td>10</td>
<td>Spring</td>
</tr>
<tr>
<td>D236Z6</td>
<td>Applied Bioethics 2: Sustainable Food Production, Biotechnology and the Environment</td>
<td>10</td>
<td>Spring</td>
</tr>
<tr>
<td>D236Z8</td>
<td>Epigenetics and Development</td>
<td>10</td>
<td>Spring</td>
</tr>
<tr>
<td>D236Z9</td>
<td>Principles of Animal Health and Disease 2</td>
<td>10</td>
<td>Spring</td>
</tr>
<tr>
<td>D23BN3</td>
<td>Molecular Nutrition</td>
<td>20</td>
<td>Full Year</td>
</tr>
</tbody>
</table>

Students intending to apply for "Accreditation in Nutrition" must check with the Course Director which modules they should take.
Part I (Year 2) - Physiology and Health Pathway

Core Modules for Physiology and Health Pathway (80 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Taught</th>
</tr>
</thead>
<tbody>
<tr>
<td>D223A8</td>
<td>Physiology of Electrically Excitable Tissues</td>
<td>20</td>
<td>Autumn</td>
</tr>
<tr>
<td>D223Z7</td>
<td>Reproductive Physiology</td>
<td>10</td>
<td>Autumn</td>
</tr>
<tr>
<td>D224A6</td>
<td>Endocrine Control Systems</td>
<td>20</td>
<td>Spring</td>
</tr>
<tr>
<td>D224G1</td>
<td>Professional Skills for Bioscientists</td>
<td>20</td>
<td>Spring</td>
</tr>
<tr>
<td>D224Z6</td>
<td>Principles of Animal Health and Disease</td>
<td>10</td>
<td>Spring</td>
</tr>
</tbody>
</table>

Students must take either 40 credits from this group

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Taught</th>
</tr>
</thead>
<tbody>
<tr>
<td>C12321</td>
<td>Animal Behaviour</td>
<td>10</td>
<td>Autumn</td>
</tr>
<tr>
<td>D223A7</td>
<td>Applied Animal Science</td>
<td>20</td>
<td>Autumn</td>
</tr>
<tr>
<td>D223N6</td>
<td>Principles of Immunology</td>
<td>10</td>
<td>Autumn</td>
</tr>
<tr>
<td>D223N8</td>
<td>Principles of Animal Nutrition</td>
<td>10</td>
<td>Autumn</td>
</tr>
</tbody>
</table>

Part II (Year 3) - Physiology and Health Pathway

Compulsory

Students must take all modules in this group

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Taught</th>
</tr>
</thead>
<tbody>
<tr>
<td>D23PRO</td>
<td>Undergraduate Research Project</td>
<td>40</td>
<td>Full Year</td>
</tr>
</tbody>
</table>

Core Modules for Production and Health Pathway (30 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Taught</th>
</tr>
</thead>
<tbody>
<tr>
<td>D235Z7</td>
<td>Coordinated Physiological Functions</td>
<td>10</td>
<td>Autumn</td>
</tr>
<tr>
<td>D236Z4</td>
<td>Systems Neurophysiology</td>
<td>10</td>
<td>Spring</td>
</tr>
<tr>
<td>D236Z5</td>
<td>Reproduction and Fertility</td>
<td>10</td>
<td>Spring</td>
</tr>
</tbody>
</table>

Students must take 50 credits from this group

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Taught</th>
</tr>
</thead>
<tbody>
<tr>
<td>D235A8</td>
<td>Companion Animal Science</td>
<td>10</td>
<td>Autumn</td>
</tr>
<tr>
<td>D235Z1</td>
<td>Biotechnology in Animal Physiology</td>
<td>10</td>
<td>Autumn</td>
</tr>
<tr>
<td>D235Z5</td>
<td>Applied Bioethics 1: Animals, Biotechnology and Society</td>
<td>10</td>
<td>Autumn</td>
</tr>
<tr>
<td>D236Z6</td>
<td>Applied Bioethics 2: Sustainable Food Production, Biotechnology and the Environment</td>
<td>10</td>
<td>Spring</td>
</tr>
<tr>
<td>D236Z8</td>
<td>Epigenetics and Development</td>
<td>10</td>
<td>Spring</td>
</tr>
<tr>
<td>D236Z9</td>
<td>Principles of Animal Health and Disease 2</td>
<td>10</td>
<td>Spring</td>
</tr>
<tr>
<td>D23BA1</td>
<td>Livestock Production Science</td>
<td>20</td>
<td>Full Year</td>
</tr>
<tr>
<td>D23BN2</td>
<td>Animal Nutrition</td>
<td>20</td>
<td>Full Year</td>
</tr>
<tr>
<td>D23BN3</td>
<td>Molecular Nutrition</td>
<td>20</td>
<td>Full Year</td>
</tr>
</tbody>
</table>
11 Table of Modules
Module choices

<table>
<thead>
<tr>
<th>Title</th>
<th>Code</th>
<th>Title</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biosciences Tutorials (Academic Development) & Foundation Science</td>
<td>D21BG1</td>
<td>The Biosciences and Global Food Security</td>
<td>D211F3</td>
</tr>
<tr>
<td>Biochemistry – The Building Blocks of Life</td>
<td>D21BN2</td>
<td>Genes and Cells 1</td>
<td>D211P1</td>
</tr>
<tr>
<td>Animal Biology</td>
<td>D211A2</td>
<td>Introduction to Nutrition</td>
<td>D21BN1</td>
</tr>
<tr>
<td>Agricultural Business in the Global Economy</td>
<td>D211A3</td>
<td>Microbes and You</td>
<td>D21BF3</td>
</tr>
<tr>
<td>The Physiology of Microbes</td>
<td>D21BF7</td>
<td>Dietetics Tutorial (academic Development)</td>
<td>D21BN6</td>
</tr>
<tr>
<td>Introduction to Dietetics</td>
<td>D21BN5</td>
<td>Food Commodities and Primary Processing</td>
<td>D211F4</td>
</tr>
<tr>
<td>Food Materials and Ingredients</td>
<td>D21BF1</td>
<td>The Physiology of Microbes</td>
<td>D21BF7</td>
</tr>
<tr>
<td>Introduction to Health Behaviours</td>
<td>D21BN4</td>
<td>Global Environmental Processes (UP)</td>
<td>C111E1</td>
</tr>
<tr>
<td>Environmental Geoscience (UP)</td>
<td>C111E5</td>
<td>Evolution, Ecology and Behaviour</td>
<td>C11EEB</td>
</tr>
<tr>
<td>Dissertation in Environmental Science (UP)</td>
<td>C11BE1</td>
<td>Environmental Science and Society</td>
<td>D212E4</td>
</tr>
<tr>
<td>Life on Earth (UP)</td>
<td>C11LOE</td>
<td>Social Psychology (UP)</td>
<td>C81SOC</td>
</tr>
<tr>
<td>Molecules that Changed the World (UP)</td>
<td>F11MCW</td>
<td>Plant Science Research Tutorials</td>
<td>D212P5</td>
</tr>
</tbody>
</table>

NB Modules in semesters 2 - 6 may have pre-requisite modules. It is your responsibility to ensure you are taking the appropriate pre-requisites for later modules. Module choices are subject to timetabling constraints. It is therefore important to check the timetable and pre-requisites when making your module choices.

Black sections: core Grey Sections: recommended options (UP) = Module based at University Park
General Module No

<table>
<thead>
<tr>
<th>Course</th>
<th>Semesters 2 - 6 may have pre-requisite modules. It is your responsibility to ensure you are taking the appropriate pre-requisites</th>
<th>Module choices are subject to timetabling constraints. It is therefore important to check the timetable and pre-requisites when making your module choices.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemical Tutorials (Academic Development) and Foundation Sinclair</td>
<td>D21BG1 10 of 20</td>
<td>Black sections: core Grey Sections: recommended options (UP) = Module based at University Park</td>
</tr>
<tr>
<td>Biochemistry – The Building Blocks of Life</td>
<td>D21BN2 10 of 20</td>
<td></td>
</tr>
<tr>
<td>Applied Genetics</td>
<td>D212P3</td>
<td></td>
</tr>
<tr>
<td>Introduction to Nutrition</td>
<td>D21BN1 10 of 20</td>
<td></td>
</tr>
<tr>
<td>The Physiology of Microbes</td>
<td>D21BF7</td>
<td></td>
</tr>
<tr>
<td>Microbes and You</td>
<td>D21BF3</td>
<td></td>
</tr>
<tr>
<td>Food Materials and Ingredients</td>
<td>D21BF1</td>
<td></td>
</tr>
<tr>
<td>Contemporary Agricultural Systems</td>
<td>D212A2 10 10 10 10 10 10 10</td>
<td></td>
</tr>
<tr>
<td>The Ecology of Natural and Managed Ecosystems</td>
<td>D211E5 20 20 20 20</td>
<td></td>
</tr>
<tr>
<td>Introduction to Dietetics</td>
<td>D21BN5</td>
<td></td>
</tr>
<tr>
<td>Dietetics Tutorials (academic development)</td>
<td>D21BN6</td>
<td></td>
</tr>
<tr>
<td>Introduction to Health Behaviours</td>
<td>D21BN4</td>
<td></td>
</tr>
<tr>
<td>Grassland Management</td>
<td>D212A1 10 10 10 10 10</td>
<td></td>
</tr>
<tr>
<td>Microbial Physiology</td>
<td>D212F7</td>
<td></td>
</tr>
<tr>
<td>Physiology for Food Scientists</td>
<td>D212F9</td>
<td></td>
</tr>
<tr>
<td>Introductory Physiology</td>
<td>D212Z5</td>
<td></td>
</tr>
<tr>
<td>Dissertation in Environmental Science (UP)</td>
<td>C11BE1</td>
<td></td>
</tr>
<tr>
<td>Life on Earth</td>
<td>C11L0E</td>
<td></td>
</tr>
<tr>
<td>Evolution, Ecology and Behaviour</td>
<td>C11EEB</td>
<td></td>
</tr>
<tr>
<td>Integrated Agri-Food Markets and Marketing</td>
<td>D212A3 20 20</td>
<td></td>
</tr>
<tr>
<td>Managing Tourism & the Environment: Conflict or Consensus (UP)</td>
<td>N121Z2</td>
<td></td>
</tr>
<tr>
<td>Environmental Science and Society</td>
<td>D212E4</td>
<td></td>
</tr>
<tr>
<td>The Anthropology of Human Ecology (UP)</td>
<td>AA1017</td>
<td></td>
</tr>
<tr>
<td>Microorganisms and Disease (UP)</td>
<td>C51201</td>
<td></td>
</tr>
<tr>
<td>Plant Science (UP)</td>
<td>C112P1 10</td>
<td></td>
</tr>
</tbody>
</table>
12 Timetable Information

Academic Year 2016-2017 Week Pattern for the UK CAMPUS

Teaching starts Thursday 29 September 2016 (if your modules are taught on either a Thursday or Friday)

<table>
<thead>
<tr>
<th>Syllabus Plus Timetable Week</th>
<th>Teaching Week</th>
<th>Week Commencing</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>26/09/2016</td>
<td>Registration/Induction</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>03/10/2016</td>
<td>Autumn Semester</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>10/10/2016</td>
<td>Autumn Semester</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>17/10/2016</td>
<td>Autumn Semester</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>24/10/2016</td>
<td>Autumn Semester</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>31/10/2016</td>
<td>Autumn Semester</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>07/11/2016</td>
<td>Autumn Semester</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>14/11/2016</td>
<td>Autumn Semester</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>21/11/2016</td>
<td>Autumn Semester</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>28/11/2016</td>
<td>Autumn Semester</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>05/12/2016</td>
<td>Autumn Semester</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>12/12/2016</td>
<td>term finishes Friday 16/12/16</td>
</tr>
<tr>
<td>13</td>
<td>Vacation</td>
<td>19/12/2016</td>
<td>Christmas</td>
</tr>
<tr>
<td>14</td>
<td>Vacation</td>
<td>26/12/2016</td>
<td>Christmas</td>
</tr>
<tr>
<td>15</td>
<td>Vacation</td>
<td>02/01/2017</td>
<td>Christmas</td>
</tr>
<tr>
<td>16</td>
<td>Vacation</td>
<td>09/01/2017</td>
<td>Christmas</td>
</tr>
<tr>
<td>17</td>
<td>Assessment</td>
<td>16/01/2017</td>
<td>Assessment</td>
</tr>
<tr>
<td>18</td>
<td>Assessment</td>
<td>23/01/2017</td>
<td>Assessment</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>30/01/2017</td>
<td>Spring Semester</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>06/02/2017</td>
<td>Spring Semester</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>13/02/2017</td>
<td>Spring Semester</td>
</tr>
<tr>
<td>22</td>
<td>4</td>
<td>20/02/2017</td>
<td>Spring Semester</td>
</tr>
<tr>
<td>23</td>
<td>5</td>
<td>27/02/2017</td>
<td>Spring Semester</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>06/03/2017</td>
<td>Spring Semester</td>
</tr>
<tr>
<td>25</td>
<td>7</td>
<td>13/03/2017</td>
<td>Spring Semester</td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>20/03/2017</td>
<td>Spring Semester</td>
</tr>
<tr>
<td>27</td>
<td>9</td>
<td>27/03/2017</td>
<td>Spring Semester</td>
</tr>
<tr>
<td>28</td>
<td>10</td>
<td>03/04/2017</td>
<td>Spring Semester (ends 07/04/17)</td>
</tr>
<tr>
<td>29</td>
<td>Vacation</td>
<td>10/04/2017</td>
<td>Easter (Good Friday 14/04/17)</td>
</tr>
<tr>
<td>30</td>
<td>Vacation</td>
<td>17/04/2017</td>
<td>Easter (Easter Monday 17/04/17)</td>
</tr>
<tr>
<td>31</td>
<td>Vacation</td>
<td>24/04/2017</td>
<td>Easter</td>
</tr>
<tr>
<td>32</td>
<td>Vacation</td>
<td>01/05/2017</td>
<td>Easter</td>
</tr>
<tr>
<td>33</td>
<td>11</td>
<td>08/05/2017</td>
<td>Spring Semester</td>
</tr>
<tr>
<td>34</td>
<td>12</td>
<td>15/05/2017</td>
<td>Revision/Assessment</td>
</tr>
<tr>
<td>35</td>
<td>Assessment</td>
<td>22/05/2017</td>
<td>Assessment</td>
</tr>
<tr>
<td>36</td>
<td>Assessment</td>
<td>29/05/2017</td>
<td>Assessment</td>
</tr>
<tr>
<td>37</td>
<td>Assessment</td>
<td>05/06/2017</td>
<td>Assessment</td>
</tr>
<tr>
<td>38</td>
<td>-</td>
<td>12/06/2017</td>
<td>-</td>
</tr>
<tr>
<td>39</td>
<td>-</td>
<td>19/06/2017</td>
<td>term finishes Friday 23/06/17</td>
</tr>
<tr>
<td>40</td>
<td>-</td>
<td>26/06/2017</td>
<td>-</td>
</tr>
<tr>
<td>41</td>
<td>-</td>
<td>03/07/2017</td>
<td>-</td>
</tr>
<tr>
<td>42</td>
<td>-</td>
<td>10/07/2017</td>
<td>-</td>
</tr>
<tr>
<td>43</td>
<td>-</td>
<td>17/07/2017</td>
<td>-</td>
</tr>
<tr>
<td>44</td>
<td>-</td>
<td>24/07/2017</td>
<td>-</td>
</tr>
<tr>
<td>45</td>
<td>-</td>
<td>31/07/2017</td>
<td>-</td>
</tr>
<tr>
<td>46</td>
<td>-</td>
<td>07/08/2017</td>
<td>-</td>
</tr>
<tr>
<td>47</td>
<td>-</td>
<td>14/08/2017</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Assessment</td>
<td>Date</td>
<td>Re-sit Period</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>48</td>
<td>Assessment</td>
<td>21/08/2017</td>
<td>Re-sit Period</td>
</tr>
<tr>
<td>49</td>
<td>Assessment</td>
<td>28/08/2017</td>
<td>Re-sit Period</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>04/09/2017</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>11/09/2017</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td>18/09/2017</td>
<td></td>
</tr>
</tbody>
</table>
13 Teaching Methods

Lectures

Throughout your university career, you will find that lectures are the most common method of teaching. It is most important for you to ensure that you have a set of good clear notes based on the lectures and your own reading. As you progress through the second and third years of your degree, you will be expected to do increasing amounts of reading; it is therefore useful to develop your reading skills during your first year. Teaching of some modules is complemented by the use of teaching software.

Hints and tips for making the most effective use of the teaching and learning opportunities available to you are provided in Study Skills Guide given to all students at the beginning of their first year).

NB books which should be purchased will be identified at the start of teaching - you are advised not to buy any books prior to this unless otherwise indicated in the recommended reading lists at the end of each module synopses.

Practical Classes

Course requirements may require you to take practical classes. These may involve laboratory experiments or observations and analysis of data obtained during the sessions. Practical sessions provide an opportunity to learn and develop additional skills in techniques, observation and analysis. Practical classes also provide an opportunity to extend your knowledge of topics not covered in lectures. For each practical course you will receive a laboratory manual or collection of schedules which will expand on the learning experience of the course.

Some large first year classes are taught simultaneously in adjacent laboratories. Consult the class lists posted on the notice boards to identify the laboratory you will work in. For each practical class, at least one member of academic staff will always be in attendance. S/he will be accompanied by postgraduate students who work as demonstrators. In some cases, technicians may also be present to assist. The teaching team is present in the laboratory to aid your learning experience, so please seek their help as much as you need, and ensure you carry out your work safely, with no harm to yourself or other students. Practical classes provide a valuable opportunity for you to get to know the academic staff in a less formal way and for them to help you. These classes frequently provide an excellent opportunity for you to raise questions from the lecture course with the member of staff and deal with problems you may have.

For all practical classes, you MUST WEAR a suitable full-length laboratory coat, which must be buttoned at all times. You will be given a lab coat and safety glasses during Week 1 and advised about any other items you need to purchase. You MUST also WEAR safety glasses at all times unless advised to the contrary by an academic member of staff.

Safe working and good laboratory practices are essential in the laboratory environment and all laboratory exercises must be formally assessed under the regulations of COSSH. Details of these assessments are noted in the laboratory manual or schedule to draw your attention to specific hazards and the requirements of safe practice. During the introduction to a practical class, the member of staff in charge will give a verbal statement on safety issues.

Food and drink MUST NOT be taken into the laboratory.
Assessed Work

Many modules have an element of student-centred learning, especially in Parts I (Year 2) and II (Year 3) of your course. The work involved in these is assessed and forms part of the overall mark for the module. The proportion of the mark allotted to coursework is identified in each module description. Penalties are applied for late submission of coursework (5% per working day), unless there are extenuating circumstances and appropriate documentation is provided. In general, modules in the School of Bioscience use electronic submission of coursework through Moodle as the means of submission.

IT Training

IT is increasingly important as a basis of learning, communication and the preparation of your work e.g. dissertation, BSc project thesis and laboratory reports. It is important that you develop/improve your IT skills as you progress through your course.

Computer-aided Learning (CAL)

Several modules include computer-based teaching material, quizzes, exercises, simulations. In order to use these, you must be registered on the School of Biosciences Network. You may be assessed on some of these packages while using them or in the form of a conventional write-up. You should be prepared to take notes as you work through material on computers.
14 Assessment, Progression, Compensation and Reassessment

The University Undergraduate Course Regulations apply to all the School’s BSc, MSci and MNutr degrees.

The regulations can be found at: www.nottingham.ac.uk/academicservices/qualitymanual/studyregulations/studyregulationsforundergraduatecourses.aspx

You should note that:

- The pass mark for a module is 40%.
- **Progression and Compensation (BSc):** You don’t need to pass all modules in order to progress to the next stage of your course. Compensation of failed modules can be achieved in the following ways – if you have:
 (a) passed modules worth at least 80 credits and have a weighted average for the stage of at least 40% with no module marks of less than 30%;
 or
 (b) passed modules worth at least 100 credits and have a weighted average for the stage of at least 50%.
 or
 (c) passed modules worth at least 90 credits, have marks of 30% or more in modules worth at least 110* credits, and have a weighted average for the stage of at least 45%.

- **Progression and Compensation (MNutr):** At the Part I, Part II and Part III stage, no core module can be compensated with the exception of optional modules for which university regulations apply. In addition, students must obtain at least 35% in both the examination and coursework components of these modules, although a mark between 35% and 39% in either the examination or coursework may be compensated by the other component of assessment.

- **Progression (MSci):** At the end of Part I, students on the MSci degree must achieve an overall average of 55% at first sit in order to progress to Part II.

- **Reassessment:** If you do not reach the criteria for progression at the end of stage of study, you have a right to one re-assessment in each failed module. The form of reassessment is normally the same as for the first sit, with some exceptions (for example some MCQ papers are sometimes replaced with essay-style papers). For modules which are assessed by both coursework and exam, the School of Biosciences requires that, if the module has been failed overall, then you must be reassessed in the examination element of that module, even if that component of assessment has been passed.

 In addition, if you have failed the coursework overall (of a module which is assessed by both coursework and examination) you may elect to resubmit remedial coursework. However, if you have passed your coursework overall, you are not entitled to resubmit either the whole coursework or any failed component within your coursework assessments. If you wish to take up the option of remedial coursework, you must make contact with the appropriate module convener (or his/her representative) **within 7 days** of the date of the letter notifying you that you have failed to progress. The module convener will give you a title and submission date for the coursework. Any remedial
coursework must be submitted before the start of the August examination period. However, individual module conveners have the right to set earlier deadlines at the time of setting the coursework.

Please note: for modules which have both an examination and coursework component, it is not possible for you to be reassessed by resubmitting coursework alone; you are required to retake the examination, even if this element of the module has been passed.

This policy allows students to maximise their chances of passing the module after reassessment. In Part I (and Part II [Master of Nutrition]), the ORIGINAL marks are carried forward for degree classification purposes. However, reassessment marks may be considered by the examining boards if the candidate is on the borderline between degree classes.

- **Progression after reassessment:** For progression purposes, the higher or highest of the marks obtained in each module (at first attempt or upon re-assessment) are considered and the progression and compensation regulations applied accordingly.

- **Marking Schemes:** see appendices 1-6.

- **Progression Charts:** see appendix 6 and can be viewed at http://goo.gl/N492mp

- **BSc Degree Candidates**

 Award of an Honours degree is dependent on completion and submission of a final year project.

 When the overall Part I / Part II mark has been computed, it is rounded to provide a single overall integer mark before any degree classification is assigned. Subject to the exception of borderline candidates and those with extenuating circumstances, who may be awarded a higher degree classification, students shall be awarded the class of degree with their overall mark. The classes of honours degree are as follows:-

 - First Class - average of 70%+
 - Second Class (Division 1) - average of 60-69%.
 - Second Class (Division II) - average of 50-59%.
 - Third Class - average of 40-49%.

 The standardised weighting for the stages of a Bachelor degree will be 33/67 for Parts I and II respectively, and the standardised weighting for an Integrated Master’s degree (undergraduate) will be 20/40/40 for Parts I, II and III respectively.
Borderline Profiling

Classification borderlines will be based on the overall rounded average mark (credit and stage weighted). Borderline overall averages will be as follows:

2:1–1st 68, 69
2:2–2:1 58, 59
3rd–2:2 48, 49

A student should be given the higher class if either of the following criteria are met:
• Half or more of the final stage credits are in the higher class;
• Half or more of the final and penultimate stage credits are in the higher class

Further Reading

Full details of regulations can be viewed on the UoN Quality Manual page at http://goo.gl/qoQPi3
15 Extenuating Circumstances

Policy regarding extensions to coursework on grounds of Extenuating Circumstances, Disability or Specific Learning Difficulties Summary:

1) Extensions to coursework will not normally be given unless the student has a specific recommendation from the School’s Extenuating Circumstances Committee, or Academic/Disability Support.
2) Extensions will not normally be given as a result of short-term illness of less than 7 days unless the module convenor agrees this.
3) Students with Academic/Disability referrals allowing the option for coursework extension may arrange for a short extension to coursework submission with the module convenor, on the basis of particular circumstances, without the need to apply for extenuating circumstances.
4) Students with approved extenuating circumstances may be granted an extension to coursework submission of usually no more than 21 calendar days.

Full details of the school’s implementation of University policy is below. Meeting deadlines is an important part of working life. It is important that students develop time management skills and the ability to meet deadlines before undertaking work placements or entering the workforce on graduation. Coursework deadlines are normally set at the start of the module by the module convenor, and clearly stated in module documents/introductory teaching sessions. This gives students the opportunity to identify periods of high workload within each semester and plan their time accordingly. Whilst course teams will try to adapt deadlines to avoid coursework ‘hotspots’, deadlines are set as appropriate for each individual module and it is the student’s responsibility to plan their time accordingly.

Extensions to coursework deadlines can be given in limited circumstances – for example, if students have extenuating circumstances, disability or specific learning difficulties. These are dealt with in the following way.

- Extensions to coursework will not be given to students unless they have a specific recommendation from Academic/Disability Support, the School’s Extenuating Circumstances (ECs) committee or the module convenor (see below).
- Students with specific recommendations from Academic/Disability Support may request one extension in advance of the deadline, giving justification for why they need it. Students should not expect to be offered an extension, and it is acceptable for the Module Convenor not to allow one, if it is not possible within the module structure – for example, if the work is subject to a very tight marking turn-around period, such as laboratory practical write-ups. In these circumstances, students should be given notice in advance of the deadline that no extensions can be allowed. If the module convenor feels that an extension is appropriate, the following extension lengths, which have been endorsed by Academic Support, will be followed:

<table>
<thead>
<tr>
<th>Length of Coursework</th>
<th>Extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 2,500 words (or equivalent)</td>
<td>Maximum of 2 calendar days</td>
</tr>
<tr>
<td>2,500-5,000 words (or equivalent)</td>
<td>2-4 calendar days</td>
</tr>
<tr>
<td>Final Year Dissertation</td>
<td>Maximum of 5 calendar days</td>
</tr>
</tbody>
</table>

Where this guidance refers to "module convenor" this can also be taken to include coursework marker/other academic contributor to the module where this person is not the module convenor.
Any further extension would normally only be given on the basis of approved extenuating circumstances.

Any unapproved late submissions will have marks deducted as outlined in the Quality Manual (5% for each working day).

Students who submit coursework late as a result of illness or other circumstances lasting more than 7 days should discuss this with the module convenor or their personal tutor and should submit an EC form in advance of the submission deadline and evidence within 7 days of the submission deadline. If evidence is not available at the time that the form is submitted, it can be submitted within 14 days of the EC form submission. This documentation will be considered via the normal EC process (see: http://www.nottingham.ac.uk/academicservices/qualitymanual/assessmentandawards/extenuating-circumstances-policy-and-procedures.aspx

- If ECs are accepted, an extension to the submission will be agreed and any marks that have been deducted for late submission will be reinstated.

Any extension (within a teaching semester) for students with ECs will not normally be for more than 21 calendar days, to ensure that all coursework is submitted prior to the coursework return date. Any submission after the return date will not be accepted but a student may be given a first sit opportunity if they have approved ECs.
16 Plagiarism and Paraphrasing

Plagiarism and Paraphrasing

This section is also covered in the Study Skills book. It draws upon information available at the following University Web sources together with guidance from staff in the School of Biosciences. As work is now submitted electronically through Turnitin, be aware the plagiarism is readily-detected.

USEFUL ADVICE FOR STUDENTS

One good method to avoid plagiarism is to make notes from material you have read and construct your essay / report, in your own words, from these notes. It is tempting (and easy) to copy and paste, but this is unacceptable and constitutes an academic misconduct. It is also poor practice to construct a draft by copying and pasting material from multiple sources, with the intention of then paraphrasing the resulting document. Apart from the fact that the end-product may be disjointed, the paraphrasing is often incomplete and the work submitted may contain elements of plagiarised material. It is, however, acceptable to include relevant figures and tables from published work, as long as you acknowledge their source by citing the primary reference for them.

To make a specific point, there may be rare occasions when you have may to quote an author verbatim; this is acceptable if you put the quotation in inverted commas and give the source, but you should have a good reason why you can’t put the material in your own words.

USEFUL WEBSITES

Academic integrity and plagiarism
http://www.nottingham.ac.uk/studyingeffectively/writing/plagiarism/index.aspx

Quality Manual
http://www.nottingham.ac.uk/academicservices/qualitymanual/assessmentandawards/academic-misconduct.aspx

Studying Effectively
http://www.nottingham.ac.uk/studyingeffectively/home.aspx

DEFINITION OF AN ACADEMIC MISCONDUCT

Any activity or behaviour by a student which may give that student, or another student, an unpermitted academic advantage in a summative assessment is considered to be an act of academic misconduct and unacceptable in a scholarly community. Such action(s) will be considered under the University’s Regulations on Academic Misconduct and this may lead to a penalty being imposed.

DEFINITION OF PLAGIARISM

The following definition of plagiarism appears in the University Quality Manual:

Plagiarism: representing another person’s work or ideas as one’s own, for example by failing to follow convention in acknowledging sources, use of quotation marks etc. This includes the unauthorised use of one student’s work by another student and the commissioning, purchase and submission of a piece of work, in part or whole, as the student’s own.
Note: A proof-reader may be used to ensure that the meaning of the author is not misrepresented due to the quality and standard of English used, unless a School/Department policy specifically prohibits this. Where permitted, a proof-reader may identify spelling and basic grammar errors. Inaccuracies in academic content should not be corrected nor should the structure of the piece of work be changed; doing so may result in a charge of plagiarism.

Work in any year of study which is not undertaken in an Examination Room under the supervision of an invigilator (such as dissertations, essays, project work, experiments, observations, specimen collecting and other similar work), but which is nevertheless required work forming part of the degree, diploma or certificate assessment, must be the student's own and must not contain plagiarised material.

Possible **penalties** for an academic misconduct including plagiarism are:

a) No marks to be awarded in relation to the specific material which is the subject of the act constituting an academic misconduct (thus leading to a reduced overall mark for the piece of course work, dissertation, examination question or examination script in which the specific material appears)

b) Award a mark of zero for the entire piece of course work, dissertation, examination question or examination script in which the academic misconduct has occurred

c) Award a mark of zero for the entire module in which the academic misconduct has occurred

d) Award a mark of zero for all the assessments in the semester (even where this will lead to a reduction in degree class). In the case of year-long modules, this penalty may affect both semesters

e) Award a mark of zero for the whole year (even where this will lead to a reduction in degree class)

f) Require the student to take reassessments (as a result of being awarded zero marks) in the following session before being allowed to progress or complete their course

g) require the student to register with the University and enrol on modules in which they need to take reassessments (as a result of being awarded zero marks) in the following session before being allowed to progress or complete their course

h) Terminate the student’s course

i) Withdraw the award of a degree or other qualification from, and issue an amended transcript to, a former student of the University

j) Full details of possible School and University penalties can be found at: www.nottingham.ac.uk/academicservices/qualitymanual/assessment/academic-misconduct.aspx
ACADEMIC MISCONDUCT

Any activity or behaviour by a student which may give that student, or another student, an unpermitted academic advantage in a summative assessment is considered to be an act of academic misconduct and unacceptable in a scholarly community. Such action(s) will be considered under the University’s Regulations on Academic Misconduct and this may lead to a penalty being imposed.

Here is a range of cheating behaviours:

1. False citation (i.e. attributing work to the wrong source)
2. Plagiarism
3. Using unauthorised sources or notes in examinations or tests
4. Dishonestly obtaining material or information prior to examinations
5. Copying from other students
6. Permitting other students to copy your work
7. Soliciting work from others (e.g. individuals, ‘editors’ or essay banks etc)
8. Submitting your own previously assessed work without acknowledgement (auto plagiarism)

Unauthorised Collaboration, or Collusion, occurs where:

Collusion: cooperation in order to gain an unpermitted advantage. This may occur where students have consciously collaborated on a piece of work, in part or whole, and passed it off as their own individual efforts or where one student has authorized another to use their work, in part or whole, and to submit it as their own.

Note: Legitimate input from University tutors or approved readers or scribes is not considered to be collusion.

Fabrication may take various forms but is essentially concerned with manufacturing aspects of the work produced. For example, the insertion of made-up information, data, sources, quotes, anecdotes or analysis would all amount to fabrication

Recycling or unauthorised, multiple submissions.

The multiple submission by a student of their own material is not, in itself, considered as academic misconduct. Submission of material that has been submitted on a previous occasion for a different summative assessment is, however, unlikely to be academically appropriate. The merit of such material will therefore be a matter of academic judgement and it may attract fewer (or no) marks than would have been the case if it had not been assessed previously

Note:
Plagiarism is regarded as a serious academic misconduct by the University and will be penalised accordingly. Plagiarism can be easily identified by entering suspect passages into search engines. Specialist search engines (e.g. Turnitin) are available to check all submitted work against previously published sources, including coursework submitted by students in the current or previous years. The School of Biosciences uses Turnitin to assist academic staff detect plagiarism; students are required to submit all coursework in electronic form to facilitate automatic on-line detection of plagiarism.

All BSc Research Projects must be submitted electronically to be checked by Turnitin along with the necessary hard copies (see Guidelines for BSc Research Projects).
GUIDANCE TO HELP YOU AVOID COMMITTING PLAGIARISM

1. You are allowed to use information from other people's work provided you acknowledge the source. This can apply to a statement, Table or Figure. The best way of doing this for Tables and Figures is to add: "After Smith (1988)" or "Modified from Smith (1988)", and include the reference in your reference list.

2. If you are discussing something somebody else has said, you can say, for example: Smith (1987) claimed that coral reefs in the Pacific were damaged by high temperatures in 1975. Or: It has been claimed that high temperatures in 1975 damaged coral reefs in the Pacific (Smith, 1975).

3. It is rarely necessary to quote previous work directly and you should try to avoid doing this. If quotation is unavoidable, you should put the passage in quotation marks, e.g. Smith (1980) described the outcome of unprecedented high temperatures on coral reefs as: "A disaster for the marine communities in the coastal regions of the Indo-Pacific", and then stated that: "The phenomenon appears to be due to unprecedented high temperatures".

For information on paraphrasing see 8 and 9 below.

4. Authors should be cited in text either as: Smith (1975), Smith and Allen (1978), Allen (1987, 1989), or as (Smith, 1975; Smith and Allen, 1978; Allen 1987, 1989). Note that these are in chronological, not alphabetic order. When more than two authors are quoted, this should be in the form Allen et al. (1993) in the text, but the reference given in your reference list should contain the names of all the authors. Do not use numerically cited or ordered references.

5. In your "References" or "Literature cited" section, the following style (authors, date, title, journal, volume number, page numbers; called the “Harvard” style) should be used and references should be listed alphabetically.

Provided you are consistent, you may also use any other accepted style - see journals in the library – unless instructed otherwise by the member of staff setting the coursework.

If the source is only available electronically or is being published “ahead of print”, give the DOI number in your reference.

Some electronic journals do not use page numbers.

6. For books, the following style (author, title underlined or in italics, publisher, place of publication) applies:

7. For chapters in edited volumes, the following style (author, date, title of chapter, title of book underlined or in italics, editors, page numbers, publisher, place of publication) applies:

8. **Paraphrasing**, i.e. verbatim or almost verbatim restatement of a passage is a form of plagiarism frequently used in essays and dissertations. The following is paraphrased from C. H. Gordon, P. Simmons and G. Wynn (date unknown). *Plagiarism - What It Is And How To Avoid It*. University of British Columbia.

Students often ask "How much do I have to change a sentence to be sure I'm not plagiarising?" If you have to ask, you are probably about to commit plagiarism! There is no set number of words that you need to change or add to make a passage your own – the originality must come from the development and expression of your own ideas.

Original work demands original thought. You should try and separate your ideas from those of others. If you use another author's conclusions then acknowledge them. If you come to the same conclusions as another author you should still acknowledge them. Once a piece of work is complete, look at each part and ask yourself if the ideas expressed are entirely your own, and whether the general language or choice of words is your own. If the answer to either is "no" the work should be credited to the original author.

9. **Examples.**

9.1 Original

From Smith (1992):
The author has found that corals respond to high temperatures by expelling their zooxanthellae. This causes them to go white, a phenomenon known as "bleaching." Such corals soon become covered in algae, which makes it difficult for new coral planulae to settle and start a new colony (Davies, 1980). The phenomenon of bleaching is similar to the effect of a crown-of-thorns starfish (*Acanthaster planci*) attack where the polyps are digested by enzymes secreted onto the colony surface (Brown, 1990). As Jones (1972) found, *A. planci* poses a severe threat to corals in the Indo-Pacific. The recent occurrence of high numbers of these starfish on reefs has been correlated to run-off from land which contains high levels of plant nutrients (Jones, 1986). The subsequent increase in the number of algae apparently enhances the survival of the filter-feeding larvae of the starfish.

To include this text verbatim in your own work, **without placing the entire paragraph in quotation marks and acknowledging Smith (1992) (see 3 above) would constitute plagiarism.**

9.2 Paraphrased version

Paraphrased from Smith (1992):
Smith (1992) has found that corals respond to high temperatures by expelling their zooxanthellae. This phenomenon, known as "bleaching", causes them to go white. Such
corals quickly become covered in algae and this makes it difficult for new coral planulae to settle and begin developing a new colony (Davies, 1980). Bleaching is similar to the effect of a crown-of-thorns starfish (Acanthaster planci) attack. Brown (1990) note that this is where the polyps are digested by enzymes secreted onto the colony surface. Jones (1972) found that A. planci may be a severe threat to corals in the Indo-Pacific. Recently high numbers of these starfish on reefs has been correlated to run-off from land with high levels of plant nutrients (Jones, 1986). The increase in the number of algae apparently enhances the survival of the filter-feeding larvae of the starfish.

To include this text in your own work, even with the initial acknowledgment Smith (1992) would constitute plagiarism since it reads as if only the first sentence is taken from Smith, and the rest of the references (Davies, Brown and Jones) have been sourced and read by you and that the development and expression of the text is your own original work.

9.3 Unacknowledged version (i.e. submitting this as if it were your own thoughts or work)

The presence of high numbers of crown-of-thorns starfish (Acanthaster planci) on reefs has been connected to run-off from land containing high levels of plant nutrients. This causes an increase in the number of algae which results in better survival of the filter-feeding larvae of the starfish. The starfish kills corals by secreting digestive enzymes onto their surfaces. A. planci poses a severe threat to corals in the Indo-Pacific and their effect is similar to that caused by "bleaching", a phenomenon caused by high temperatures which results in zooxanthellae being expelled. Subsequently the dead corals become covered in algae which makes it difficult for a new colony to start.

To include this text verbatim in your own work, would constitute plagiarism since there is no acknowledgment of Smith (1992).

9.4 Acceptable version (based on information from Smith, reading the cited references yourself and drawing upon other work)

Smith (1992) quoted Jones (1972, 1986) in suggesting that the crown-of-thorns starfish poses a threat to corals in the Indo-Pacific, and that their recent upsurge may be due to an increase in plant food levels caused by an input of nutrients from land. Brown (1990) found that these multi-armed starfish killed corals by everting their stomachs onto the coral colony surface and secreting an enzyme to digest the tissues externally. The resulting "bleaching" effect is similar to that which occurs when corals are exposed to high temperatures and the zooxanthellae are expelled (Smith, 1992). Davies (1980) found that the settlement of algae on the colony surface made it difficult for new coral larvae to settle and, although fish often grazed the algae continually, he found they could not keep these under control. Recent studies have shown that plagues of crown-of-thorns starfish may be a natural phenomenon, as the fossilised remains of previous outbreaks have been found in rocks millions of years old (Cromer, 1994).

To present your work like this would not constitute plagiarism.

Note that all the references and authors used in this document with the exception of Gordon et al. are fictitious.

PLEASE CONSULT YOUR TUTOR IF YOU ARE STILL IN DOUBT ABOUT PLAGIARISM
Personal Academic Development

This table sets out the goals that you should strive for as you progress through your degree. If you can achieve these you will be well prepared for the diverse opportunities that lie ahead.

<table>
<thead>
<tr>
<th>Learning experience</th>
<th>Qualifying year (Year 1)</th>
<th>Part I (Year 2)</th>
<th>Part II (Year 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Establish a strong factual base</td>
<td>• Link knowledge from diverse sources and develop an ability to relate information</td>
<td>• Develop the ability to handle complex information</td>
</tr>
<tr>
<td></td>
<td>• Learn the basics of the scientific method and develop a questioning approach</td>
<td>• Develop a critical and analytical approach to information</td>
<td>• Evaluate information and synthesise ideas</td>
</tr>
<tr>
<td></td>
<td>• Link knowledge from diverse sources and develop an ability to relate information</td>
<td>• Develop a critical and analytical approach to information</td>
<td>• Develop a creative approach to problem solving</td>
</tr>
<tr>
<td></td>
<td>• Develop a creative approach to problem solving</td>
<td>• Develop the ability to handle complex information</td>
<td></td>
</tr>
<tr>
<td>Skills acquired</td>
<td>• Cope with varying lecture styles</td>
<td>• Consolidate information skills with extensive use of library and IT</td>
<td>• Develop a mature approach to study</td>
</tr>
<tr>
<td></td>
<td>• Make effective use of library and IT facilities</td>
<td>• Enhance practical skills</td>
<td>• Exhibit strong self-discipline and commitment</td>
</tr>
<tr>
<td></td>
<td>• Acquire basic laboratory skills</td>
<td>• Enhance presentation skills</td>
<td>• Clearly articulate knowledge and understanding</td>
</tr>
<tr>
<td></td>
<td>• Make independent use of library and other information resources</td>
<td>• Organise study and manage time to meet deadlines</td>
<td>• Respect the views of others and engage in reasoned argument</td>
</tr>
<tr>
<td></td>
<td>• Acquire experience in a range of learning styles</td>
<td>• Appreciate the importance and value of team work</td>
<td></td>
</tr>
<tr>
<td>Developing independence</td>
<td>• Learn to combine teacher-driven study with work based on individual initiative</td>
<td>• Take responsibility for self-learning</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Demonstrate individual style and flair</td>
<td>• Exhibit professionalism and ownership of subject</td>
</tr>
</tbody>
</table>
18 Academic Tutoring

Academic tutoring is the support which the school provides to students in addition to formal teaching. It is complementary to the University’s central support services and pastoral care provision.

The objectives of Academic Tutoring are to:

- Help you acquire the necessary study skills to pursue your studies successfully.
- Address problems of lack of knowledge and understanding of the subject.
- Address any problems with aspects of a module or your studies in general.
- Provide you with an overview of your academic progress at module and programme level.
- Assist you in making academic choices e.g. module enrolments, programme pathways.
- Provide assessment feedback to help you improve your future performance.
- Contribute to the acquisition of key employability skills.
- Assist and encourage you to gain employment or continue your education after you graduate.

The School takes its responsibility for academic tutoring very seriously and provides the following to ensure that you are properly supported:

- One-to-one meetings with your personal tutor for personal development, pastoral support and guidance (e.g. on module choices).
- Meetings with course directors for module guidance, either informally or at module enrolment days.
- Tutorials/seminars within modules comprising your degree programme.
- Provision of specific credit-bearing academic tutoring and study skills modules D21BG1: Biosciences Tutorials (Academic Development and Foundation) and, C11BE1 Dissertation in Environmental Science and also through skills embedded in other academic modules including project and dissertation modules.
- Drop-in support sessions for mathematics and statistics.
- Written feedback on assessments including;
 - individual written or verbal feedback on coursework and mark allocation based on a transparent marking scheme
 - generic feedback one week after exam results
 - constructive comments provided by markers through individual appointments with module conveners
 - students’ evaluation forms collated from students’ comments, available through Moodle.
- Student led-seminars.
- Peer support groups, including mentoring.
- 'Office hours' system for appointments with module coordinators/tutors.
- A flexible and comprehensive virtual learning environment (Moodle).
- Links to central support services e.g. Academic Support, the Counselling Service and the Student Services Centre.
- Assistance and guidance on academic administrative matters through the school office.
- Encouragement to make use of central on-line study skills resources e.g. 'Study Skills' www.nottingham.ac.uk/studyingeffectively.
- Assistance with personal support or guidance from the School Senior Tutors.

School of Biosciences Tutoring Statement
The full Biosciences tutoring statement can be found in appendix 8 and at http://goo.gl/dPpFjU_ Students are encouraged to read the statement.
19 Attendance Monitoring

Students must attend all teaching activities necessary for the pursuit of their studies, undertake all associated assessments and attend meetings and other activities as required by their School or the University. Where students face difficulty in attending sessions or undertaking assessments and examinations, it is their responsibility to inform their School of this fact and to provide a satisfactory explanation. Please see http://www.nottingham.ac.uk/academicservices/qualitymanual/registrationattendanceandstudy/regulations-governing-attendance-and-engagement.aspx for further details on attendance regulations at the University.

Two weeks is considered a significant period of absence and students are encouraged to consider interrupting their studies if they will miss this length of time. See for further details on voluntary interruption of studies.

The School will consider all extenuating circumstances relevant to attendance and engagement with a student’s studies. Students should make the School aware of any extenuating circumstances as soon as possible to ensure full support can be provided and any alternative arrangements such as coursework extensions can be applied within the approved timescales. See the Quality Manual http://goo.gl/yX4aTC or further details on extenuating circumstances.

Individual Schools and Departments have systems in place to monitor attendance during the academic year. Example includes taking registers in lectures, monitoring coursework submission and tutorial attendance, etc. Unauthorised absences are reported to Academic Services and recorded as appropriate. Where students are absent without authorisation, to the point that it is not possible to continue with the course, Academic Services will write to the student stating that they will be deemed to have withdrawn from the University and their student record will be amended to show that they have withdrawn.

Students who are identified to be poorly engaging with their studies or poorly attending teaching activities will be asked to meet with the Student Experience and Support Officer or their Personal Tutor.

Where required the University will report non-attendance and poor attendance to appropriate authorities including the UK Border Agency and Student Finance.
20 Complaints and Appeals Procedures

Details of the University’s Complaints and Appeals Procedure can be found at: http://www.nottingham.ac.uk/academicservices/qualitymanual/assessmentandawards/academic-appeals-policy-and-procedure.aspx

The procedure regarding a complaint concerning your course is that in the first instance you should contact the lecturer concerned. If the matter cannot be resolved, the next points of contact would be:

- Module Convener
- Course Director
- Teaching Manager
- Head of Division
- Head of School
- Student Year Representative (names are on the Learning Community Forum notice board together with the Module Convener)

Students are encouraged to involve their Personal Tutors at any stage, whether the matter of concern is of an academic or personal nature. Students also have the right to bring matters of concern before Learning Community Forum.
21 Industry Placements

As an undergraduate student in the School of Biosciences, the vast majority of you can undertake an optional industry placement, between years two and three of your degree, extending your degree to a four year programme.

The year-long placement is open to you if you are studying one of the following degree programmes:

- BSc Agriculture
- BSc Integrated Agricultural Business Management with Industrial Placement Award
- BSc Agricultural and Crop Science
- BSc Agricultural and Livestock Science
- BSc International Agricultural Science
- BSc Animal Science
- BSc Biotechnology
- BSc Environmental Science
- MSci Environmental Science
- BSc International Environmental Science
- MSci International Environmental Science
- BSc Environmental Biology
- BSc Food Science
- BSc Microbiology
- BSc Nutrition
- BSc Nutrition and Food Science
- BSc Plant Science

You apply for placements during your second year. The School Placement Team help and support you by organising a range of employer presentations on campus, sending email alerts of placement opportunities, running drop-in sessions and one-to-one meetings, and providing online resources.

Further information, profiles of student experiences and useful links can be found here: www.nottingham.ac.uk/biosciences/placements

If you have any questions or want to find out more, contact the School of Biosciences Placement Team, Dr Judith Wayte and Mrs Rachel Jessop, on biosciplacements@nottingham.ac.uk

1 If you are studying BSc Integrated Agricultural Business Management with Industrial Placement award, then a year-long industrial placement during year 3 is built into the 4 year degree programme.

2 If you are studying a degree with an international pathway where you study abroad at the University of Sydney for your second year, you can still undertake an industrial placement. You will need to apply for your placement whilst studying in Sydney. You should be aware that some companies will require you to attend an interview/assessment centre in person, whereas
others will be more flexible and will be able to interview you remotely. You can work together with the School Placement Team by email from Sydney.

3 If you are studying for an MSci degree course, adding a year in industry will mean that the total length of your degree course is 5 years. If you are an international student on an MSci degree course studying in the UK on a Tier 4 visa, and you wish to undertake a year in industry, you need to be aware of the following:

- Once you have secured an industrial placement, you will need to change degree course and apply for a visa extension.
- You may need to make your application for a visa extension from overseas.

The maximum length of time you can study in the UK on a Tier 4 visa at undergraduate level is 5 years. An MSci course with a year in industry is therefore at the maximum length, so if you were to fail one or more modules, you would not have the opportunity of resitting a year in the UK.

If you have any questions or want to find out more, contact the School of Biosciences Placement Team, Dr Judith Wayte and Mrs Rachel Jessop, on biosciplacements@nottingham.ac.uk

21.1 Year Out and Erasmus

The School of Biosciences has established an ERASMUS programme of Student Exchange with a number of European Institutions in France, Germany and Spain.

All students taking honours degrees in the School (except MNutr) are able to take an additional Certificate in European Studies (normal entry requirement is at least a grade B in the second language that the student intend to improve at GCSE level). The Certificate consists of an additional year over and above your 3-year BSc degree programme and commences after the second year in September of Semester 5 and concludes at the end of Semester 6. You will then re-join the normal 3-year programme at the beginning of Semester 7.

Students entering the School need to apply to take the Certificate following a meeting which outlines the principles of the Certificate. Once the application is confirmed, students must submit their application in writing to the School Office.

Students taking the Certificate follow preliminary language training during Year 2 (Part I) by taking 10 credits of French, German or Spanish languages (held in the Language Centre, University Park) and 50 credits of Science modules in each of semesters 3 and 4. In Semester 5 and 6; students will be on placement in an academic Institution in another European country where they will follow courses, including language modules in both of the semesters in placement; the courses must be taken in the language of the chosen Country. Students will also need to complete a European Placement module during semester 5 and 6.

The ERASMUS programme is on an exchange basis. Thus it is suggested that students make contact with ERASMUS students within the School who are from the host University together with those Biosciences students who were at the host University in the previous year. Both these contacts can be invaluable in providing assistance and information.
Further information about the scheme is available from Ms Elena Staves (Student Services Centre, The Barn) or Rachel Jessop (C05, Bioenergy and Brewing Science Bldg, SB).

SUPPLEMENTARY REGULATIONS FOR THE EUROPEAN CERTIFICATE

In addition to the normal progression rules for undergraduate study, the following progression rules apply to the European Certificate element.

Part I candidates achieving a mark of 50% or more in each of the Autumn and Spring Semester language modules will progress to the language module in the Autumn of the year of the Certificate in European Studies (Biosciences). Part I candidates achieving a mark of 40-49% in the Autumn and/or Spring Semester language module(s) will normally be advised to discontinue with the Certificate in European Studies (Biosciences). Candidates achieving a mark of less than 40%, at first attempt, in the Autumn and/or Spring semester language module(s) will be advised to discontinue with the Certificate in European Studies (Biosciences). If, after reassessment, candidates do not achieve a mark of at least 50% in the Autumn and/or Spring Semester language module(s) they may not continue with the BSc with a Certificate in European Studies (Biosciences).

The above regulations as specified for candidates obtaining marks at first attempt. Candidates on the year of the Certificate in European Studies (Biosciences) between Part I and Part II who obtain a mark of less than 40% in the language module cannot progress onto placement in the following semester. Such candidates are offered the opportunity either:

1) to transfer to the equivalent 3-year BSc degree without European Studies at the start of the next academic year and thus do not take any further language modules. Or
2) to be reassessed in the Autumn semester language module in the August / September reassessment period.

If, after reassessment, a mark of 50% or more is achieved candidates may re-join the Certificate in European Studies (Biosciences) in the following academic year. If a mark of less than 50% is achieved at reassessment candidates will be offered 1) above.

In order to proceed to Part II of the degree BSc with a Certificate in European Studies (Biosciences) candidates must attain pass marks in assessments related to the European Year. Candidates who fail to attain satisfactory marks in the assessment undertaken during the European Year shall be offered the opportunity to transfer to the 3-year equivalent BSc degree without European Studies.

Candidates who fail to achieve the criteria for progression onto the three year equivalent degree without European Studies shall not be permitted to continue on this degree but may be offered the opportunity to transfer to the Ordinary degree.
MARKING SCHEME FOR THE EUROPEAN YEAR

European Placement Module:

Fifty percent of the mark correspond to the attendance and assessment of the courses taken abroad. The other fifty percent correspond to one scientific review, one cultural essay and one translation (see below for information).

50%: Attendance and assessment of courses taken abroad.
50%: Essays and translations.

<table>
<thead>
<tr>
<th>Activity Type</th>
<th>Information</th>
<th>Length</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance and assessment of courses abroad</td>
<td>Students must attend and sit the exams abroad</td>
<td>Not applicable</td>
<td>50%</td>
</tr>
<tr>
<td>Essay 1</td>
<td>Scientific review</td>
<td>4000 words</td>
<td>17%</td>
</tr>
<tr>
<td>Essay 2</td>
<td>Culture research paper</td>
<td>4000 words</td>
<td>16%</td>
</tr>
<tr>
<td>Translations</td>
<td>Science into English</td>
<td>10 * 400 words</td>
<td>17%</td>
</tr>
</tbody>
</table>
21.2 Studying Outside the UK

Malaysia Campus

Students on the BSc Biotechnology, BSc Agricultural and Crop Science, BSc Nutrition, BSc/MSci Environmental Science, BSc Environmental Biology and BSc Plant Science courses may have the opportunity to study for one semester or full academic year at our Malaysia Campus as part of their three-year degree programme. All teaching at our Malaysia Campus is in English and the modules and exams are very similar to those in Nottingham. Students from the UK campuses pay a reduced tuition fee during their time abroad and living costs in Malaysia are lower than in the UK.

See link: www.nottingham.edu.my/index.aspx

Universitas 21

Nottingham is a founder member of Universitas 21 which is a global alliance of key universities. You will be able to apply to spend one semester (the first of your second year) studying in one of our partner institutions (including Australia, China, Korea, Mexico, North America, New Zealand, Singapore). Competition for these placements is high but the rewards are considerable.

Find out more about study abroad opportunities at www.nottingham.ac.uk/internationalstudents/exchanges/index.aspx

Interested? What to do next

Don’t miss the Study Abroad Fair, organised by the International Office, which will take place in November 2016. Here, you will learn about all the study abroad options open to you and how to apply. You will also be able to meet with students who have already studied at overseas campuses.

Interested students are advised to find the Study Abroad Team on Facebook to be kept updated with deadlines and events at: www.facebook.com/UoNStudyAbroad and the International Office website: www.nottingham.ac.uk/internationalstudents/exchanges/index.aspx
22 Channels of Communication

Dissemination of information is an on-going process during the academic year; this will come from both the School Office and academic staff. We use several ways to give out information.

- **Email** - Email is the normal means of communication to individuals or class groups; your tutor and module conveners will email regularly and it is also a good way for you to contact academic staff. However, this and other media should not detract from personal meetings, which are necessary for the communication of several matters including the conveyance and discussion of examination.

- **Moodle** - Moodle is the online learning environment across the University. The resource allows you to access lecture notes, find links to external learning resources, access self-test exercises and assessments, participate in online learning activities, submit assignments and collaborate on group projects. You can log in using your University username and password the day after you have completed your registration online. w: moodle.nottingham.ac.uk

- **The Student Portal** - The Portal is a central part of the University’s communication system for staff and students. Make sure you have access to it at: https://goo.gl/dFwTwP

- **Social Media** - The University of Nottingham uses the latest technology to bring Nottingham to life and to ensure that you can experience and interact with the University community at any time, see: www.nottingham.ac.uk/connect/nottinghamconnect.aspx

- **Blue Castle website** - students can view their marks, progression status and final award information electronically at: https://goo.gl/txm85c
23 Students/Staff Consultation

The courses you are taking have evolved over a number of years and incorporate many features arising from student feedback and evaluation. Each department has its own procedures for allowing students to participate in the evaluation and future development of courses.

Broadly, two channels exist:

- feedback evaluations which enable you to comment on the content, style and objectives of modules; we urge you to take the time and effort to complete these so you and future students can play a role in improving our teaching

- The Learning Community Forum (LCF) consists of course representatives of undergraduate students and teaching staff who discuss a wide range of academic and non-academic matters. Anyone who has comments, criticisms or suggestions that they wish to be discussed should contact one of the representatives, whose names will be notified to you during the first semester. Minutes of the Learning Community Forum will be made available electronically.

- The Student Guild also elects student representatives to the School Board and other School committees. If you want to influence academic procedures in the School and University on behalf of your fellow students, you must join the Guild first.
24 Students’ Access to Academic Staff policy

Appointments for meetings with staff should be requested by students by email or in person (by phone or office notice board). Requests by email can be made at any time. Staff should respond to such requests by email within two working days (both during term and outside term-time). Staff are not obliged to send their responses outside of normal working hours, nor during official University holidays, nor when on vacation. They should put out-of-office messages on their emails during vacations and respond within two working days upon return.

Following a request, appointments should be arranged with the student at a mutually convenient time, normally to be held within three working days of the request. Once an appointment has been made, both the staff member and the student are expected to honour the appointment. Should either be unable to attend they should email to cancel prior to the meeting.

Staff have the option of restricting their availability to students to particular days or times of day (other than in emergencies). In this case, they will communicate their preferred availability to their tutees and to other students they see on a regular basis.
Quality Assurance

The primary aim of the University of Nottingham is to sustain and improve the high quality of its provision as one of the leading research-led universities in the United Kingdom. It is also committed to providing a learning environment of the highest quality for students, in which first class teaching is underpinned by excellent research. The School of Biosciences endeavours to maintain these goals in the Biosciences, where relevant in collaboration with other schools, in the following ways:-

- by recruiting motivated students with a proven record of high level of learning;
- by providing a broad education across the discipline;
- enabling the development of an analytical and critical appreciation of scientific ideas and problem solving;
- providing a learning experience enriched by an active research environment;
- enabling the development of independent learning and skills for a wide range of careers within and outside the biological sciences;
- to ensure that students receive appropriate support and guidance in their academic development and career planning;
- to identify and support the academic and pastoral needs of individual students;
- to provide a flexible, effective and adequately resourced learning environment, and
- to maintain and improve teaching and learning through effective management structures in line with the University Quality Manual.

As part of an ongoing process of improving quality, some of our teaching facilities have been recently refurbished and modernised. We look to our students to help us maintain these areas in good condition for the benefit of future generation.
26 Coursework and Examination Feedback

Feedback is provided in three main forms on i) assessed coursework, ii) examination performance and iii) general aspects of each module. In addition to individual marks given for assessed coursework in each module, you will receive an overall module mark and the end of each semester and a full set of module marks will be made available to you through Blue Castle (https://bluecastle.nottingham.ac.uk). Your module marks are confidential and not shown to other students. Individual mark components (e.g. coursework marks) are also confidential; the only exception to this is when you receive a mark for a piece of ‘group work’ in which all members of your group receive the same mark. The sections below provide further details about feedback.

Coursework Feedback

Coursework feedback is normally provided through written comments on your work. For many pieces of coursework, a cover sheet will be returned with your work to explain the mark received and give advice on how your work could be improved. For other pieces of non-examination assessed work, it may not be feasible to provide written comments on your work, for example, a group oral presentation; in such cases, feedback may be provided verbally or by email. Feedback for other assessed work e.g. laboratory practicals, may be provided in other ways as appropriate to the assignment set. Whilst the manner by which you receive coursework may vary depending on the type of coursework set, the purpose of the feedback is to provide a mark for the work together with constructive comments to help improve your performance in future assignments. If you wish to discuss your performance in any assessed work, you should contact the module convenor.

Module convenors will set a deadline by which you must submit coursework and a date when you can expect to receive feedback on your work. This information will be provided when the module convenor sets the piece of work. In normal circumstances, marked coursework and associated feedback should be returned to students within 21 days of the published submission deadline, i.e. students submitting work before the published deadline should not have an expectation that early submission will result in earlier return of work. See details www.nottingham.ac.uk/academicservices/qualitymanual/assessmentandawards/feedback-to-students.aspx

Examination Feedback

After each examination period, general examination feedback from each module will be posted on Moodle. This will include: i) feedback on examination questions where students' performance could be improved, ii) suggested strategies for improving performance in those questions and iii) general comments about examination technique. Students wishing to discuss their examination performance should contact the relevant module convenor(s).

General Feedback

A copy of the Module Report Form, which is a summary of the discussion/feedback with students at the end of each module, can be found within a folder for the module in Moodle. This feedback sheet is used by module convenors to identify which areas of the module students felt worked well, and others that could be improved; in the latter case, the module convenor will make appropriate academic adjustments to the module for the following academic session. The areas of feedback covered by the module report form follow the headings detailed in the Module Report Form.
The University’s Quality Manual provides information on good practice for feedback on assessed work and what you can expect to receive as a student at the University of Nottingham – see http://goo.gl/DI1Ggo
27 Student Services/Departments

27.1 Student Services Centre

The Student Services Centre can provide you with information and support throughout your student life. They are approachable, knowledgeable and most of all they are there to help. Student Services Centres are based at Sutton Bonington, University Park, QMC and Jubilee Campuses. Further details of support services to be given to you on arrival.

27.2 Libraries

The James Cameron-Gifford Library on SB Campus, together with Hallward Library (at UP), George Green Library (UP) and the Medical School Library (QMC and Derby) provide information on all subject areas covered by the School, plus study areas and computing facilities. The on-line catalogue (NUsearch) enables you to search for material held at all branches of The University of Nottingham library. Material from the other campuses can be obtained swiftly for you through the intersite delivery service. During Semester 1 you should attend an introductory lecture provided by the library’s Teaching and Learning Support Team. This will be followed up by a tutorial providing an introduction to key resources and discussion on the critical interpretation of published materials as part of the Academic Development and Employability module.

Learning these basic information retrieval and evaluation skills is essential - you will need them for essays and projects throughout your course. As you progress, more specialised studies are undertaken and you must become familiar with the experimental data published in various journals. Acquaintance with published research provides the foundation for most final year research projects. You should not forget to read the more popular scientific press such as New Scientist or Scientific American, as well as those appropriate to your discipline.

The James Cameron-Gifford Library at Sutton Bonington has over 100 reading places, including quiet areas, bookable/non-bookable study rooms and a number of PCs (see below); it links with several of the Computer Rooms. The Library stock has been developed to support teaching and research in the Schools of Biosciences and Veterinary Medicine, and the library service also provides access to a wide range of databases, electronic journals, and e-books.

Your University Card is also used as a Library borrower’s card, and is required for entry to the libraries at University Park campus.

The James Cameron-Gifford Library is open
Monday to Friday 8.00 am 9.45 pm
Saturday 9.00 am - 4.45 pm
Sunday 9.30 am - 4.45 pm

The library is open 24/7 during exam periods. More information can be found on our website at: www.nottingham.ac.uk/library
27.3 IT Facilities

Help and advice

Advice and information for new users of the IT facilities can be found on the University web pages – go to www.nottingham.ac.uk and search for ‘Student Essentials’. Several on-line guides can be found, and many of them are available as hard copy booklets in the libraries.

Getting online

Your username and password will get you access to most of the services you will need during your time at the University. Make sure you set a strong password and never share your password with someone else. The University will never ask you to reveal your password, and you should be suspicious of any request to tell someone your password. Be sure to check your University email regularly, otherwise you may miss important information.

Computer rooms

There are a number of Information Services (IS) computer rooms on the Sutton Bonington campus which can be used by students, but some are also used for teaching classes. Please look out for notices stating times when the rooms are unavailable due to teaching bookings.

There is a large (120 seat) computer room in the Gateway building (room A07); and smaller rooms in the Main Building (rooms B05, B08, B09, and B10). Further computers are available in the James Cameron Gifford Library, including some with large screens for collaborative or group work.

All IS Computer Room computers are set up in an identical manner, with the same selection of software installed or available (Windows, Microsoft Office, EndNote, PDF Creator; and a range of statistical, graphical and course-related software applications).

Computer loans

The JCG library counter offers a short-term laptop and tablet loan service, with loans restricted to use within the Library and Learning Hub areas only. Students may also make use of the Information Services Laptop Loan service, where longer-term loan periods are possible. This service operates from an office at University Park (Pope Building).

The Portal; and Virtual Learning Environment

The Portal (linked from the University’s home page) is the main point of access for students, through which you can access most of the services you will need. From the Portal you can connect to your email service, module information, Library services, timetables, and other essential information. You can also connect to Moodle, which is the University’s Virtual Learning Environment (VLE), and is where you will find course information, module documents, lecture notes, reading lists, assignments, etc.

Saving your files and backing up your data

It is the responsibility of each student to save their work safely and securely! Each student has 4GB of personal file storage available on the University’s networked servers. This is
available as the ‘Home Drive’ from any IS Computer Room computer, as well as via the web at files.nottingham.ac.uk.

Never save your work onto the hard drive of Computer Room computers – files will be deleted when you log off! Save files to the Home Drive or to an external device.

Any work done on your own computer should be backed up – either onto at least one external hard drive or onto one of a number of cloud storage options available widely.

Printing

Students can print from any IS computer to the University Print Service. Printing is held in a queue and can be printed off and collected at Print Service printers which are situated close to all IS computer rooms and in the libraries.

You can also print from your home computer, laptop or mobile device using the Mobile Print Service. Simply email your document to mobileprint@nottingham.ac.uk

Wireless

Good wireless coverage on the eduroam service should be available in all of the main teaching and social areas of the campus, and in some outdoor areas. In the halls of residence the wireless service is provided by the Hall management companies.
27.4 Accessibility

Teams supporting students with study support, disabilities, specific learning difficulties and long term health conditions are located in the Student Services Centre (SSC), in The Barn on Sutton Bonington Campus, in the Portland Building on University Park, and will be available on all of our other teaching sites.

We can assist with queries regarding:

- Support in making the transition to University, admissions and registration
- Liaison with your School or department about any impact your condition may have on the study elements of your course OR: assessments in relation to disability and dyslexia and recommendations to academic staff about reasonable adjustments in the learning, teaching and assessment environments
- access to alternative formats such as Braille and large print
- residential accommodation – adapted study bedrooms
- accessible transport around and between our Nottingham campuses
- applying for Disabled Students’ Allowances
- access to alternative formats such as Braille and large print
- access to specialist technology in libraries
- liaison with libraries for enhanced services such as extended loans
- timetabling arrangements

The Accessibility Team also provides support for students who wish to develop their strategies for academic writing and time management.

The Accessibility Team have online study resources which relate to almost all of the areas you cover in the guide, see http://www.nottingham.ac.uk/studentservices/supportforyourstudies/academicsupport/studyresources/index.aspx

If you would like to contact us please phone the Student Services Centre on (0115) 951 3710

e: disability-support@nottingham.ac.uk
dyslexia-support@nottingham.ac.uk

The University of Nottingham ACCESS Centre (UNAC), in the Student Services Centre, provides assessments for students who have applied for Disabled Students’ Allowances.

Student Welfare Manager

The School also has a dedicated Student Welfare Manager, who provides a point of reference, advice and guidance for members of staff and students in the School about student disability issues and student support. The Welfare Manager is part of a large cross campus team of Student Welfare support managers and officers that meets regularly to share information and good practice. The Welfare Manager in Biosciences works closely with the Accessibility Team in working to ensure that all students are supported and advised appropriately and that there is equality of opportunity for all.

If you have any requirements or concerns talk in the first instance to your Welfare Manager – or contact your personal tutor.
School Welfare Manager

The Welfare Manager for the School of Biosciences is located in the Main Building. You will be meet your Welfare Manager during your induction and will be given further details on your arrival at university.
27.5 Careers and Employability Service

Careers and Employability Service

Many first year students think it is too early for them to start thinking about their future career, but in our experience it is never too early. By making the most of your time at university you can develop skills and build experiences that will be of interest to your future employers.

You could:
- join a society or sports team
- complete an Advantage Award module
- find a part-time job through Unitemps

For more information about the Advantage Award, Unitemps or other ways to make the most of university life you can visit our webpages www.nottingham.ac.uk/careers or speak to a member of the careers team.

Whether you have one or several career ideas or none at all, it is a good idea to start researching possible career options. There are a number of ways the Careers and Employability Service can help you to do this:

- Speak to a Careers Adviser. You can book a one-to-one appointment to discuss your career ideas or questions at Sutton Bonington Campus or at University Park.
- Meet employers on campus. Throughout term time there will be a range of different employers visiting Sutton Bonington Campus and University Park. While you’re in your first year you can attend these events to find out about different industries and companies, which will help you with your career planning.
- CV Reviews. Whether applying for work experience, a summer internship or a part-time job you can have your own CV reviewed at Sutton Bonington Campus or University Park.

To book an appointment or CV review, or to book a place at an employer event or workshop visit: www.nottingham.ac.uk/careers/login

To find out about the workshops and events, check your university email to find your weekly Biosciences Careers bulletin. You can also follow @UoNCareers and @UoNBioscicareers on twitter.

If you have any questions or if you would like to find out more about The Careers and Employability Service, please do visit one of the careers offices:

- Sutton Bonington Campus – Student Services Centre, The Barn, Sutton Bonington Campus
- Science Faculty team – B08, Pope Building, University Park
28 Health, Safety & Security

- The research buildings are open to students from 08:30am until 18:00pm, Monday to Friday, except public holidays and University holidays. If for any reason you have to be in the building outside if these times, you must be supervised by an academic member of staff.
- There are lifts available in all teaching buildings for use by disabled students. The other use of the lifts is for movement of goods, and should not be used for other purposes.
- The School has its own Safety Handbook which is available on the web at http://goo.gl/UASVap

Fire

- Fire alarms in the teaching buildings are tested at a regular time (eg Wednesday at 10 am in the Main Building). In the event of fire in the building the alarm will sound continuously. In the event of this the lecturer in charge of your class will organise evacuation of the building to the relevant assembly point. Fire exits are clearly signposted. Re-entry into the building after a fire alarm is given by the Fire Monitor.

Safety

- Safety in the building, especially in the Laboratories is paramount. See further reference to this matter under ‘Practical Classes’
- Practical classes are continuously supervised by an academic member of staff with the support of demonstrators and occasionally technicians. You should not enter a laboratory until a member of staff arrives.
- Suitable protective clothing must be worn for laboratory classes (see ‘Practical Work’).
- Defined procedures must be followed for the disposal of certain types of laboratory waste, such as syringes and syringe needles, broken glass, organic solvents and microbial cultures. Instruction on the correct disposal of these and other items will be given in practical classes.
- Safety in Fieldwork. Field Course safety information and the Code of Practice for students can be found at: http://goo.gl/IBS6EF

Accidents & First Aid

- For minor injuries, first aid boxes are available in all laboratories and certain offices. In such situations it is likely you can deal with such injury yourself.
- Where an injury is more serious a qualified ‘First Aider’ should be called. Names of First Aiders are listed on the School’s web pages.
- If a ‘First Aider’ is not available or if further treatment is required, you will be taken to the Cripps Health Centre or A&E at Queens Medical Centre in extreme situations.
- All accidents, whatever their severity, must be reported on an accident report form available from the member of staff taking the class at the time of the accident and will supervise completion of the form.

Food & Drinks

- On no account should food and/or drink be taken into a laboratory, lecture theatre or computing rooms.
29 Modules
YEAR 1 MODULES
D211A2 Animal Biology

Module Convenor: Dr Carl Stevenson Carl.Stevenson@nottingham.ac.uk

Module Details: Level 1 Autumn Semester, 10 credits

Pre-requisites: None

Co-requisites: None

Number of Students Taking Module: 110

Target Students: Animal Science, Agriculture, Biotechnology

Timetable: Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Summary of Content: The module will introduce basic animal evolution and ecology before discussing the basis of animal behaviour and their interactions with humans (i.e. domestication). The module will then cover the way in which animal production systems have developed and explore the way in which animal product quality can be manipulated.

Assessment Details:
Exam 1 80% Multiple choice exam (50 questions) 2 hours
Coursework 1 10% Online practical assessment
Coursework 2 10% Online practical assessment

Aims: To develop a basic understanding of how animals behave and interact with humans, and how humans have developed and optimised animal production systems.

Learning Outcomes: On successful completion of this module, students will be able to:
• Understand basic animal evolution and ecology
• Understand basic animal behaviour and interaction with humans
• Describe how animal productions systems have been developed
• Understand the ways in which animal product quality can be manipulated
• Discuss the role animal production plays in global food security
D211F3 The Biosciences and Global Food Security

Module Convenor: Dr Kevin Pyke Kevin.Pyke@nottingham.ac.uk

Module Details: Level 1, Autumn Semester, 10 Credits

Expected Number of Students Taking Module: 250

Target Students Most first year students studying taking degrees in the School of Biosciences including, Nutrition, Biotechnology, and Food science, Animal Sciences, Plant Sciences.

Availability to Exchange Students Yes - if relevant in the first year

Pre-requisite(s): Normal entry requirements for School of Biosciences.

Timetable: Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Summary of Content – The module will define global food security as a concept and then examine various aspects thereof, including plant growth, evolution of crop crops, agriculture and crop production, agricultural systems and animal production, the food industry and sustainable nutrition.

Assessment details There will be several pieces of assessment including a practical questionnaire to be filled in after the practical session, an online assessment for a self-study session (30 minutes), a multiple choice test in week 8 of the module covering all taught material up till then (one hour, 50 questions) and a final exam which will be performed online using ROGO (one hour)

- Practical questionnaire (3 pages) – 500 words 10%
- An online assessment for a self-study session (30 minutes) – 10%
- MCQ test –one hour – 50 questions - 10%
- ROGO exam - one hour (70%)

Aims: To provide first year students with an overview of the issues of global food security and show them the level of complexity that exist in different parts of the food generation system, from plant and crop growth, agricultural systems, generating food stuffs and the environmental effects this process entails and sustainable nutrition.

Learning outcomes: On successful completion of the module, students will be able to:
- Review new technologies used to combat global food security.
- Describe the impact agriculture and food production has on the environment.
- Describe the challenges being faced in global food production in relation to your subject area.
- Develop professional skills to work safely in a laboratory situation
D211P1 Genes and Cells: 1

Module Convener: Dr Nicola Chapman Nicola.Chapman@nottingham.ac.uk

Module Details: Level 1, Autumn Semester, 10 Credits

Expected Number of Students taking module - 300

Target Students – all year 1 students enrolled on a School of Biosciences degree

Timetable: Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Lecture Programme: Lecture programme is provisional and more detailed information will be given to you in the first session.

<table>
<thead>
<tr>
<th>Wednesday</th>
<th>Lecture 9 a.m.</th>
<th>Lecture 10 a.m.</th>
<th>Practical 11 a.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 28th</td>
<td>Genetics</td>
<td>Animal Cell</td>
<td>Genetics Practical</td>
</tr>
<tr>
<td>October 5th</td>
<td>Genetics</td>
<td>Animal Cell</td>
<td>Genetics Practical</td>
</tr>
<tr>
<td>12th</td>
<td>Genetics</td>
<td>Plant Cell Lecture</td>
<td></td>
</tr>
<tr>
<td>19th</td>
<td>Genetics</td>
<td>Plant Cell Lecture</td>
<td>Genetics Practical</td>
</tr>
</tbody>
</table>

Summary of Content: The module will start will examining the ultrastructure of the main cell types; eukaryotic (animal and plant) and prokaryotic; and viruses, along with the structure and function of the main organelles within cell type. An overview of cell growth and development will be outlined including the control of the cell cycle, mitosis and meiosis and cell differentiation. The module will then move into more molecular biology and genetic investigations, examining Mendelian laws of inheritance and gene expression.

Assessment:
Exam 1 75 1.5hr hour examination
Coursework 1 25 Online portfolio of practical work

Aims: This module is designed to give students a broad foundation in the basic functional units of life: cells. The first half of the module will cover the general cell ultrastructure of animal, plant and bacteria cells and also viruses as well as the major organelles essential for their function. A solid foundation in the growth and development of cells will be delivered focusing on mitosis, meiosis, cell division and differentiation. Basic genetic principles will be examined in the second half of the module looking at the Mendelian laws of inheritance and gene expression processes. Application of the basic theories will also be enhanced using practical sessions and workshops.
Learning outcomes:

1. Describe the ultrastructure of eukaryotic (animal and plant), prokaryotic cells and viruses outlining the structure and function of the main organelles.
2. Explain the growth and development of cells in relation to the cell cycle and cell differentiation.
3. Explain the regulation of gene expression in eukaryotic and prokaryotic cells highlighting the processes from DNA to protein and the sub-cellular units involved that each stage of the process.
4. Online Mendelian Law of Inheritance (using the correct terminology) and the factors that result in changes in populations.
5. Report on several key molecular cell biology techniques examining the principles and functions of cell biology.
D212P3 Applied Genetics

Module Convenor: Dr Zinnia Gonzalez-Carranza Zinnia.Gonzalez-Carranza@nottingham.ac.uk

Module Details: Level 1, Spring Semester, 10 Credits

Pre-requisite(s): D211P1 Genes and Cells: 1

Co-requisite(s): None

Expected Number of Students taking module - 150

Target Students – D420 Agricultural and Livestock Science, D320 Animal Science, J700 Biotechnology, C501 Microbiology, C200 Plant Science

Summary of Content: This module builds upon the material delivered in semester 1 in which within the core section running throughout the module students will further examine the gene structure, function and regulation and investigate how this knowledge can be applied in recombinant DNA technology through DNA sequencing and genetic engineering. Dependent on the enrolled course there are options on plant, animal and microbial genetics which will deliver specific lectures and practicals essential to that discipline, which will feed into modules delivered in the second and third years.

Timetable: Typically a mix of three one-hour timetabled sessions per week; alternated with one hour lecture and a practical session of 2 hours: eleven core lectures, and 8 specialist options, regular tutorials/examples classes, forty hours student led studies and revision. Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Core Lecture Programme: Lecture programme is provisional and more detailed information will be given to you in the first session and in each of the specialist options.

1 Module introduction, Gene structure (ZHGC)
2 Introns (ZHGC)
3 Regulatory regions (ZHGC)
4 Genetic Variation (ZHGC)
5 Mutations (ZHGC)
6 DNA and Genome Sequencing (ZHGC)
7 Restriction Endonucleases (ZHGC)
8 Cloning of DNA (ZHGC)
9 Modern Vectors (ZHGC)
10 PCR (ZHGC)
11 in vitro mutagenesis (ZHGC)

Assessment:
Exam 1 75 1.5hr hour Rogo exam
Coursework 1 25 Specialist option exercise

Aims: This module aims to build upon the basics of fundamental biological processes and examine areas of nucleic acid structure; DNA replication; mutation and repair; transcription and translation; control of gene expression. It will then apply the knowledge and explain how this is exploited in recombinant DNA technology; gene cloning, DNA sequencing and genetic engineering.

Specialist options within animal, plant and microbial spheres will allow for subject specific applications of genetic techniques and theories which form an underpinning knowledge base for subsequent modules.
Learning outcomes:
- describe the structures and functions of DNA and RNA and how they relate to the mechanisms of DNA replication and repair
- describe the modes of gene expression in prokaryotic and eukaryotic cells
- describe the basic methods of gene cloning and recombinant DNA technology
- explain the polymerase chain reaction and DNA sequencing

Recommended background reading:
D212Z5 Introductory Physiology

Module Convenor: Dr Alan Waterfall Alan.Waterfall@nottingham.ac.uk

Module Details: Level 1 Spring Semester, 20 credits

Note: This module is a pre-requisite for Year 2 module Physiology of Excitable Tissues.

Expected Number of Students Taking Module: 200

Target Students: Biosciences

Summary of Content: This module will introduce the major physiological systems including the central nervous system, the respiratory system, the cardiovascular system, the renal system and the digestive system. In each case the gross structures and functions of the major organs will be outlined, and the functions of individual cell types will be described in the context of each system as a whole. Regulatory pathways, which integrate internal physiological responses with external influences will be investigated; basic principles of cell communication will be discussed in the context of cell-specific responses to developmental signals and environmental stresses. The topics covered will refer to genes, proteins and membranes, transport of molecules across membranes, nerve signalling and biorhythms. Examples from across the animal kingdom will be presented.

Timetable (provisional): This will consist of 2 lectures per week (5hrs) and 4(2 repeats) practical class (8hrs). Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Teaching Programme (provisional):

<table>
<thead>
<tr>
<th>Topic</th>
<th>Lectures/Practicals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homeostasis</td>
<td>1 lecture (Dr Carl Stevenson)</td>
</tr>
<tr>
<td>Endocrine system</td>
<td>1 lecture (Dr Carl Stevenson, Prof Martin Luck)</td>
</tr>
<tr>
<td>Cellular communication</td>
<td>1 lecture (Dr Reinhard Stoger)</td>
</tr>
<tr>
<td>Cellular responses</td>
<td>2 lectures (Dr Dylan Sweetman, Dr Reinhard Stoger)</td>
</tr>
<tr>
<td>Nervous system</td>
<td>3 lectures (Dr John Harris, Dr Alan Waterfall)</td>
</tr>
<tr>
<td>Autonomic nervous system</td>
<td>1 practical repeated once (Dr John Harris, Dr Alan Waterfall)</td>
</tr>
<tr>
<td>Cardiovascular system</td>
<td>2 lectures (Dr Alan Waterfall)</td>
</tr>
<tr>
<td>Respiratory system</td>
<td>2 lectures (Dr Reinhard Stoger)</td>
</tr>
<tr>
<td>Renal system</td>
<td>2 lectures (Dr Simon Welham)</td>
</tr>
<tr>
<td>Digestive system</td>
<td>2 lectures (Dr Simon Welham)</td>
</tr>
<tr>
<td>Pharmacology</td>
<td>1 Lecture (Dr TBC)</td>
</tr>
<tr>
<td>Reproductive system</td>
<td>1 lecture (Dr Ravinder Anand-Ivell)</td>
</tr>
<tr>
<td>Stem cell/developmental physiology</td>
<td>1 lecture (Dr Ramiro Alberio, Dr Dylan Sweetman)</td>
</tr>
</tbody>
</table>

Teaching Staff: Dr Reinhard Stoger, Dr John Harris, Dr Carl Stevenson, Dr Alan Waterfall, Dr Simon Welham, Dr Ravinder Anand-Ivell, Dr Ramiro Alberio, Dr Dylan Sweetman.

Assessment:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam</td>
<td>75%</td>
<td>2 hour examination</td>
</tr>
<tr>
<td>Coursework</td>
<td>25%</td>
<td>MCQ questionnaire (60 questions) based on the lab practical</td>
</tr>
</tbody>
</table>

Aims: This module deals with the major physiological systems which are essential for life. The aim is provide students with basic information on form and function within the central nervous system, respiratory system, cardiovascular system, renal system and digestive system. In each case the gross structures and functions of the major organs will be outlined, and the functions of individual cell types will be described in the context of each system as a whole.
This module will deal with animals from a functional standpoint including their reactions to the internal and external environments, reproduction and development. The aim of the course is to investigate how multilevel physiological processes ranging from environmental down to molecular, mediate organism function.

Learning outcomes: On successful completion of this module, students will be able to:
- Name the major anatomical structures of the major organs systems
- Identify the function of the major organ systems at the cellular, organ and organism levels
- Identify the basic rules of pharmacology and drug receptor interactions
- Recognise the interdependence of major physiological systems
- Identify the basic principles of cell communication
- Recognise cell-specific responses to developmental signals and environmental stresses.
D21BG1 Biosciences Tutorials (Academic Development) and Foundation Science

Module Convenor: Prof Matt Dickinson Matthew.Dickinson@nottingham.ac.uk, Dr Dov Stekel Dov.Stekel@nottingham.ac.uk

Module Detail: Level 1, Full Year new module, 20 credits

Timetable: Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Summary of Content: The content is as follows: The tutorials component is intended to enhance the transition into university and guide students through the academic expectations of their degrees. This part of the module is spread throughout the year and will include three generic sessions on ‘study skills and plagiarism’, ‘study opportunities’ and ‘career and personal development’, and a series of small group tutorials with the academic tutor to develop generic skills such as finding crucial information, oral presentation, data handling and presentation of results, preparation for examinations, and essay writing skills relevant to the Biosciences. The Foundation Science content has three elements: Chemistry, Maths & statistics and Physics. The Chemistry element will include: elements and periodic table; atomic structure and bonding; intermolecular attractions, chemical equilibrium; acids and bases, oxidation and reduction; rates of reaction; basic organic chemistry, isomerism, and rings. The Maths and Stats element will include: calculations, algebra, functions and relationships, powers, logarithms, descriptive statistics, significance, regression and presenting data. The Physics element will include:- units and dimensions; power, energy and heat; light and the electromagnetic spectrum; attenuation/absorption; and radioactivity. There is also an IT element, which interfaces with generic IT training for undergraduates provided within the University.

Assessment Details:
Coursework 1 25% 1500 word essay completed in the Autumn Semester
Coursework 2 12% 200 word quantitative exercise completed in the Spring Semester
Coursework 3 13% 300 word abstract of a scientific paper to be completed Spring Semester
Inclass Exam 1 (Written) 25% Chemistry tests (45 minutes)
Inclass Exam 2 (Written) 25% Mathematics and statistics tests (45 minutes)

Aims: The aims of this module are twofold: The Tutorial elements are to enhance the academic and professional development of students via small group work within tutor groups. Working in small groups will encourage active participation and knowledge transfer. This part of the module should equip students with essay-writing, presentational skills (oral and written), critical interpretation of published materials, and other generic skills that should benefit them in modules throughout their degree. It will also provide an opportunity to learn and reflect on opportunities available to enhance their transition from University into the workplace. The Foundation Science element will complement this by providing foundation level knowledge of mathematics, physics and chemistry for undergraduate students entering the School of Biosciences. The module aims to compensate for gaps in knowledge caused by differences in individual prior education and to ensure that all students have the basic knowledge of these key disciplines required to underpin their future studies in the School of Biosciences. The syllabus has been developed in conjunction with degree programme leaders across the School.
Learning Outcomes: • Recognise the significance of the core topics in foundation level physics, chemistry and mathematics to their future degree study in the Biosciences. • Understand a range of fundamental concepts in physics, maths and chemistry which form core knowledge for scientists of all disciplines. • Understand the importance of using the correct scientific units and be able to convert between different units of measurement (e.g. SI and non-SI units). • Manipulate mathematical equations and perform calculations designed to improve confidence in dealing with logarithms, exponentials, powers, scientific notation.....etc. • Recognise the basis of fundamental scientific equations, their interpretation and meaning. • Use Microsoft Excel at a basic level to analyse scientific data, enter formulae and plot graphs • Summarise key relevant information succinctly in an abstract. • Give examples of appropriate referencing styles for scientific reporting. • Identify an appropriate approach for solving a quantitative problem through background and collaborative research. • Review a given scientific topic in a written report.
D21BN1 Introduction to Nutrition

Module Convenor: Dr L Coneyworth Lisa.Coneyworth@nottingham.ac.uk

Module Details: Level 1 Autumn and Spring semesters, 20 credits

Note: This module is a pre-requisite for D224N0 Nutrition, Metabolism and Disease, & D223N8 Principles of Animal Nutrition

Expected Number of Students Taking Module: 180

Target Students: Students studying Master of Nutrition (B401), BSc Nutrition (B400), Nutritional Biochemistry (C770), Nutrition and Food Science (B4D6) and Animal Science (D320).

Summary of Content: This module aims to provide a comprehensive introduction to the key concepts in the field of Nutrition, including macronutrients, energy metabolism, vitamins and minerals. The role of nutrition in human disease will be introduced in the context of major public health issues (coronary heart disease, cancer, obesity and diabetes). Animal-specific content will include ruminant and comparative animal nutrition and animal product quality. Key academic and transferable skills will also be taught in lectures and tutorials, with a particular emphasis on evidence-based approach to nutrition.

Timetable: Typically one two hour timetabled session per week. Twenty two lectures. Further Activity Detail: One computer practical (4 hours) will take place during the Autumn Semester, to introduce online resources. Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Lecture Programme: This lecture programme is provisional and more detailed information will be given to you in the first session.

<table>
<thead>
<tr>
<th>Week</th>
<th>SUBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTUMN</td>
<td>Introduction to Module Dietary Reference Values</td>
</tr>
<tr>
<td>1</td>
<td>Macronutrients - Protein</td>
</tr>
<tr>
<td>2</td>
<td>Macronutrients – Carbohydrates</td>
</tr>
<tr>
<td>3</td>
<td>Macronutrients – Lipids</td>
</tr>
<tr>
<td>4</td>
<td>Energetics</td>
</tr>
<tr>
<td>5</td>
<td>Energetics</td>
</tr>
<tr>
<td>6</td>
<td>Vitamins 1</td>
</tr>
<tr>
<td>7</td>
<td>Vitamins 2</td>
</tr>
<tr>
<td>8</td>
<td>Minerals 1</td>
</tr>
<tr>
<td>9</td>
<td>Minerals 2</td>
</tr>
<tr>
<td>10</td>
<td>Revision session</td>
</tr>
</tbody>
</table>

Teaching Staff: Dr Lisa Coneyworth (LC, module convenor), Dr Preeti Jethwa (PJ), Miss Joanne Pearce (JP)
<table>
<thead>
<tr>
<th>Week</th>
<th>SUBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPRING</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Introduction and Public Health Nutrition</td>
</tr>
<tr>
<td>20</td>
<td>Food Labelling & Pre/pro-biotics</td>
</tr>
<tr>
<td>21</td>
<td>Functional Foods</td>
</tr>
<tr>
<td>22</td>
<td>Obesity & cancer (human)</td>
</tr>
<tr>
<td>23</td>
<td>Equine and companion animal nutrition (animal)</td>
</tr>
<tr>
<td>24</td>
<td>Diabetes (human)</td>
</tr>
<tr>
<td>25</td>
<td>Comparative nutrition & ruminant nutrition (animal)</td>
</tr>
<tr>
<td>26</td>
<td>Coronary Heart Disease (human)</td>
</tr>
<tr>
<td>31</td>
<td>Product quality (animal)</td>
</tr>
<tr>
<td>32</td>
<td>Revision session</td>
</tr>
<tr>
<td>33</td>
<td>Coursework 1</td>
</tr>
</tbody>
</table>

Teaching Staff: DR Lisa Coneyworth (LC) Prof Simon Langley-Evans (SLE), Dr Matthew Elmes (ME), Dr J Brameld (JB), Dr Marcos Alcocer (MA), Prof A Salter (AS), Dr Tim Parr (TP), Miss Joanne Pearce (JP)

Coursework: Online assessment of taught content at the end of the Spring Semester (1 hour)

Assessment:
- Exam 1 70% 2 hour online ‘short answer’ exam *(Autumn)*
- Inclass Exam 1 30% In-course online assessment of 1hr duration at the end of the *Spring*

Aims: On successful completion of the module, students will be able to:
1) To provide a sufficiently comprehensive basis in nutritional science, both for students preparing to specialise in Nutrition and those preparing for other specialisations.
2) To emphasise the scientific, evidence-based approach to nutrition and illustrate the quantitative nature of nutrition science.
3) To extend these ideas into applications specific to animal and human nutrition and highlight the differences and similarities between the two disciplines.

Learning outcomes: On successful completion of the module, students will be able to:
1) Describe the role of essential nutrients (macro and micro) in mammals
2) Describe the basic principles underlying nutritional energetics
3) Recognise comparative aspects of nutrition between species

In addition, students focussing on animal nutrition will be able to:
5) Describe the role of nutrition in producing high quality animal products for human consumption

In addition, students focussing on human nutrition will be able to:
5) Describe the influence of diet on the prevention of disease
D21BN2 Biochemistry–The Building Blocks of Life

Module Convenor: Dr Matt Elmes Matthew.Elmes@nottingham.ac.uk

Lecturers: Dr Matt Elmes (ME); Dr Marcos Alcocer (MA); Prof Andy Salter (AS); Dr Andy Murton (AM); Dr Simon Welham (SM); Dr Ranjan Swarup (RS); Dr Kevin Pyke (KP).

Module Details: Level 1 Autumn and Spring Semesters, 20 credits

Expected Number of Students Taking Module: 250

Target Students: All School of Biosciences students in year 1

Availability to Exchange Students: Yes - if relevant in the first year

Note: This module is a pre-requisite for D224N0 Nutrition, Metabolism and Disease, D223F0 Manufacture of Food (40 credit), D223N8 Principles of Animal Nutrition, D224A6 Endocrine Control Systems & D224G1 Professional Skills for Bioscientists

Timetable: Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Summary of Content: This module introduces - proteins, carbohydrates, lipids and nucleic acids. The structure and properties of these will be examined in relation to their function. Topics covered include proteins as structural elements and enzymes, lipids as components of cell membranes, carbohydrates as energy stores and nucleic acids as genetic information and genetic engineering. The process of protein synthesis in prokaryotes will be outlined. The nutritional roles of amino acids, carbohydrates and fats will also be considered briefly. The major metabolic pathways in the cell responsible for energy production (respiration) and biosynthesis of cellular components, including the major pathways of carbohydrate and lipid metabolism along with some aspects of thermodynamics will be covered. Photosynthesis and pathways responsible for the assimilation of nitrogen in plants and eventually animals, will be covered along with general nucleic acid metabolism. In addition general mechanisms for the control of cellular metabolism will also be discussed. The practical sessions are designed to introduce students to several key biochemical techniques. In the first semester this will introduce students to the use of spectroscopy and demonstrate two major separation techniques - chromatography and electrophoresis. The practical sessions in the second semester are designed to introduce the concept of sub-cellular fractionation, enzyme assays and metabolite quantification.

Lecture Programme (provisional):

<table>
<thead>
<tr>
<th>Week</th>
<th>Subject</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Nucleic acids - structure</td>
<td>ME</td>
</tr>
<tr>
<td>3</td>
<td>Nucleic acids – Properties and Applications</td>
<td>AM</td>
</tr>
<tr>
<td>4</td>
<td>Amino acids and protein structure</td>
<td>MA</td>
</tr>
<tr>
<td>5</td>
<td>Practical</td>
<td>ME, MA</td>
</tr>
<tr>
<td>6</td>
<td>Practical</td>
<td>AM, ME</td>
</tr>
<tr>
<td>7</td>
<td>Practical</td>
<td>MA, AM</td>
</tr>
<tr>
<td>8</td>
<td>Protein synthesis</td>
<td>SW</td>
</tr>
<tr>
<td>9</td>
<td>Amino acid metabolism</td>
<td>MA</td>
</tr>
<tr>
<td>10</td>
<td>Nucleotide synthesis and metabolism</td>
<td>MA</td>
</tr>
<tr>
<td>11</td>
<td>Nucleotide synthesis and metabolism</td>
<td>MA</td>
</tr>
<tr>
<td>12</td>
<td>Enzymes</td>
<td>SW</td>
</tr>
</tbody>
</table>
Teaching Staff: Dr Matt Elmes (ME); Dr Marcos Alcocer (MA); Prof Andy Salter (AS); Dr Andy Murton (AM); Dr Simon Welham (SM); Dr Ranjan Swarup (RS); Dr Kevin Pyke (KP).

Coursework: One MCQ based online test and a practical report.

Assessment:
Exam 1 40% 1.5 hour MCQ exam
Coursework 1 20% MCQ moodle assessment
Coursework 2 40% Practical Write up in Spring

Aims: The aim of this module is to introduce students to the basic structure, properties and functions of the four key biological macromolecules namely- nucleic acids, proteins, carbohydrates and lipids. It also aims to introduce the basic metabolic pathways occurring in cells, such as respiration, photosynthesis and the biosynthetic pathways for the key macromolecules. In particular:
1. To provide a basis for the understanding of biochemical processes in living organisms.
2. To provide students with a basic understanding of the structure and key properties of all four major macromolecules.
3. To demonstrate to students how these properties are essential for the biological functions of the macromolecules.
4. To provide students with a basic understanding of the major biochemical pathways in cells and their control.
5. To demonstrate to students how these pathways are essential for the cell.
6. To demonstrate several key biochemical techniques for the separation and analysis of macromolecules and measurement of metabolic processes.

Learning Outcomes: Knowledge and Understanding – to learn of:
The structure, properties and functions of proteins, nucleic acids, lipids and carbohydrates.
Handle kinetic data and understand molarity.
Understand the basic principles of key techniques such as electrophoresis and spectrophotometry.
The major metabolic pathways such as respiration, photosynthesis, lipid and protein biosynthesis.
Bioenergetics and the role of energy in metabolism.
Understand the basic principles of key techniques used to study metabolism such as enzyme assays.
Intellectual Skills – the ability to:
Analysing simple experimental data
Handle simple mathematical concepts relevant to the biological sciences, such as molarity, calibration curves and kinetics.

Practical Skills – the ability to:
Accurately operate simple laboratory equipment, such as pipettes
Collect and record data
Work safely in the laboratory.

Transferable/key skills – the ability to:
Communicate experimental results clearly and concisely in a written form
Work productively as an individual and as part of a team
Manage time efficiently.
YEAR 2 MODULES
C12321 Animal Behaviour

Module Convenor: Dr K Durrant

School: Life Sciences, University Park

Module Details: Level 2 Autumn Semester, 10 credits

Pre-requisites: None

Co-requisites: None

Target Students: The course is designed for Biology and Zoology students

Timetable: Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Summary of Content: This module provides a comprehensive introduction to the study of animal behaviour, from the physiological and genetic bases of behaviour to its development and adaptive significance in the natural environment. Using examples from across the animal kingdom, it emphasizes how predictive modelling, experimental and observational approaches integrate to explain how and why animals behave as they do.

Further Activity Detail: Half a day a week. Learning will be based on lectures, group discussions and ICT tutorials

Assessment Details:

Exam 100% One 2 hour paper. MCQ (50%) and written essay (50%) examination.

Aims: This module provides a comprehensive introduction to the study of animal behaviour, from the physiological and genetic bases of behaviour to its development and adaptive significance in the natural environment. Using examples from across the animal kingdom, it emphasizes how predictive modelling, experimental and observational approaches integrate to explain how and why animals behave as they do.

Learning Outcomes: Knowledge and understanding of A1. the relationship between the life and environmental sciences and other disciplines and forms of knowledge (t+l+a) A2. current trends and developments with the life and environmental sciences (t+l+a) A3. appropriate terminology, nomenclature and classification (t+l+a) A4. genetics (t+l+a) A5. organism behaviour (t+l+a) A7. interaction of organisms and their environment (t+l+a) Intellectual Skills - the ability to B1. critically analyse and interpret published information and data (t+l+a) B2. think independently while giving due weight to the arguments of others (t+l+a) B3. understand complex ideas and relate them to specific problems or questions (t+l+a) B4. acquire substantial quantities of information systematically, process it effectively, and draw appropriate conclusions (t+l+a) Professional Skills - the ability to C2. articulate knowledge and understanding of scientific concepts (t+l+a) Transferable Skills - the ability to D2. communicate effectively in writing (t+l+a) D4. organise and manage working time, schedule tasks, and meet deadlines (l) D5. use and access information and communication technology (t+l+a) D6. reflect upon and assess your own progress, strengths and weaknesses (l)
D223A6 Economic Analysis for Agricultural and Environmental Sciences

Module Convenor: Dr Christina Siettou Christina.Siettou@nottingham.ac.uk

Module Contributor: Dr Stephen Ramsden (SR) Stephen.Ramsden@nottingham.ac.uk

Module details: A Level 2, 10 credit module taught in the Autumn Semester at Sutton Bonington. The module consists of lectures, computer-aided-learning, tutorials and a farm visit.

Pre-requisites: Successful completion of a year one course within the School of Biosciences.

Expected Number of Students Taking Modules: 75

Target Students: Students interested in management and economics in Agricultural and Environmental Sciences

Timetable: Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Summary of Content: The module theme is the application of economic ideas to problems of concern to Agricultural and Environmental Scientists. Demand analysis is used to explain how changes in prices and incomes affect consumer purchasing decisions; marginal analysis is used to show how inputs and outputs can be allocated profitably and supply analysis is used to show how prices and technology influence production. Supply and demand are combined to show how market prices are determined and the idea of an ‘efficient market’ is introduced and contrasted with ‘market failure’. Emphasis is placed on two problems arising from market failure - nitrate pollution and low farm incomes - and the arguments for government intervention to correct market failures are discussed with reference to the Common Agricultural Policy (CAP). Current and potential future CAP support mechanisms and their impact on arable and animal production are then described. Using CAL, business planning techniques are introduced to analyse the impact of the above market and policy environment on business performance (profitability and stability (cash flows and balance sheets). Practical applications of the ideas introduced in the module are considered in relation to a local farm through a field visit.

Lecture Programme:

Week 1
Introduction and aims of the module, methods of teaching, procedures for module evaluation and student feedback.

Lecture 1. Demand for Agricultural Products

Week 3 Lecture 2: Agricultural Production

Week 4 Lecture 3: From Production to Supply

Week 5 Lecture 4: The Market Solution and the Role of Government

Week 6 Lecture 5: The Common Agricultural Policy: Past, Present and Future

Week 7 Lecture 6: Guest Lecture - Economic Adviser from Defra. How and why economic analysis is important to agriculture and agricultural policy

Week 9 Lecture 7: How can we apply Economics to Business? Profit and Gross Margins

Week 10 Lecture 8: Planning for Stability – Balance Sheets and Cash Flows

Non-Lecture Programme: The module is supported by a programme of post-lecture tutorials, Computer-Aided-Learning (CAL) and a Farm Visit.

Coursework: Coursework accounts for 25% of the overall mark for this module. Coursework consists of a report in which students calculate production,
environmental and short run and long run profitability impacts of decisions relating to agricultural fertilisers.

Assessment: Exam 75% 1 hour 30 mins. Coursework 25% essay - 1500 words

Aims: The module aims to equip students with an understanding of economic ideas and principles and to show how these can be used to explain a range of economic problems of interest to Agricultural Scientists.

Learning outcomes: On successful completion of the module, students will be able to:

- Explain the concepts of demand, supply and market efficiency within an agricultural context
- Appreciate the concept of marginality and apply this to agricultural and environmental decision making problems
- Identify why and where markets may fail, with particular reference to agricultural pollution
- Recognise and appraise arguments for government intervention in agriculture
- Demonstrate understanding of the historical development of the Common Agricultural Policy within the context of market failure
- Understand and differentiate between the core business management measures: profit, gross margin, cash flow and balance sheet

D223A7 Applied Animal Science

Module Convenor: Prof Kevin Sinclair Kevin.Sinclair@nottingham.ac.uk

Lecturers: Prof Phil Garnsworthy, Dr Steve Ramsden, Prof Julian Wiseman

Module Details: Level 2 Autumn; 20 credits

Pre-requisites: None

Co-requisites: None

Note: This module is a pre-requisite for D235A8 Companion Animal Science, D23BA1 Livestock Production Science for module in Part 2 (Final Year)

Timetable: Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Aims: The module will consider a wide range of subjects. The autumn semester will concentrate on Feed Evaluation: determining and expressing the energy-yielding and nutrient contents; energy and protein evaluation systems for ruminants and non-ruminants; micronutrients, essential fatty acids; principles of diet formulation; variability and processing of raw materials; feeding systems; feedstuff recognition; legislation. Growth of Farm Animals: relative growth rate, allometry, differential maturity of individual carcass components; application of principles to selection of genotype and nutrition. Farm Animal Welfare: concept of the 5 freedoms; applicability to commercial practice; diversity of systems intended to improve welfare. There will be one livestock visit, (one of pig, dairy, beef or sheep), which will be integrated into the teaching and learning assessments for this module. The module will cover Livestock Systems: Comparisons of systems of production for all major species of farm livestock; farm visit, integration of these different systems with each other and other enterprises on farms; fundamentals of grass growth and development, grass-animal interactions and forage conservation; general aspects of health and diseases in farm animals, livestock breeding, organic livestock systems, financial management, systems analysis and meat quality.

Activities: This module includes one visit to a local livestock farm which is a core element of the module. If you are a student with a disability, or have any mobility issues, you should discuss any specific needs you may have with the module convener at the point of registering for this module. The University will take all reasonable steps to ensure that any student with a disability can take this module.

Learning Outcomes: On successful completion of the module, students will be able to:
- Describe the underlying principles of the processes and mechanisms of animal growth, development, production and utilisation.
- Acquire, interpret and critically analyse biological and/or management data and information derived from a variety of sources.
- Demonstrate a range of practical techniques and methodologies, together with appropriate procedures for data analysis and presentation.
- Collect and integrate several lines of evidence and apply them in a balanced manner to support an argument, taking ethical considerations into account where appropriate.
- Critically analyse, synthesise and summarise information drawn from various sources, including published research papers and reports.
- Analyse financial and other management information and use it in decision making.
- Process, analyse and present data using a variety of methods, including appropriate qualitative and quantitative techniques and packages.
<table>
<thead>
<tr>
<th>Week</th>
<th>SUBJECT</th>
<th>LECTURER</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Introduction, basic principles</td>
<td>JW</td>
</tr>
<tr>
<td></td>
<td>Ruminant systems – Beef Cattle</td>
<td>KS</td>
</tr>
<tr>
<td>3</td>
<td>Non-ruminants – Pig/Poultry</td>
<td>JW</td>
</tr>
<tr>
<td></td>
<td>Ruminant systems – Dairy Cattle</td>
<td>PG</td>
</tr>
<tr>
<td>4</td>
<td>Q/A session Non-ruminants</td>
<td>JW</td>
</tr>
<tr>
<td></td>
<td>Ruminant Systems – Sheep</td>
<td>LS</td>
</tr>
<tr>
<td>5</td>
<td>Q/A session Ruminants</td>
<td>PG</td>
</tr>
<tr>
<td></td>
<td>Organic Livestock Systems</td>
<td>MW</td>
</tr>
<tr>
<td>6</td>
<td>Systems analysis (Visit)</td>
<td>JW/KS</td>
</tr>
<tr>
<td>7</td>
<td>Q/A session Non-ruminants</td>
<td>JW</td>
</tr>
<tr>
<td></td>
<td>Gross Margins (GM)</td>
<td>KS</td>
</tr>
<tr>
<td>8</td>
<td>Q/A session Ruminants; Diet</td>
<td>PG</td>
</tr>
<tr>
<td></td>
<td>Dairy cow health</td>
<td>SVMS</td>
</tr>
<tr>
<td>9</td>
<td>Computer Class</td>
<td>JW/PG</td>
</tr>
<tr>
<td></td>
<td>Grazing Management & Fodder</td>
<td>MW</td>
</tr>
<tr>
<td>10</td>
<td>Growth</td>
<td>JW</td>
</tr>
<tr>
<td></td>
<td>Respiratory and Enteric Diseases</td>
<td>SVMS</td>
</tr>
<tr>
<td>11</td>
<td>Raw Materials in diets (Growth Q&A)</td>
<td>JW/PG</td>
</tr>
<tr>
<td></td>
<td>Animal Breeding</td>
<td>KS/DairyCo</td>
</tr>
<tr>
<td>12</td>
<td>Animal Welfare</td>
<td>JW</td>
</tr>
<tr>
<td></td>
<td>Meat quality + Module Review</td>
<td>JW</td>
</tr>
<tr>
<td>13-16</td>
<td>Vacation</td>
<td></td>
</tr>
<tr>
<td>17-18</td>
<td>January Assessment</td>
<td></td>
</tr>
</tbody>
</table>

Teaching Staff: Prof Kevin Sinclair (KS; Module convenor), Prof Phil Garnsworthy (PG), Dr Steve Ramsden (SR), Prof Julian Wiseman (JW)

Assessment Details:

<table>
<thead>
<tr>
<th>Exam 1</th>
<th>70%</th>
<th>One 3-hour paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coursework 1</td>
<td>10%</td>
<td>Computer class write-up (500 words).</td>
</tr>
<tr>
<td>Coursework 2</td>
<td>20%</td>
<td>Systems Analysis Project write-up (1000 words).</td>
</tr>
</tbody>
</table>
D223A8 Physiology of Electrically Excitable Tissues

Module Convenor: Dr J Harris (John.Harris@nottingham.ac.uk)

Other staff: Dr A Waterfall, Dr Carl Stevenson

Module Details: Level 2 Autumn Semester, 20 Credit

Pre-requisites: D212Z5 Introductory Physiology

Module capped at 87 - You will need permission from the module convener to take this module unless it is a core module for your course

Availability to Exchange Students: Yes

Summary of Content: This module considers the physiology and pharmacology of systems involving the principal electrically excitable tissues in the body i.e. the nervous system, muscles and cardiovascular system. Lecture and practical content will include: • Membrane structure and permeability • The membrane potential and action potentials • The neuromuscular junction and properties of skeletal muscle • Sensory and motor systems • Touch, nociception and pain • Neurotransmitters, receptors and drugs • Learning and memory • The cortex and higher function • The anatomy of the heart • Electrical conductivity in the heart and its measurement • Blood pressure and its measurement

Timetable: Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Lecture Programme: Lecture programme is provisional and more detailed information will be given to you in the first session.

1 Module introduction
2 Ion Channels
3 G-Protein Coupled Receptors
4 Membrane Potential
5 Action Potentials
6 The Neuromuscular Junction
7 Properties of Skeletal Muscle
8 Motor Systems
9 Sensory Systems
10 The Somatosensory System
11 Nociception
12 Neurotransmitters, Receptors & Drugs
13 Excitatory & Inhibitory Amino-acid Neurotransmitters
14 Learning & Memory
15 The Cortex & Higher Function
16 Autonomic Nervous System Pharmacology
17 Excitability of Cardiac Muscle
18 Blood Pressure
19 Module Review and Exam Advice
Practical Class Programme: Practical class programme is provisional and more detailed information will be given to you in the first session.

1. The Neuromuscular System I (data collection)
2. The Neuromuscular System II (data analysis, formative assessment of graphs)
3. The Somatosensory System I (data collection)
4. The Somatosensory System II (data analysis, submission of graph as part of Coursework 1; see below)
5. Pharmacology I (data collection)
6. Pharmacology II (data analysis, submission of graph as part of Coursework 1; see below)
7. Heart Dissection
8. The Electrocardiogram (data collection, analysis, submission of graph as part of Coursework 2; see below)
9. Blood Pressure (data collection, analysis, submission of graph as part of Coursework 2; see below)

Assessment Details:

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Weightage</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam 1</td>
<td>60%</td>
<td>Exam – 1.5 hours</td>
</tr>
</tbody>
</table>
| | | 3 Rogo assessments (20 marks each) based on analysis of data collected during the neuromuscular, somatosensory and pharmacology Practical classes and underlying physiological mechanisms. Submission of graphs based on data collected during somatosensory and pharmacology practical classes (20 marks each). Submission of graphs and statistical analyses produced from ECG and blood pressure data collected during these practical classes (30 marks each) together with completion of an associated on-line Rogo assessment (40 marks).

Aims: The module is intended to provide a solid grounding in the biophysical aspects of excitable cell function, hence the module initially aims to expand students understanding of the physiology and pharmacology of the nervous system, then subsequently introduces students to the integrative actions of the nervous system by looking at excitable systems it controls/modulates (i.e. muscles including cardiac tissue). The module achieves this through a number of practical classes which build on lecture content in this and earlier modules (D212Z5 Introductory Physiology); these aim to teach students to collect, analyse and present real data from the neuromuscular, somatosensory and cardiovascular systems as well as how to perform a quantitative pharmacological investigation.

Learning Outcomes: On successful completion of this module, students will be able to: • Explain how excitability is generated and conducted in nervous and muscular tissues hence the processes of action potential conduction, synaptic transmission and muscle contraction (including the heart) • Discuss examples of afferent, efferent and interneuronal anatomy within the nervous system hence the involvement of these neurones in sensation, motor responses and higher brain function • Describe the pharmacology of neurotransmitters and their receptors hence how function can be altered by drug administration or diseases • Produce graphs of physiological data obtained in a practical setting • Discuss experimental data incorporating knowledge acquired in lectures or via further reading in the subject area
D223N6 Principles of Immunology

Module Convenor: Dr Marcos Alcocer _Marcus.alcocer@nottingham.ac.uk_

Lecturers: Prof M Luck, Prof D Hannant (Special Professor) and invited external lecturers

Module Details: Level 2, autumn semester, 10 credits

Pre-requisite: D21BN2 Biochemistry–The Building Blocks of Life

Availability to Exchange Students Yes

Expected Number of Students Taking Module: 180

Target Students: All home and international students with an interest in animal and human biology.

Timetable: Personal timetables will be available to all students via _www.nottingham.ac.uk/studentservices_

Summary of Content: The module will concentrate on: The innate immune system; the adaptive immune system; MHC and antigen presentation; antibodies and antibody responses; immune-techniques; regulation of the immune responses; effector mechanisms of immune responses; immunity to infection; immunology of reproduction; and immune-deficiencies.

Lecture Programme: The lecture timetable is provisional. Details will be provided at the beginning of the module. Topics to be covered will include:
1. The innate immune system
2. The adaptive immune system
3. The response to injury
4. MHC and antigen presentation
5. Antibodies and Antibody responses
6. Immunological techniques
7. Regulation of the immune responses
8. Effector mechanisms of immune responses
9. Vaccination and immunity to infection
10. Immunology of reproduction

Coursework: Coursework 1: a MCQ on-line exam.

Assessment: Exam, 70%, 1.5hour. Coursework 1, 30%

Aims: The module aims at introducing the students to: basic concepts of cellular and molecular immunology; current immune-techniques; modern concepts of immune-deficiency and hypersensitivities.

Learning Outcomes: On successful completion of the module students will be able to:
- Describe the main characteristics and features of the innate and adaptive immune system, their functions and how they relate to each other.
- Discuss the main events of the immune response when the body is infected by intra and extracellular parasites, essential components of many diseases.
- Analyse results from classical immune techniques that will help the reading and comprehension of scientific publications.
- Integrate the immune mechanisms and discuss current topics of animal and human diseases

Recommended background reading: Reading lists are provided by each staff member teaching in the module.
D223N8 Principles of Animal Nutrition

Module Convenor: Dr Jean Margerison Jean.Margerison@nottingham.ac.uk

Lecturers: Dr J Brameld, Dr M Elmes, Dr Tim Parr

Module Details: Level 2, Spring Semester, 10 credits

Pre-requisites: D21BN1 Introduction to Nutrition
D21BN2 Introductory Biochemistry

Note: This module is a pre-requisite for D23BN2 Animal Nutrition and D23BN3 Molecular Nutrition modules in Part 2 (Final Year)

Expected Number of Students Taking Module: 50

Target Students: All students with an interest in animal nutrition and Exchange students.

Timetable: Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Lecture Programme: The lecture timetable is provisional. Details will be provided at the beginning of the module. Topics to be covered will include:
1. Measuring nutrient content and energy in food (lectures)
2. Amino acid and Protein nutrition (lectures)
3. Regulation of Energy balance (lectures)
4. Energy models and calculations (lectures/workshop)
5. Determining future nutritional challenges of the world (lectures and seminar)

Assessment: Exam 1 70% 1.5hour. Coursework 1 30%

Aims: To explain and illustrate the knowledge required to understand nutrition at an advanced level with 1) specific reference to Diet formulation and analysis, including Nutritional Energetics and Protein Nutrition. 2) To consider energy requirements of animals in different physiological/pathological states. 3) To consider protein and amino acid requirements of animals. 4) To understand the factors involved in regulating appetite and energy expenditure. 5) To understand the future nutritional challenges of the world.

Learning Outcomes: On successful completion of this module, students will be able to:
- Describe principles underlying animal nutrition, energy and protein metabolism, and relate this knowledge to feed intake, energy, protein, water and mineral requirements of animals
- Explain the regulation of energy balance and appetite
- Evaluate the influence of dietary protein quality for ruminant and non-ruminant species
- Discuss the principles of diet formulation and application of feed analysis and databases.

Recommended background reading: Reading lists are provided by each staff member teaching in the module
D223Z7 Reproductive Physiology

Module Convenor: Dr George Mann George.Mann@nottingham.ac.uk

Module Contributors: Prof Martin Luck, Dr Ravinder Anand Ivell, Dr D Sweetman

Capped module at 100 - You will need permission from the module convenor to take this module unless it is compulsory for your course

Module Details: Level 2 Autumn Semester, 10 credit

Pre-requisites: D212Z5 Introductory Physiology or equivalent

Note: This module is a pre-requisite for D236Z5 Reproduction and Fertility module in Part 2 (Final Year)

Target Students: D320 Animal Science and available to Life Sciences and exchange Students subject to appropriate background

Summary of Content: Mammalian reproduction deals with reproduction in male and female mammals, including physiological control, cyclicity and reproductive efficiency. Practical classes examine the functional morphology of male and female tracts in various species. Avian reproduction deals with the principal features of avian physiology and reproduction in domestic fowl, emphasising the nutritional and metabolic challenges associated with commercial rates of egg lay. Lactational physiology considers the development of mammary tissue, the biochemistry of milk synthesis, the endocrine control of milk secretion, and the metabolic correlates of lactation in dairy ruminants.

Timetable: Typically three one-hour timetabled lecture sessions or one two to four hour practical session per week. Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

1 Male Mammals 1 Lecture
2 Male Mammals 2 Lecture
3 Male Anatomy Practical
4 Female Mammals 1 Lecture
5 Female Mammals 2 Lecture
6 Embryology & Development Lecture
7 Female Anatomy Practical
8 Avian 1 Lecture
9 Avian 2 Lecture
10 Avian Anatomy Practical
11 Avian Anatomy Practical

Coursework: Multiple choice questionnaire following each practical session: 3 sessions.

Assessment: Exam (70%) 1 hour 30 minutes exam. Coursework (30%) – 3 multiple choice questionnaires (20 questions) of 10% each completed at the end of each practical class

Aims: To introduce students to the physiology and regulation of male and female mammalian reproduction, lactational physiology and the control of avian reproduction.
Learning outcomes: Knowledge and understanding. Be familiar with the anatomy of the male and female mammalian reproductive systems. Understand the endocrine regulation of reproduction and gamete production. Be able to give examples of how reproductive processes are modulated by the environment. Understand the concept of oestrous cycle control and manipulation. Be familiar with common terminology associated with reproductive physiology and technology. Have a sound understanding of the physiology of the domestic fowl as it relates to egg production and comparative aspects with mammals. Know the location, structure and principles that underlie lactation and its wide-ranging impact of the life of mammals. Intellectual Skills. Be able to relate information about specific parts of the reproductive system to the general principles of function which they illustrate. Be able to retrieve, evaluate and integrate information from a range of sources. Critical appraisal of normal reproductive function in common species. Understand complex ideas and relate them to specific problems or questions. Practical Skills. Observe and record observations. Work safely in the laboratory. Transferable Skills. Work productively and analytically as an individual and be able to contribute to team analysis of a problem. Use of available resources to access the primary literature.

Recommended background reading: Essential Reproduction by Martin H Johnson
D224A1 Applied Agricultural and Food Marketing

Module Convenors: Miss Keely Harris-Adams Keely.Harris-Adams@nottingham.ac.uk

Lecturers: Miss Keely Harris-Adams; External Speakers as appropriate

Expected Number of Students Taking Module: 40

Target Students: Students interested in Agriculture and Food marketing.
Availability to Exchange Students

Module Details: A level 2 module taught in the Spring Semester at Sutton Bonington. The module consists of lectures, tutorials, team case-study work and a visit to an organisation involved in agricultural and food marketing. 10 credits

Pre-requisites: Successful completion of a year one course within the School of Biosciences.

Timetable: Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Summary of Content: An introduction to marketing and its importance in agricultural and food production. Core marketing theories and tools are examined and applied. Students will learn how and why to identify market segments, and how to target and position products for these markets. They can then consider the marketing mix - what to produce, what price to charge, promotion decisions, and where to place the product. There will be a particular focus on agricultural and food markets. Students will learn the characteristics of agricultural markets and what this means for marketing agricultural and food products.

Lecture Programme:
Week 1: Introduction. Understanding and applying the marketing concept
Week 2: Marketing tools: PESTLE and SWOT
Week 3: Products and services. The Marketing Mix: Price and promotion
Week 4: The Marketing Mix: Product and place. Other marketing theories
Week 5: No lecture
Week 6: Guest lecture – e.g. Global and UK consumer Markets
Week 7: Relationship marketing
Week 8: Marketing in agri-food
Week 9: Guest lecture – e.g. supply chains
Week 10: No lecture
Week 11: No lecture
Week 12: No lecture

Non Lecture Programme:
Week 1: Tutorial: Evaluating Markets
Week 2: Introduction to Case Study: What is a marketing plan. Team-building session
Tutorial: Applying marketing tools.
Week 3: Tutorial: promotional tools. Case Study workshop
Week 4: Tutorial: The marketing mix
Week 5: Case study workshop
Week 6: Case Study work
Week 7: Case Study work
Week 8: Marketing decisions for agri-food businesses
Week 9: Case Study work
Week 10: Field trip to agri-food business
Week 11: Student team presentations
Week 12: Feedback and module review session
Coursework: Coursework will count for 100% of the overall mark for this Module. Within teams of similar interest, you are required to prepare a marketing plan for an agricultural and food marketing business of your choice. There will be four elements to the case study. Part 1 will be your research and analysis of the market data. This will form the basis of your team’s marketing plan, which you are required to produce and write up as a group report (Part 2) and give as a presentation to the rest of the class (Part 3). You must also submit an individual analysis of how your team’s marketing plan has addressed one or more of the issues particular to agri-food marketing (Part 4).

Assessment: Coursework 80% Group report: assessed on written report (2500 words), individual analysis (1000 words) and Group oral presentation (15%)

Aims: The module aims to teach students the importance of a marketing-orientated approach to successful rural and food business management and in doing so, to emphasise the wider role that marketing plays in meeting the wants of food consumers. Practical applications of marketing to business management will be emphasised through case studies and through the involvement of marketing staff and a field visit to businesses with an active marketing-orientated approach.

Learning Outcomes: On successful completion of the module, students will be able to:
Demonstrate the importance of applying marketing management approaches to agricultural and food marketing firms and organisations.
Illustrate the relative contributions of marketing theory to the development of products, brands and firms.
Using team-based approaches, analyse information from a range of sources to present logical conclusions and business-related recommendations.

D224A6 Endocrine Control Systems

Module Convenor: Prof Martin Luck Martin.Luck@nottingham.ac.uk

Module Details: Level 2, Spring Semester, 20 credits

Pre-requisites: Successful completion of the Qualifying Year of a School of Biosciences’ degree or equivalent

Expected Number of Students taking module 60

Availability to Exchange Students Yes

Summary of Content:
- An overview of hormonal systems, the basic principles of hormone action and the role of hormones in homeostasis
- Endocrine regulation of blood calcium and glucose concentrations
- Links between hormonal axes and the central nervous system, and the control of major physiological systems
- Growth factors and cell cycle control
- Mechanisms of hormone synthesis, receptor interaction and cellular action
- Understanding hormone evolution
- Other specialist topics (may include chronobiology, endocrine disruptors, veterinary endocrinology)

Timetable: Lectures (available time not yet known); guest lectures (3h); journal club group work and presentation (3hr prep plus 15 min presentation); Revision workshop (2h). Examination (2h; 80%). Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Module Activities Lectures; guest lectures; journal club group work and presentation; revision workshop.

Lecture Programme (provisional):

<table>
<thead>
<tr>
<th>Week</th>
<th>From</th>
<th>To</th>
<th>Subject</th>
<th>Format</th>
<th>Rm No</th>
<th>Staff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9.00</td>
<td>10.00</td>
<td>Introduction and basic concepts 1</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>MRL</td>
</tr>
<tr>
<td>19</td>
<td>10.00</td>
<td>11.00</td>
<td>Introduction and basic concepts 2</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>MRL</td>
</tr>
<tr>
<td></td>
<td>11.00</td>
<td>12.00</td>
<td>Central control and axes 1</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>RAI</td>
</tr>
<tr>
<td></td>
<td>12.00</td>
<td>13.00</td>
<td>Central control and axes 2</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>RAI</td>
</tr>
<tr>
<td>20</td>
<td>9.00</td>
<td>10.00</td>
<td>Energy & survival 1</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>MRL</td>
</tr>
<tr>
<td>Time</td>
<td>Class Time</td>
<td>Course Title</td>
<td>Location</td>
<td>Room</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>---</td>
<td>-----------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>11.00</td>
<td>Energy & survival 2</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>MRL</td>
<td></td>
</tr>
<tr>
<td>11.00</td>
<td>12.00</td>
<td>Calcium and bone 1</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>MRL</td>
<td></td>
</tr>
<tr>
<td>12.00</td>
<td>13.00</td>
<td>Calcium and bone 2</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>MRL</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>9.00</td>
<td>Pulsatility and regulation 1</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>RAI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.00</td>
<td>Pulsatility and regulation 2</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>RAI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.00</td>
<td>Stress and the adrenal gland 1</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>RAI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.00</td>
<td>Stress and the adrenal gland 2</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>RAI</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>9.00</td>
<td>Salt & water 1</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>MRL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.00</td>
<td>Salt & water 2</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>MRL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.00</td>
<td>Thyroid and metabolism 1</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>MRL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.00</td>
<td>Thyroid and metabolism 2</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>MRL</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>9.00</td>
<td>Veterinary Endocrinology</td>
<td>Guest lecture</td>
<td>A30 (Vet Sch.)</td>
<td>BM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.00</td>
<td>Biological Clocks</td>
<td>Guest lecture</td>
<td>A30 (Vet Sch.)</td>
<td>FE</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>9.00</td>
<td>How protein hormones work 1</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>MRL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.00</td>
<td>How protein hormones work 2</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>MRL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.00</td>
<td>How to make steroids 1</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>MRL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.00</td>
<td>How to make steroids 2</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>MRL</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>9.00</td>
<td>How steroid hormones work 1</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>RAI</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Duration</td>
<td>Session</td>
<td>Type</td>
<td>Location</td>
<td>Room</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>---</td>
<td>-------------------</td>
<td>------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>10.00-11.00</td>
<td></td>
<td>How steroid hormones work 2</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>RAI</td>
<td></td>
</tr>
<tr>
<td>11.00-12.00</td>
<td></td>
<td>Growth Factors and the cell cycle 1</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>RS</td>
<td></td>
</tr>
<tr>
<td>12.00-13.00</td>
<td></td>
<td>Growth Factors and the cell cycle 2</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>RS</td>
<td></td>
</tr>
<tr>
<td>9.00-10.00</td>
<td></td>
<td>Revision workshop</td>
<td>Group work</td>
<td></td>
<td>MRL</td>
<td></td>
</tr>
<tr>
<td>10.00-11.00</td>
<td></td>
<td>[Attendance is compulsory and a register will be taken]</td>
<td></td>
<td></td>
<td>RAI</td>
<td></td>
</tr>
<tr>
<td>11.00-12.00</td>
<td></td>
<td>[Time to discuss journal clubs]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.00-13.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.00-10.00</td>
<td></td>
<td>Prostaglandins 1</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>MRL</td>
<td></td>
</tr>
<tr>
<td>10.00-11.00</td>
<td></td>
<td>Prostaglandins 2</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>MRL</td>
<td></td>
</tr>
<tr>
<td>11.00-12.00</td>
<td></td>
<td>Recent research in endocrinology 1</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>RAI</td>
<td></td>
</tr>
<tr>
<td>12.00-13.00</td>
<td></td>
<td>Recent research in endocrinology 2</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>RAI</td>
<td></td>
</tr>
<tr>
<td>9.00-10.00</td>
<td></td>
<td>Hormone Evolution 1</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>MRL</td>
<td></td>
</tr>
<tr>
<td>10.00-11.00</td>
<td></td>
<td>Hormone Evolution 2</td>
<td>Lecture</td>
<td>A30 (Vet Sch.)</td>
<td>MRL</td>
<td></td>
</tr>
<tr>
<td>11.00-12.00</td>
<td></td>
<td>[Time to finish Journal Clubs]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.00-13.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.00-10.00</td>
<td></td>
<td>Journal Clubs</td>
<td>Student presentations</td>
<td></td>
<td>MRL</td>
<td></td>
</tr>
<tr>
<td>10.00-11.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RAI</td>
<td></td>
</tr>
<tr>
<td>11.00-12.00</td>
<td></td>
<td>Module review</td>
<td></td>
<td>A30 (Vet Sch.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coursework

<table>
<thead>
<tr>
<th>Coursework</th>
<th>Setting date</th>
<th>Submission date</th>
<th>Marks returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journal Club [group mark] (20%)</td>
<td>March 2017</td>
<td>Title: March 2017</td>
<td>Fri May 2017 (or very soon after)*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract: April 2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Presentation: May 2017</td>
<td></td>
</tr>
</tbody>
</table>
Contributors: Martin Luck (MRL), Ravinder Anand-Ivell (RAI), Reinhard Stoeger (RS), Fran Ebling (FE), Brin McNeill (BM)

Assessment details: Examination (2h; 80%), Journal Club (20%)

Aims:
1. To introduce students to the physiology and biochemistry of the mammalian endocrine system and to the endocrine control of homeostasis and metabolism.
2. To extend this basic understanding into a more comprehensive and detailed appreciation of theoretical and applied aspects of endocrinology.
3. To give students the intellectual tools with which to understand, assess and critically evaluate continuing developments in endocrine science.

Learning outcomes: On successful completion of this module a student should be able to:
1. use information about the structure and biochemistry of hormonally active molecules as a heuristic tool for understanding endocrine physiology.
2. describe how the endocrine system regulates calcium and glucose concentrations in the blood.
3. describe how the central nervous system interacts with the main endocrine axes, and how these axes regulate major physiological and metabolic systems. Give an account, with suitable examples, of how the main groups of hormones and growth factors interact with and change the functions of their target cells.
4. explain the principal intracellular mechanisms by which a range of hormones are synthesised and secreted.
5. make a critical evaluation of information on the likely evolution of hormones, hormone groups and hormone systems. Explain the relationships between cellular and molecular aspects of hormonal function and the wider contexts of hormone action (for example, related to clinical applications, environmental pollution, and biological diversity).
6. anticipate the likely response of the endocrine system to a range of common challenges to homeostasis; identify, in simple histological sections, the main functional tissues and cells of the major endocrine organs.
7. read, understand and evaluate the content of a contemporary research paper within the general field of endocrine science; be able, as part of a small team, to present this information publically and respond to questions about the content.
D224G1 Professional Skills for Bioscientists

Module Convenor: Prof M Dickinson Matthew.Dickinson@nottingham.ac.uk

Module Details: Level 2, Spring Semester and Summative Assessment all at the end of Semester 4, 20 credits

Session availability – All Biosciences Undergraduates with the exception of students studying the following programmes: Food Sciences, Nutrition and Food Sciences, Environmental Science.

Pre-requisites:
1. Successful progression from Qualifying Year of studies of a Biosciences Degree (or equivalent)
2. Submission of draft CV as part of Module D21BP1

Expected Number of Students taking module - est 200

Target Students - Biosciences Undergraduate Students and available to Exchange Students from other UoN Campuses only.

Summary of Content The module is divided in to 2 sections. One half will be focused on the provision of specific material deemed appropriate for each course programme to prepare their students for their Final Year (in most cases this will be the research project).

The other section is centered on delivery of key core professional skills through timetabled lectures and group activities and self-directed learning.

Module Web Links – Moodle

Module Activities – Including Lectures, Group Activity Sessions, Self-Directed Learning, Workshops, Group Presentation Session.

Assessment details
Coursework 1: 100% - 2 coursework outputs
Final Year Preparation Section
2000 word essay or equivalent output appropriate to the specific degree programme - Summative
Mark for the module - 100% weighting
Professional Skills Section
Submission of a Portfolio with prescribed items - Pass/Fail for Section and Overall Module (non compensatable)

Aims: The aim of the module is to develop and consolidate students’ professional competencies and abilities as a Bioscientist.

Learning Outcomes:
LO1 Demonstrate an understanding of the research process within your discipline
LO2 Identify possible future career pathways reflecting on learnings and wider experiences
LO3 Demonstrate a range of professional behaviours and competencies associated with your discipline
D224Z6 Principles of Animal Health and Disease

Module Convenors: Dr Rachael Tarrington Rachael.Tarrington@nottingham.ac.uk and Dr Sharon Egan Sharon.Eagan@nottingham.ac.uk

School: Veterinary Medicine & Science

Module Details: Level 2, Spring Semester, 10 credits

Capped module at 80 – You will need permission from the module convenor to take this module unless it is compulsory for your course

Target Students: D320 Animal Science, and available to Exchange Students – subject to appropriate background.

Pre-requisite(s): D212Z5 Introductory Physiology

Timetable: Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Summary of Content: The module will introduce physical assessment and laboratory based measurements of animal health and assessment of the major effects of diseases on the body’s physiological and immunological systems. The main types of disease will then be systematically discussed in a number of species including poultry, equine, canine, bovine and ovine species.

Assessment Details:
Exam 1 75% MCQ style online Rogo examination 1 Hour
Coursework 1 25% report - 1500 words

Learning Outcomes: Knowledge and Understanding - To learn (1) The major effects of disease on the body (2) To develop a more detailed understanding the effects of diseases on specific body systems in a range of example species Intellectual Skills - The ability to (1) Be able integrate knowledge of the various body systems into an understanding of the effects of diseases (2) Develop an understanding of how to assess the health status of an animal (3) Be capable of retrieving information from a variety of sources. Practical/Professional Transferable/key skills - The ability to (1) Work effectively as an individual or member of a small team (2) Manage, and organise time effectively and work to deadlines (3) Perform a range of techniques commonly used in laboratory diagnosis, (4) Obtain experience in animal handling techniques.

Aims: To develop an understanding of the basic effects of disease in domesticated and food production animals
YEAR 3 MODULES
D235A4 Rural Business Management

Module Convenor: Dr Steve Ramsden Stephen.Ramsden@nottingham.ac.uk

Module Details: A level 2, 10 credit module taught in the Autumn Semester at Sutton Bonington. The module consists of lectures, a practical class, team case-study work and interviews and farm visits.

Pre-requisites: D223A6 Economic Analysis for Agricultural and Environmental Sciences

Expected Number of Students Taking Module: 25

Target Students: For students interested in Business Management.

Summary of Content: The module is concerned with the application of management principles to the modern rural business. This will involve - the construction and interpretation of business accounts (profit and loss, cash flow, balance sheet) - business planning and budgeting - investment appraisal techniques - labour and machinery management - forms of business organization - taxation. The module emphasises involvement in a 'real-life' case study, with input from staff actively involved in finance and agricultural business management. Students, working in teams, will be interviewed by and complete both written and verbal presentations to these staff in a formal manner.

Timetable: Typically two one-hour timetabled sessions per week; twenty-three lectures, regular tutorials/examples classes, forty hours student led studies and revision. Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Lecture Programme: Lecture programme is provisional and more detailed information will be given to you in the first session.

Lecture Programme:
1. Management thinking and the market environment
2. Management Accounting 1: How do I know whether my plans will make a profit?
3. Management Accounting 2: What are the effects of my plans on cash flow and capital?
4. Management Accounting 3: Further budgeting techniques
5. Investment Appraisal
6. Labour and machinery planning and management
7. Managing risk in the rural business

Non Lecture Programme:

Tutorials
Advanced Budgeting using spreadsheets
Introduction to the Case Study

Practicals
CAL - Advanced Budgeting for profit
CAL - Advanced Budgeting for profit, cash flow and capital
Group Work
Teamwork and meetings with academic staff - 1
Farm visit
Teamwork and meetings with academic staff - 2
Teamwork and meetings with Barclays Bank
Teamwork and meetings with academic staff - 3
Team working and student meetings
Case Study Presentations

Assessment Details:
Exam 1 50% 1.5 hour exam
Coursework 1 50% Team-based report (2000 words), interview and presentation

Aims: The module aims to develop students' knowledge of business management principles and to provide them with an opportunity to apply these principles to the type of problems facing rural businesses at the present time. Students will also learn and practice the teamwork, time management and data analysis skills which are vital when working in business. Staff involved in the management and financing of rural businesses will provide students with an insight into how business works and will provide feedback on student reports and presentations.

Learning Outcomes: Knowledge and Understanding - to learn (1) How to appraise the stability and performance of a rural business (2) The business management principles and planning techniques necessary for improving business stability and performance (3) To gain understanding of how to present business plans in a successful manner Intellectual Skills - the ability to (1) Collect and integrate several lines of evidence and apply them in a balanced manner to support an argument (2) Apply subject knowledge and understanding to address familiar and unfamiliar problems (3) Critically analyse, synthesise and summarise information drawn from various sources, including published research papers and reports Practical/Professional Skills - the ability to (1) Collect and record data Transferable/key skills - the ability to (1) Communicate effectively to a variety of audiences in written, verbal and visual forms, making appropriate acknowledgement of the work of others (2) Work productively as an individual or as part of a team (3) Manage and organise time efficiently and work to deadlines by using flexible and effective approaches to study (4) Process, analyse and present data using a variety of methods (5) Selective use the internet and other electronic means for communication and as a source of information

D235A8 Companion Animal Science

Module Convenor: Dr Gavin White Gavin.White@nottingham.ac.uk

Module Contributors: Professor D Hannant and Dr Gavin White (University of Nottingham)
Dr H Masey O’Neil and Dr J Lowe (External Special Lecturers)

Module Details: Level 3, Autumn Semester 5; 10 credits module taught at the Sutton Bonnington Campus.

Pre-requisites: D223A7 Applied Animal Science

Expected Number of Students Taking module: 50

Target Students: Students in the School of Biosciences and incoming Exchange/Study abroad students.

Summary of Content: Scientific principles governing nutrition, health and welfare of major companion species: cats, dogs, horses, rabbits, zoo animals / exotics.

Timetable: Typically two one-hour timetabled sessions per week: twenty-three lectures, regular tutorials/examples classes, forty hours student led studies and revision. Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Lecture Programme: Lecture programme is provisional and more detailed information will be given to you in the first session.

<table>
<thead>
<tr>
<th>Week</th>
<th>SUBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Equine</td>
</tr>
<tr>
<td>3</td>
<td>Equine</td>
</tr>
<tr>
<td>4</td>
<td>Equine</td>
</tr>
<tr>
<td>5</td>
<td>Equine</td>
</tr>
<tr>
<td>6</td>
<td>Zoo animal nutrition</td>
</tr>
<tr>
<td>7</td>
<td>Visit to Twycross Zoo</td>
</tr>
<tr>
<td>8</td>
<td>Rabbits,</td>
</tr>
<tr>
<td>9</td>
<td>Pet Food Industry; dogs</td>
</tr>
<tr>
<td>10</td>
<td>Role of pets in society; cats</td>
</tr>
<tr>
<td>11</td>
<td>Pocket animals</td>
</tr>
<tr>
<td>12</td>
<td>Group Presentations</td>
</tr>
<tr>
<td>13-16</td>
<td>Vacation</td>
</tr>
<tr>
<td>17-18</td>
<td>January Assessment</td>
</tr>
</tbody>
</table>

Teaching Staff: Dr Gavin White, Dr Helen Masey-O’Neil (HMO’N), Prof Duncan Hannant (DH)
Dr John Lowe (JL)

Coursework: One essay 1500 words, group presentation

Assessment: 60 % exam (one 2-hour paper), 30% course work (30% 1 essay 1500 words, 10% group presentation).
Aims: Study of scientific basis of physiology, nutrition, health, welfare and management of the major companion animal species. The interactions between nutrition, health and longevity within the broad area of 'clinical nutrition'. Appreciation of the problems arising from maintaining animals in captivity, policies governing zoo animal / exotics in terms of intervention strategies in all these scientific issues.

Learning Outcomes: On successful completion of this module, students will be able to:
- Explain the fundamental, cross-disciplinary principles and practices that underpin companion and zoo animal nutrition
- Evaluate current research and advanced scholarship in the fields of companion and zoo animal nutrition
- Describe the social interactions between humans and companion animals
- Assess the importance of animal health and immunology

Recommended background reading:

Equine:
- Equine Nutrition and Feeding - Frape, Blackwell
- Nutritional Physiology of the Horse - Ellis and Hill, NUP
- Advances in Equine Nutrition - Pagan, NUP
- Nutrient Requirements of Horses - NRC; http://nrc88.nas.edu/nrh/
Module Details: This module gives an introduction into the Structure of the biotechnology industry. The content of the module reflects recent advances in biotechnology. A series of lectures is presented by the module convener and guest lecturers to cover the following topics: use of recombinant DNA technology; concept of epigenetics in gene regulation and disease. Epigenetics in therapeutics and diagnostics of disease. Applications of genetic engineering to production of vaccines, antibodies, and enzymes; genetic improvement and assisted reproduction; use of embryo manipulation technologies and animal transgenesis; ethical regulatory framework for genetic modification of animals.

Lecture Programme: Example:

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Staff</th>
<th>Subject</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2</td>
<td>9:30 - 12</td>
<td>R Alberio</td>
<td>The biotech industry DNA</td>
<td>B13</td>
</tr>
<tr>
<td>Week 3</td>
<td>9:30 - 12</td>
<td>R Alberio</td>
<td>DNA technologies and Protein expression systems: SDL</td>
<td>B13</td>
</tr>
<tr>
<td>Week 4</td>
<td>9:30 - 12</td>
<td>S May</td>
<td>Microarray, next generation sequencing</td>
<td>B13</td>
</tr>
<tr>
<td>Week 5</td>
<td>9:30 - 12</td>
<td>R Alberio</td>
<td>Vaccines and Monoclonal Antibodies: SDL</td>
<td>B13</td>
</tr>
<tr>
<td>Week 6</td>
<td>9:30 - 12</td>
<td>R Stoger</td>
<td>Chromatin and Epigenetics</td>
<td>B13</td>
</tr>
<tr>
<td>Week 7</td>
<td>9:30 - 12</td>
<td>R Alberio</td>
<td>Epigenetics - disease and therapy & Gamete biology and manipulation</td>
<td>B13</td>
</tr>
<tr>
<td>Week 8</td>
<td>9:30 - 12</td>
<td>K Millar</td>
<td>Animal Biotechnology: Ethics And Law</td>
<td>B13</td>
</tr>
<tr>
<td>Week 9</td>
<td>9:30 - 12</td>
<td>R Alberio</td>
<td>Stem cells basics</td>
<td>B13</td>
</tr>
<tr>
<td>Week 10</td>
<td>9:30 - 12</td>
<td>R Alberio</td>
<td>Advanced Concepts in Stem Cell Biology and applications: SDL</td>
<td>B13</td>
</tr>
<tr>
<td>Week 11</td>
<td>9:30 - 12</td>
<td>R Alberio</td>
<td>Transgenesis + 1 hr for video</td>
<td>B13</td>
</tr>
<tr>
<td>Week 12</td>
<td>9:30 - 12</td>
<td>R Alberio</td>
<td>Mock Vivas + MODULE EVALUATION</td>
<td>Teaching Lab South Laboratory</td>
</tr>
</tbody>
</table>
Timetable: Personal timetables will be available to all students via
www.nottingham.ac.uk/studentservices

Assessment:

<table>
<thead>
<tr>
<th>Task</th>
<th>Weight</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam 1</td>
<td>100%</td>
<td>2 hour exam</td>
</tr>
<tr>
<td>Coursework 1</td>
<td>0%</td>
<td>Formative assessment</td>
</tr>
<tr>
<td>Coursework 2</td>
<td>0%</td>
<td>Formative assessment</td>
</tr>
</tbody>
</table>

Aims and Objectives: The aim of this module is to provide an understanding of the structure of the biotechnology industry, of the techniques involved, and of the opportunities offered by biotechnology. Students will learn about genetic and epigenetic basis of gene regulation, and how this knowledge is used to develop treatments for disease. Students will also learn how assisted reproductive technologies are currently used for generating transgenic animals.

Learning Outcomes:

- To describe about the current status of animal biotechnology and the applications.
- To recognize which molecular tools can be used in animal biotechnological.
- To identify the principal growth areas in animal biotechnology.
- To assess the commercial opportunities and constraints involved in the exploitation of novel technologies.
- To explain the ethical implications of genetic manipulation of animals.
D235Z5 Applied Bioethics 1: Animals, Biotechnology and Society

Module Convenor: Dr K Millar Kate.Millar@nottingham.ac.uk

Module Details: Level 3 Autumn Semester, 10 credit
Pre-requisite(s): None
Co-requisite(s): None

Expected Number of Students Taking Module: 90

Target Students: Students in the School of Biosciences. Available to JYA/Erasmus students.

Teaching Staff: Dr Kate Millar (Centre for Applied Bioethics)

Timetable: Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Summary of Content: The module consists of lectures and associated seminars on: bioethical theory, research with animals, animal agriculture, applications of modern biotechnology to animals, animals and professional ethics, generic issues concerning: risk, precaution and trust; political dimensions of the biosciences; research bioethics.

Assessment:
Exam 1 (60%) 2 hour exam
Coursework 1 (40%) - One 2000-word essay

Aims: The module aims to provide students with a sound understanding of widely accepted ethical principles and encourage the application of these insights to the analysis of contemporary issues concerning modern biotechnologies and research in the biosciences, in relation to both humans and non-human species.

The module consists of lectures and associated seminars on: bioethical theory, research with animals, animal agriculture, applications of modern biotechnology to animals, animal and professional ethics, generic issues concerning: risk, precaution and trust; political dimensions of the biosciences; research bioethics.

Learning outcomes: On successful completion of the module, students will be able to:

- Recognise and explain the ethical dimensions of prominent issues raised by animal-human interactions
- Interpret the main ethical theories and principles and apply these to specific animal and biotechnology cases to inform professional decision-making
- Describe and apply ethical frameworks to analyse specific dilemmas raised by the human use of animal
D235Z7 Coordinated Physiological Functions

Module Convenor: Dr Carl Stevenson Carl.Stevens@nottingham.ac.uk
Lecturer: Dr Alan Waterfall
Total credits: 10

Level: 3 Autumn Semester

Capped module at 60 – You will need permission from the module convenor to take this module unless it is compulsory for your course.

Pre-requisite(s): D212Z5 Introductory Physiology

Co-requisite(s): None

Target Students: Students in the School of Biosciences

Availability to Exchange Students Yes

Timetable: Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Module Details: This module covers the physiological basis of integrated behaviours. It focuses on hypothalamic control of the endocrine system, appetite, emotion, body temperature, and integrative aspects of physical exercise.

Changes to the module introduced this session: Inclusion of a self-directed study session (see below), omission of learning material on reproductive physiology.

Lecture Programme: Structure and function of the hypothalamus and pituitary gland; Appetite regulation; Emotion, motivation and stress; Thermoregulation; Exercise Physiology

None Lecture Programme: Two practical sessions on exercise physiology in human subjects. Self-directed study session on exercise physiology practical data presentation and analysis. Student presentations on exercise physiology practical data.

Teaching Staff: Dr Carl Stevenson, Dr Alan Waterfall

Assessment:
Exam 1 60% Exam - short answer and essay questions - 1 hour 30 mins
Coursework 1 40% Seminar presentation

Aims and Objectives: The aims of this module are to provide students with an appreciation of the central role of the hypothalamus in co-ordinating fundamental physiological processes and behaviours, and to provide experience of practical measurement of a co-ordinated physiological activity (exercise).

At the end of this module, students should understand:
(i) The anatomy of the hypothalamus and its main connections within the brain
(ii) How the hypothalamus links physiology and behaviour
(iii) Specific examples of hypothalamic co-ordination of physiology (e.g. thermoregulation, appetite, emotion)
(iv) The physiological adaptations to physical exercise and how they are controlled
Learning outcomes: On successful completion of this module students will be able to:
1) Explain how the control of homeostasis by the hypothalamus and inter-connected brain areas is important for regulating physiology and behaviour
2) Explain how the hypothalamus and inter-connected brain areas regulate appetite, body temperature, exercise physiology and complex behaviours
3) Work as a team to analyze and present the exercise physiology data obtained in the practical session in an effective manner
4) Interpret the exercise physiology data in relation to the scientific literature

Recommended Reading: A full reading list will be provided at the outset of the module.
D236A2 Management Consultancy

Module Convenor: Miss K Harris-Adams Keely.Harris-adams@nottingham.ac.uk

Pre-requisite(s): D235A4 Rural Business Management

Module Details: Level 3 Spring Semester, 10

Expected Number of Students Taking this module: 15

Target Students: Students specialising in Management

Summary of Content: The module is orientated to real-life case studies that will allow students to develop and apply their knowledge of management principles. These case studies will be based on the University farm. This will involve assessment of enterprise performance and/or whole farm performance under the current agricultural policy and market environment. Each student will provide written and oral consultancy reports on their findings that will be assessed by members of academic staff. The reports will outline the impact of possible changes and provide recommendations to the manager of the business.

Timetable: It is expected that students will primarily direct their own study for this module. There will be three lectures and three individual workshop sessions to provide students with guidance. Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

<table>
<thead>
<tr>
<th>Week</th>
<th>Content</th>
<th>Staff</th>
</tr>
</thead>
</table>
| 1 | Introduction to module
Choosing your case study | KHA/CS |
| 2 | Farm Manager’s perspective
Q&A on farm resources
Individual meetings on case study | KHA/MGD |
| 3 | Farm Accounting revision session | KHA |
| 4 | Guest lecture: Management consultancy in practice | KHA |
| 5 | "Consultation with senior consultants" [25 mins as scheduled] | KHA/CS |
| 6 | "Consultation with senior consultants" [25 mins as scheduled] | KHA/CS |
| 7 | No lecture. Student directed study | - |
| 8 | "Progress review" [15 mins as scheduled] | KHA |
| 9 | **Deadline for written consultancy reports** | - |
| 10 | Student's individual oral presentations [25 mins as scheduled] | KHA/CS/MGD |
| 11 | Feedback and module review session | KHA |

Teaching Staff: KHA: Keely Harris-Adams, MGD: Mike Davies

Coursework: Written report (80%), Oral presentation (20%).

Assessment: Coursework 1 (80%) Report - 3500 words. Coursework 2 (20%) Presentation - individual presentation based on findings in report

Aims: The module aims to introduce students to the practicalities of management consultancy and thus integrate their knowledge of management principles to real-life case studies.
Learning Outcomes: Knowledge and Understanding - to learn of 1) How to appraise individual enterprises and whole firms with a view to improving the respective financial and technical performance of the business 2) Appropriate terminology and nomenclature to appreciate and express knowledge of the subject area; including understanding the commercial environment in which consultants work 3) A diverse range of the essential information, major concepts, principles and theories associated with a specific case-study relevant to agriculture and sustainable agricultural systems, focusing upon management and economics but also including crop and animal science as appropriate 4) The latest trends and developments relevant to the specific case-study and of the associated philosophical, ethical and policy issues 5) The ability to acquire, interpret and critically analyse biological and management data and information derived from a variety of sources 6) A range of practical techniques and methodologies, together with appropriate procedures for data analysis and presentation. Intellectual Skills - the ability to 1) Recognise and use appropriate theories, concepts and principles from a range of relevant disciplines, drawing particularly on business management techniques 2) Collect and integrate several lines of evidence and apply them in a balanced manner to support an argument for choosing one competing alternative over others 3) Apply knowledge and understanding of business management and scientific principles to address familiar and unfamiliar problems 4) Critically analyse, synthesise and summarise information drawn from various sources, including published research papers and reports. Practical/Professional Skills - the ability to 1) Design and carry out appropriate analysis to assess feasibility of competing alternatives 2) Collect, record and analyse information and data in the library making accurate observations and to summarise it using appropriate business management techniques 3) Appreciate and analyse financial and other management information and use it in decision making. Transferable/Key Skills - the ability to 1) Communicate accurately, clearly, concisely and confidently in written, verbal and visual forms making appropriate acknowledgement to the work of others 2) Work productively as an individual 3) Listen to, appreciate and evaluate the views of others 4) Manage and organise time efficiently and work to deadlines by using flexible and effective approaches to study 5) Process, analyse and present data using a variety of methods, including appropriate qualitative and quantitative techniques and packages 6) Use the Internet and other electronic means critically for communication and as a source of information 7) Appreciate the difficulties of having incomplete information on which to base decisions and understanding the nature of risk.
D236Z4 Systems Neurophysiology

Module Convenor: Dr John Harris
John.Harris@nottingham.ac.uk

Lecturers: Dr Alan Waterfall (AW), Dr Carl Stevenson (CS)

Total credits: 10

Level: 3 Spring Semester

Pre-requisite(s): Physiology of Electrically Excitable Tissues [D223A8]

Number of Places: 65

Timetable: Personal timetables will be available to all students via
www.nottingham.ac.uk/studentservices

Summary of Content: This module draws on current research to develop specific
themes from D224Z5 Neurophysiology and Pharmacology. These include typical
experimental techniques and the neurophysiology, neuropharmacology and pathology of
sensorimotor systems. A strong emphasis will be on the physiology and pharmacology of
acute and chronic pain including studying the use of analgesics to treat these conditions.

Lecture Programme: Lecture programme is provisional and more detailed information
will be given to you in the first session.
1 Module introduction
2 Spinal Reflexes
3 Bipedalism
4 Methods in Neuroscience
5 The Electroencephalogram
6 Fear Learning & Memory I
7 Fear Learning & Memory II
8 Pain Pathways
9 Acute Pain
10 Techniques in Pain Research
11 Peripheral Sensitization
12 Central Sensitization
13 Inflammatory Pain
14 Neuropathic Pain
15 Non-Steroidal Anti-Inflammatories
16 Opioids
17 Cannabinoids
18 Module Review and Exam Advice

Practical Class Programme: Practical class programme is provisional and more
detailed information will be given to you in the first session.
1 Proprioception, Kinaesthesia and Reflexes
2 Anatomy of the Nervous System and Skeletal Muscles
3 Anatomy of Sensory and Motor Pathways
4 The Electroencephalogram

Coursework: Lab report for practical 1 (25%); Essay, virtual poster or equivalent alternative
based on practicals 2 and 3 (15%)

Assessment: Exam (60%) - 1.5 hours formal examination. Coursework 1 (25%) - 2000-word
practical report. Coursework 2 (15%) - Virtual poster assignment, 1200 word essay, or
equivalent.
Aims and Objectives: The aim of the module is to demonstrate that animal behaviour is an emergent property of integrated activity in multiple physiological systems. At the end of this module, students should:
(i) Understand the concept and practice of the sensori-motor system.
(ii) Appreciate the role of the CNS in motor control
(iii) Understand how survival depends on the integrated functioning of basic neural systems
(iv) Understand how plasticity in the nervous system leads to the development of chronic pain states.

Learning outcomes: On successful completion of this module, students will be able to:
- Describe the anatomy, physiology and pharmacology of sensory and motor systems and their integration in posture, co-ordinated movement and protective reflex responses
- Discuss the methodology behind a number of neuroscientific techniques and their application in novel research
- Explain the physiology and pharmacology behind acute and chronic pain states hence the rationale behind analgesic treatment regimes
- Analyse physiological data obtained in a practical setting
- Discuss experimental data incorporating knowledge acquired via further reading in the subject area

A full reading list will be provided at the outset of the module.
D236Z5 Reproduction and Fertility

Module Convenor: Dr G. Mann George.Mann@nottingham.ac.uk

Module Contributor: Dr R Anand-Ivell, Prof B Campbell

Total credits: 10

Level: 3, Spring Semester

Pre-requisite(s): D223Z7 Reproductive Physiology

Capped module at 100 – You will need permission from the module convenor to take this module unless it is compulsory for your course.

Target Students: Bioscience (D320 Animal Science), and available to Life Science and Exchange Students subject to appropriate background.

Summary of Content: This course builds on information covered in earlier module(s) and covers fertility regulation and manipulation in mammals. It deals with the artificial control of reproductive cycles in the female and mechanisms involved in pregnancy recognition and maintenance. In both female and male reproduction, emphasis is given to reproductive technology.

Timetable: Typically three one-hour timetabled lecture sessions or one two to four hour practical session per week. Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Lecture Programme: Lecture programme is provisional and more detailed information will be given to you in the first session.

1 Comparative Reproduction Lecture
2 Ovarian function, gamete transport Lecture
3 Oocyte maturation & early embryo development Lecture
4 Pregnancy and placentation Lecture
5 Pregnancy Practical Practical
6 Reproductive Behaviour Lecture
7 Technologies in humans Lecture
8 Technologies in animals Lecture
9 Semen Analysis Practical Practical
10 Semen Analysis Workshop Workshop
11 Suppression of Reproduction Lecture

Assessment
Exam 1 75% 1.5 hour examination
Coursework 1 25% Produce an educational game

Aims: To provide an understanding of current reproductive technology and the physiology of pregnancy. By the end of the module successful students should be able to: i) appreciate how knowledge of reproductive physiology can be applied to manipulate reproduction ii) understand why fertility manipulation can be advantageous to human, farm and other species iii) understand the physiological control of pregnancy and lactation.
Learning Outcomes: Knowledge and Understanding - to learn of: (1) The detailed physiological control of reproductive processes in male and female mammals and appreciate how this knowledge can be applied to manipulate reproduction (2) Recent developments in reproductive technology and embryology as it applies to farm species, humans and endangered species. Intellectual Skills - the ability to: (1) Apply subject knowledge to solve problems (2) Locate and analyse material from a range of sources (3) Integrate evidence from several sources and use it to support a hypothesis Practical/Professional Skills - the ability to: (1) Carry out experiments to test a hypothesis (2) Collect data and calculate final results (3) Work safely in the laboratory Transferable/key skills - the ability to: (1) Communicate clearly and concisely in a written form (2) Work as part of a group (3) Time-manage efficiently
D236Z6 Applied Bioethics 2: Sustainable Food Production, Biotechnology and the Environment

Module Convenor: Dr K Millar Kate.Millar@nottingham.ac.uk

Module Details: Level 3, Spring Semester, 10 credit

Applied Bioethics 1 except in the exceptional circumstances where the student already has an appropriate academic background.

Co-requisites: None.

Expected Number of Students Taking Module: 60

Target Students: Students in the School of Biosciences. Available to JYA/Erasmus students

Summary of Content: The module consists of lectures and associated seminars on:
- bioethical theory; the ethical dimensions of the nutritional needs of the global population;
- ethics of population management, use of new reproductive technologies and development;
- agricultural practices designed to meet the nutritional needs of the global population (including the use of GM crops); the impacts of agricultural and industrial activities on the sustainability of the global environment

Timetable: Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Teaching Staff: Dr Kate Millar (Centre for Applied Bioethics)

Assessment:

Coursework 1 (50%) One 2000-word essay
Coursework 2 (30%) One 1000-word position paper
Oral Assessment (20%) Assessed oral presentation

Aims: The module aims to provide students with a sound understanding of widely accepted ethical principles and encourage the application of these insights to the analysis of contemporary issues in the agricultural, food and environmental sciences.

Learning outcomes: On successful completion of the module, students will be able to:
- Recognize and explain the ethical dimensions of prominent issues raised by agricultural practices (including the use of biotechnology) designed to meet the nutritional needs of the global population;
- Demonstrate how ethical theory can inform professional choices and public policies related to food production and environmental management;
- Using team-based approaches to apply value-aware communication skills to discuss the ethical dimensions of agriculture and food production;
- Set out and support an ethical position on an agricultural or environmental issue by applying arguments that draw on science and ethics literatures.
D236Z8 Epigenetics and Development

Module Convenor: Dr Dylan Sweetman Dylan.Sweetman@nottingham.ac.uk

Lecturer: Dr Reinhard Stöger

Module Details: A level 3, 10 credit module taught in the Spring Semester at Sutton Bonington. The module consists of lectures and practical classes.

Expected Number of Students Taking Module: 30

Target Students: Biosciences

Summary of Content: This module introduces current concepts of molecular mechanisms in animal development. A goal is to convey how developmental programs are remarkably conserved among species, including humans. Insights gained from molecular studies of the fruit fly, zebra fish and chicken are directly relevant to our understanding of mammalian development. Signals and factors regulating key events in establishing the body plan of an animal are discussed. Epigenetic processes that mediate X-chromosome inactivation and genomic imprinting will be described.

Timetable: Two-hour timetabled sessions per week: nine lectures, one practical session and one seminar session. Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Lecture Programme: Lecture programme is provisional and more detailed information will be given to you in the first session.

- Model systems and techniques Dr Reinhard Stöger
- Segmentation in drosophila Dr Dylan Sweetman
- Vertebrate segmentation Dr Dylan Sweetman
 Practical – chicken embryo culture
- Introduction to Epigenetics Dr Reinhard Stöger
- X-chromosome inactivation Dr Reinhard Stöger
- Genomic imprinting Dr Reinhard Stöger
 Seminars in epigenetics
- Limb development Dr Dylan Sweetman
- Muscle formation Dr Dylan Sweetman
- MicroRNA in Development Dr Dylan Sweetman

Assessment: Exam 1 80% 2-hour examination. Presentation 20% epigenetics presentations

Aims: This module aims to provide students with a detailed understanding of developmental biology and epigenetic regulation in mammalian species and introduces current concepts of molecular mechanisms in animal development. A goal is to convey how developmental programs are remarkably conserved among species, including humans. Insights gained from molecular studies of the fruit fly, zebra fish and chicken are directly relevant to our understanding of mammalian development. Signals and factors regulating key events in establishing the body plan of an animal are discussed. Epigenetic processes that mediate X-chromosome inactivation and genomic imprinting will be described.

Learning outcomes: On successful completion a student will be able to:
1. Describe the morphological and phenotypic changes that take place during animal development and how this is regulated by genetic and epigenetic mechanisms
2. Analyse research papers by explaining the data presented and how this informs our understanding of animal development and epigenetics
3. Interpret morphological changes in embryo development and relate this to published literature
4. Relate how genome level information and changes result in evolution of novel forms and functions
D236Z9 Principles of Animal Health and Disease 2

Module Convener: Dr Sharon Egan Sharon.Egan@nottingham.ac.uk

School: Veterinary Medicine & Science

Module Details: Level 3 Spring Semester 10 credits. Primarily aimed at students taking a degree in Animal Science but available to other students subject to completing the prerequisite.

Pre-requisite modules or other requirements: D212Z5 Introductory Physiology

Expected Number of Students Taking Module: 60

Target Students: D320 Animal Science, and available to Exchange students subject to appropriate background

Summary of Content: The module will develop the concepts introduced in the Level 2 module Principles of Animal Health and Disease 1, providing further detail on the physiological and immunological response to disease using examples from companion, farm and rodent species. The economic /welfare / legal impacts of disease will be discussed.

Timetable: Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Assessment:

Exam 1 100% MCQ examination 1.hr 30 mins

Aims: To develop an advanced knowledge and understanding of the effects of disease in domesticated animals.

Learning outcomes:

Knowledge and Understanding – to learn (1) The major effects of disease on the body (2) To develop a detailed understanding of the effects of diseases on specific body systems using examples from companion, farm and rodent species.

Intellectual Skills – The ability to (1) be able to integrate knowledge of the various body systems into an understanding of the effects of diseases (2) Develop an understanding of how to assess the health of an animal (3) Develop an understanding of the economic impact of disease in specific examples (4) be capable of retrieving information from a variety of sources.

Practical/professional Transferable/key skills – The ability to (1) work productively individually and as a group (2) manage time efficiently (3) present data/information in a group setting.
D23BA1 Livestock Production Science

Module Convenor: Prof Phil Garnsworthy Phil.Garnsworthy@nottingham.ac.uk.

Lecturers: Prof Julian Wiseman, Prof Kevin Sinclair, Dr George Mann, Dr Jean Margerison

Module Details: Level 3 All Year; 20 credits

Pre-requisites: D223A7 Applied Animal Science

Co-requisites: None

Availability to Exchange Students: Yes

Expected Number of Students Taking Module: 40

Target Students: Students in the School of Biosciences

Summary of Content: Scientific principles governing responses of major livestock species to nutritional, environmental, genetic and management inputs in terms of overall biological performance (growth, lactation, nutrition and reproduction), biological efficiency, profitability, animal welfare and environmental impact. Product quality, how this is measured and perceived by both the retail sector and the consumer, and how it may be manipulated during production. UK livestock production in the context of global food security.

Timetable: Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

<table>
<thead>
<tr>
<th>Lecture Programme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13-16</td>
</tr>
<tr>
<td>17-18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>27</td>
</tr>
<tr>
<td>28-31</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td>33</td>
</tr>
<tr>
<td>34-37</td>
</tr>
</tbody>
</table>

Teaching Staff: Prof Phil Garnsworthy (PCG; Module Convenor), Prof Julian Wiseman (JW), Prof Kevin Sinclair (KDS), Dr George Mann (GEM), Dr Jean Margerison (JM).

Assessment:
- Exam: 60% one 3 hour paper
- Coursework 1: 40% 2 essays each of 1500 words

Aims: Link previously acquired scientific knowledge of physiology, nutrition, genetics, health, welfare and management when studying the production of meat/milk/eggs and health/well-being. Detailed consideration of the integration of the production, nutrition, product quality, management and health of beef and dairy cattle, sheep, pigs and poultry at UK and global scales.

Learning Outcomes: After successful completion of the module students will be able to:
- Integrate knowledge of nutrition, reproduction, growth, management, health and welfare when evaluating livestock production systems.
- Demonstrate ability to acquire, interpret and critically analyse biological and/or management data and information derived from a variety of sources, including international comparisons.
- Compare resource requirements and environmental impact of alternative livestock systems.
- Explain how to adapt production systems to meet demands for animal products in contrasting global markets.
- Critically analyse key performance indicators and provide solutions to problems encountered in livestock production enterprises.
D23BN2 Animal Nutrition

Module Convenor: Dr John Brameld
John.Brameld@nottingham.ac.uk

Lecturers: Dr T Parr, Dr M Elmes, Dr J Margerison

Module Details: Level 3, Year Long, 20 credits

Pre-requisites:
Introduction to Nutrition (D21BN1) Principles of Animal Nutrition (D223N8)

Co-requisites: None

Expected Number of Students Taking Module: 30

Target Students: Students studying BSc Animal Science (D320). Availability to Exchange Students

Summary of Content: This module will further develop students’ understanding of the specialised knowledge encompassing the subject of Animal Nutrition. The module objectives are to explain and illustrate Animal Nutrition at an advanced level by developing specific topics including Micronutrient and trace minerals, Organic micronutrients (vitamins B, choline, essential fatty acids), Regulation of growth and product quality, Specialist aspects of ruminant nutrition and Selected examples of metabolic disorders.

Timetable: Typically two one-hour timetabled sessions per week, although student seminars may be up to 4 hours: Thirty two lectures, sixteen hours student seminars, fifty hours student led studies and revision. Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Lecture Programme: The Lecture programme is provisional and more detailed information will be given to you in the first session.
1. Module introduction and Presentation Skills (JB)
2. Organic Micronutrients 1 (TP)
3. Organic Micronutrients 2 (TP)
4. Micronutrient and Trace Minerals 1 (ME)
5. Micronutrient and Trace Minerals 2 (ME)
6. Micronutrient and Trace Minerals 3 (ME)
7. Ruminant Nutrition 1 (JM)
8. Ruminant Nutrition 2 (JM)
9. Ruminant Nutrition 3 (JM)
10. Growth Regulation 1 (JB)
11. Growth Regulation 2 (JB)
12. Growth Regulation 3 (JB)
13. Product Quality 1 (TP)
14. Product Quality 2 (TP)
15. Metabolic Disorders 1 (TP)
16. Metabolic Disorders 2 (TP)

Assessment:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam</td>
<td>60%</td>
<td>One 2 hours exam</td>
</tr>
<tr>
<td>Coursework 1</td>
<td>40%</td>
<td>A seminar on an area of current interest in animal nutrition. The assignment will consist of writing an abstract and presenting a seminar on a subject area related to animal nutrition.</td>
</tr>
</tbody>
</table>

Aims: This module will provide students with specialised knowledge encompassing the subject of Animal Nutrition and explain and illustrate Animal Nutrition at an advanced level.
by developing specific topics including 1) Micronutrient and trace minerals 2) Organic Micronutrients (vitamins B, choline, essential fatty acids) 3) Regulation of growth and product quality 4) Specialist aspects of ruminant nutrition and 5) Selected examples of metabolic disorder

Learning outcomes: On successful completion of the module, students will be able to:
1. Explain the nutritional requirements for animal health and growth in both ruminant and non-ruminant species.
2. Explain the factors involved in the regulation of growth and product quality.
3. Critique information from a range of sources on a specialist topic of current research in animal nutrition.
4. Report on the specialist topics using appropriate academic formats.

Recommended background reading: The main textbook we recommend is:

For most topics we do not recommend specific texts, but references for reviews or original papers will be provided
D23BN3 Molecular Nutrition

Module Convenor: Dr Tim Parr (MC) Tim.Parr@nottingham.ac.uk

Lecturers: Dr J Brameld, Dr L Coneyworth, Professor S Langley-Evans, Dr A Murton, Professor A Salter, Dr S Welham

Module Details: Level 3, Year Long, 20 credits

Pre-requisites: Biochemistry–The Building Blocks of Life (D21BN2) Principles of Immunology (D223N6)

Expected Number of Students Taking Module: 60

Target Students: BSc Nutrition (B400)

Summary of Content: This module will examine the regulatory effects of nutrients, either directly or indirectly, on cellular signaling processes and gene expression and how this influences metabolism and growth in eukaryotic systems. The mechanisms of controlling gene expression will be described. The module will explore the regulation of signaling processes as well as gene expression and the potential for manipulating metabolic processes through nutrient supply. The module will seek to enable an understanding of the molecular mechanisms by which nutrients regulate cell function, the basis of their effects on whole organisms and how variation in genomic sequence is likely to impact on nutrients’ influence on gene expression.

Timetable: Typically two or three one-hour timetabled sessions per week consisting of: lectures, tutorials and computer based practical class. Personal timetables will be available to all students via www.nottingham.ac.uk/studentservices

Lecture Programme: Lecture programme is provisional and detailed information will be given to you in the first session.

<table>
<thead>
<tr>
<th>Week</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Introduction to module</td>
</tr>
<tr>
<td></td>
<td>Introduction and revision: Regulation of the cellular response</td>
</tr>
<tr>
<td></td>
<td>Molecular nutrition and the health of populations</td>
</tr>
<tr>
<td>3</td>
<td>Gene organisation and structure</td>
</tr>
<tr>
<td>4</td>
<td>Regulation of gene expression (transcription)</td>
</tr>
<tr>
<td>5</td>
<td>Regulation of gene expression (post-transcription)</td>
</tr>
<tr>
<td>6</td>
<td>Regulation of gene expression (translation)</td>
</tr>
<tr>
<td>7</td>
<td>Techniques for assessing gene expression</td>
</tr>
<tr>
<td>8</td>
<td>Introduction to coursework 1: Bioinformatics</td>
</tr>
<tr>
<td>9</td>
<td>Coursework 1: Bioinformatics (computer session)</td>
</tr>
<tr>
<td>10</td>
<td>Coursework 1: Bioinformatics (computer session)</td>
</tr>
<tr>
<td>11</td>
<td>Coursework 1: Bioinformatics (additional tutorial)</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
</tr>
<tr>
<td>12</td>
<td>Coursework (student centred study)</td>
</tr>
<tr>
<td>19</td>
<td>Christmas vacation</td>
</tr>
<tr>
<td>19</td>
<td>Introduction to semester 2</td>
</tr>
<tr>
<td></td>
<td>Nutrigenetics: “Personalised” Nutrition</td>
</tr>
<tr>
<td></td>
<td>Coursework feedback</td>
</tr>
<tr>
<td>20</td>
<td>Nuclear Receptors: Vitamins A & D</td>
</tr>
<tr>
<td>21</td>
<td>Lipids</td>
</tr>
<tr>
<td>21</td>
<td>Lipids</td>
</tr>
<tr>
<td>22</td>
<td>Lipids: Q&A session</td>
</tr>
<tr>
<td>23</td>
<td>Carbohydrates</td>
</tr>
<tr>
<td>24</td>
<td>Amino acids</td>
</tr>
<tr>
<td>24</td>
<td>Carbohydrates & amino acids: Q&A session</td>
</tr>
<tr>
<td>25</td>
<td>Minerals</td>
</tr>
<tr>
<td>25</td>
<td>Minerals</td>
</tr>
<tr>
<td>26</td>
<td>Minerals and vitamins: Q&A session</td>
</tr>
<tr>
<td>26</td>
<td>Nutrigenetics & nutrigenomics: Zinc,</td>
</tr>
<tr>
<td></td>
<td>class module evaluation</td>
</tr>
<tr>
<td>26</td>
<td>Intro to Introduction to computer based revision test</td>
</tr>
<tr>
<td>27</td>
<td>Formative computer-based revision test</td>
</tr>
<tr>
<td>33</td>
<td>Easter vacation</td>
</tr>
<tr>
<td>33</td>
<td>Revision class</td>
</tr>
</tbody>
</table>

Assessment:

- **Exam 1** (50%) – 2 hour exam.
- **Coursework 1** (50%) – Data interpretation and bioinformatics computer-based exercise including interpretation of experimental data; written assessment (2000 words)

Aims: Through the provision of relevant biochemical and molecular biology information, this module aims to enable students to gain an understanding of the regulatory effects of nutrients, either directly or indirectly, on gene expression and how this influences metabolism and growth in eukaryotic systems. To demonstrate through coursework and/or examination an understanding of the factors involved in regulation of signalling processes and gene expression and the potential for manipulating metabolic processes through nutrient supply.

Learning Outcomes: On successful completion of the module, students will be able to:

1) Explain the structure of the genome and mechanisms by which genes are expressed and translated into proteins
2) Explain the molecular mechanisms by which nutrients regulate gene expression.
3) Illustrate how experimental methodologies can be used to assess how nutrients influence gene expression.

4) Analyse molecular biology and biochemical experimental data generated from experiments examining the effects of a nutrient on gene expression.

Recommended background reading:

The Molecular Biology of the Cell. Alberts *et al*

The contents of the book are available through the following webpage:

An alternative book with much the same content is

Molecular Cell Biology. Lodish *et al*

The contents of the book are available through the following webpage:
D23PRO Undergraduate Research Project

Module Convenor: Dr S Lydon Sussie.Lydon@nottingham.ac.uk

Total Credits: 40

Level: Level 3, Year-long module

Summary of Content: The project is a year-long level 3 module. The topic of the project will be chosen from a list of suggestions, and will be finalised after consultation with the student’s Course Manager and a member of academic staff who will act as the supervisor. It involves detailed research on the topic chosen after discussion with the supervisor. Each project will involve collection of data by means such as experiment, questionnaire, observation and/or literature search as well as the analysis and interpretation of the data in the context of previous work. Reading and summarising previous research by other scientists working in the area, and writing a clear concise final report are essential components of the project.

Module details: This module consists of an extended programme of research under the direction of an individual member of staff. Students are expected to undertake a challenging piece of work, in which emphasis is placed on self-motivation and self-learning. Detailed guidelines will be provided by the Division.

Expected Number of Students Taking Module: 250

Target Students: All Biosciences students registered for Honours Degrees in the School of Biosciences apart from those studying Microbiology, and Environmental Sciences degrees.

Non-lecture programme: Private study using library, Internet, laboratory, or field facilities supported by regular tutorials with the project supervisor.

Target Students: All Biosciences students registered for Honours Degrees in the School of Biosciences apart from those studying Microbiology, and Environmental Sciences degrees.

Assessment: The module will be assessed by coursework only; this will take the form of a 15 minute oral presentation of the research findings (10%), an objective assessment of project planning and execution (30%) and a 5,000-word written report (60%). Details of the precise format required for the oral presentation and written report will be provided to students by the School Office.

Module aims: The module aims to provide a detailed training in research work. At the end of the module, students should be familiar with the relevant published literature in the field, have become familiar with some of the fundamental techniques necessary to do the prescribed research and published their findings as both an oral report and a comprehensive written report.

Module objectives: The objectives are to enable students to:

i) Identify and analyse problems
ii) Undertake good experimental design
iii) Search for, analyse and interpret relevant literature
iv) Carry-out competent laboratory, field or survey research
v) Analyse data using appropriate methods
vi) Write and deliver an oral presentation
vii) Prepare and write a detailed report
Transferable skills
Transferable skills associated with this module include:

i) Literature searching using a range of databases
ii) Use of relevant laboratory, field or survey research methods
iii) Statistical analysis as appropriate
iv) Computing and word processing skills
v) Problem solving
vi) Oral communication skills
vii) Time management

Subject specific information

In some project areas, it is necessary to begin project work in semester 4 because of factors such as seasonal availability of crops or farm animals. This phase of the project forms a discrete, 10-credit, Part I module
30 Appendices

1. Qualitative Assessment Criteria - General Guidelines for Examinations
2. Qualitative Assessment Criteria - General Guidelines for Essays & Reports
3. Qualitative Assessment Criteria - General Guidelines for Posters
4. Qualitative Assessment Criteria - General Guidelines for Oral Presentations
5. Qualitative Assessment Criteria – Research Project Experimental Work
6. Progression and Compensation Charts
7. Marking at Different Levels within Degree Programmes
8. School of Biosciences Tutoring Statement
Qualitative Assessment Criteria - General Guidelines for Essays & Reports

<table>
<thead>
<tr>
<th>Class</th>
<th>Percentage</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>第一等（First）</td>
<td>100%</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>第二等（Upper Second）</td>
<td>70%</td>
<td>65</td>
<td>60</td>
<td>55</td>
<td>50</td>
</tr>
<tr>
<td>第三等（Lower Second）</td>
<td>50%</td>
<td>45</td>
<td>40</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>软失败（Soft Fail）</td>
<td>25%</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>失败（Fail）</td>
<td>10%</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1. Only broad classes (A,B,C,D and E) have qualitative criteria attached; the division into (e.g.) C1, C2, C3 etc. is at the discretion of the examiner.
2. The qualitative criteria include consideration of:
 a. The quality of the report/essay e.g. the use of sections; diagrams, figures etc.; quality of writing;
 b. Student’s knowledge of subject; depth and quality of answer;
 c. Evidence of reading / study beyond regurgitation of standard taught material;
 d. Independent or critical thinking / originality etc.

<table>
<thead>
<tr>
<th>Qualitative Criteria</th>
<th>General Guidelines for Essays & Reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Excellent report structure with professional presentation of figures, tables, diagrams, references etc.; evidence of originality/novelty in presentation.</td>
</tr>
<tr>
<td>b.</td>
<td>Deep understanding of subject; all arguments carefully developed and clearly expounded.</td>
</tr>
<tr>
<td>c.</td>
<td>Considerable and effective use of literature information, beyond that supplied as taught material.</td>
</tr>
<tr>
<td>d.</td>
<td>Clear evidence of critical thinking, originality and novelty.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Upper Second</th>
<th>68</th>
<th>65</th>
<th>62</th>
<th>58</th>
</tr>
</thead>
<tbody>
<tr>
<td>第二等（Upper Second）</td>
<td>68%</td>
<td>65%</td>
<td>62%</td>
<td>58%</td>
</tr>
<tr>
<td>a.</td>
<td>Generally clear report conforming with accepted format but with some errors in style and/or presentation of illustrative figures.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>Sound grasp of subject material, generally logical arguments.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>Some evidence of independent thinking and originality.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td>Very little evidence of critical thinking or originality.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower Second</th>
<th>48</th>
<th>45</th>
<th>42</th>
<th>38</th>
</tr>
</thead>
<tbody>
<tr>
<td>第三等（Lower Second）</td>
<td>48%</td>
<td>45%</td>
<td>42%</td>
<td>38%</td>
</tr>
<tr>
<td>a.</td>
<td>Very poorly structured; disorganised; missing sections; minimal presentation of supporting data, figures etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>Limited understanding of subject; serious factual errors; general lack of any logical arguments.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>Very little evidence of independent thinking or originality.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td>Virtually no evidence of independent thinking or originality.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soft Fail</th>
<th>35</th>
<th>30</th>
<th>25</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>软失败（Soft Fail）</td>
<td>35%</td>
<td>30%</td>
<td>25%</td>
<td>20%</td>
</tr>
<tr>
<td>a.</td>
<td>Very poor coverage of material with little information that is relevant.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>Virtually no evidence of understanding the question; minimal attempt to provide a structured answer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>No evidence of independent thinking or originality.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td>No relevant material.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fail</th>
<th>25</th>
<th>20</th>
<th>15</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>25%</td>
<td>20%</td>
<td>15%</td>
<td>10%</td>
</tr>
<tr>
<td>Fail</td>
<td>25%</td>
<td>20%</td>
<td>15%</td>
<td>10%</td>
</tr>
<tr>
<td>F2</td>
<td>25%</td>
<td>20%</td>
<td>15%</td>
<td>10%</td>
</tr>
<tr>
<td>F3</td>
<td>25%</td>
<td>20%</td>
<td>15%</td>
<td>10%</td>
</tr>
</tbody>
</table>

1. Only broad classes (A,B,C,D and E) have qualitative criteria attached; the division into (e.g.) C1, C2, C3 etc. is at the discretion of the examiner.
2. The qualitative criteria include consideration of:
 a. The quality of the report/essay e.g. the use of sections; diagrams, figures etc.; quality of writing;
 b. Student’s knowledge of subject; depth and quality of answer;
 c. Evidence of reading / study beyond regurgitation of standard taught material;
 d. Independent or critical thinking / originality etc.
<table>
<thead>
<tr>
<th>CLASS</th>
<th>%</th>
<th>QUALITATIVE ASSESSMENT CRITERIA - GENERAL GUIDELINES FOR EXAMINATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td></td>
<td>a. Deep understanding of subject; carefully balanced arguments clearly presented; all material highly relevant to the question.</td>
</tr>
<tr>
<td>A1</td>
<td>100</td>
<td>b. Considerable and effective use of literature information, beyond that supplied as taught material.</td>
</tr>
<tr>
<td>A2</td>
<td>90</td>
<td>c. Clear evidence of critical thinking, originality and novelty</td>
</tr>
<tr>
<td>A3</td>
<td>80</td>
<td>d. Excellent structure and good use of illustrative diagrams etc.; evidence of originality/novelty in presentation.</td>
</tr>
<tr>
<td>A4</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Upper Second</td>
<td></td>
<td>a. Sound grasp of subject material; presentation of logical arguments relevant to the question.</td>
</tr>
<tr>
<td>B1</td>
<td>68</td>
<td>b. Reasonable evidence of wider study beyond lecture material.</td>
</tr>
<tr>
<td>B2</td>
<td>65</td>
<td>c. Some evidence of independent thinking and originality.</td>
</tr>
<tr>
<td>B3</td>
<td>62</td>
<td>d. Well organised answer; appropriate use of illustrative diagrams; clear presentation.</td>
</tr>
<tr>
<td>Lower Second</td>
<td></td>
<td>a. Reasonable understanding of subject material, but some flaws in the logic of arguments and factual errors; possibly some irrelevant material.</td>
</tr>
<tr>
<td>C1</td>
<td>58</td>
<td>b. Only limited evidence of wider study and use of literature information.</td>
</tr>
<tr>
<td>C2</td>
<td>55</td>
<td>c. Little evidence of independent thinking or originality.</td>
</tr>
<tr>
<td>C3</td>
<td>52</td>
<td>d. Fairly clear presentation; generally conforming with accepted format but with some flaws in style; little use of illustrative diagrams.</td>
</tr>
<tr>
<td>Third</td>
<td></td>
<td>a. Limited understanding of subject; numerous flaws in the logic of arguments; considerable factual errors and/or irrelevant material.</td>
</tr>
<tr>
<td>D1</td>
<td>48</td>
<td>b. Virtually no inclusion of literature information beyond lecture material.</td>
</tr>
<tr>
<td>D2</td>
<td>45</td>
<td>c. Virtually no evidence of independent thinking or originality.</td>
</tr>
<tr>
<td>D3</td>
<td>42</td>
<td>d. Little attention given to structure; very limited use of illustrative diagrams; serious flaws in presentation.</td>
</tr>
<tr>
<td>Soft Fail</td>
<td></td>
<td>a. Minimal understanding of subject; serious factual errors; general lack of any logical arguments; considerable amount of irrelevant material.</td>
</tr>
<tr>
<td>E</td>
<td>35</td>
<td>b. Virtually no inclusion of literature information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. No evidence of independent thinking or originality.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Very poorly structured answer; disorganised and untidy; missing sections; virtually no use of illustrative diagrams.</td>
</tr>
<tr>
<td>Fail</td>
<td></td>
<td>Insubstantial answer; very poor coverage of material with little information that is relevant.</td>
</tr>
<tr>
<td>F1</td>
<td>25</td>
<td>Virtually no evidence of understanding the question and minimal attempt at structure</td>
</tr>
<tr>
<td>Fail</td>
<td></td>
<td>A few lines of relevant material</td>
</tr>
<tr>
<td>F2</td>
<td>10</td>
<td>No relevant material</td>
</tr>
<tr>
<td>F3</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

1. Only broad classes (A, B, C, D and E) have qualitative criteria attached; the division into (e.g.) C1, C2, C3 etc. is at the discretion of the examiner.
2. The qualitative criteria include consideration of:
 a. Student’s knowledge of subject; depth, relevance and quality of answer.
 b. Evidence of reading / study beyond regurgitation of standard taught material.
 c. Independent or critical thinking / originality etc.
 d. The quality of presentation - structure of answer, the use of sections; diagrams etc., general neatness etc.
<table>
<thead>
<tr>
<th>CLASS</th>
<th>%</th>
<th>QUALITATIVE ASSESSMENT CRITERIA - GENERAL GUIDELINES FOR POSTERS</th>
</tr>
</thead>
</table>
| **First** | | a. Excellent use of headings, text appropriate size, figures and diagrams clear and well-labelled, very easy to follow progression of poster theme.
| A1 | 100 | b. Visually very attractive and creative.
| A2 | 90 | c. Factually very accurate and informative with clear evidence of extensive knowledge of published literature.
| A3 | 80 | d. All relevant aspects of own data presented, where inclusion is appropriate.
| A4 | 73 | |
| **Upper Second** | | a. Good use of headings, text of appropriate size, some loss of figure clarity or slight errors in labelling, easy to follow progression of poster theme.
| B1 | 68 | b. Visually quite attractive and creative.
| B2 | 65 | c. Factually accurate and informative with some evidence of knowledge of published literature.
| B3 | 62 | d. Most relevant aspects of own data presented, where inclusion is appropriate.
| **Lower Second** | | a. Adequate use of headings, text a little too small, figures not clear and inadequately labelled, more difficult to follow progression of poster theme.
| C1 | 58 | b. Visually unstimulating.
| C2 | 55 | c. Some factual inaccuracies with only limited evidence of knowledge of published literature.
| C3 | 52 | d. Several aspects of own data omitted, where inclusion is appropriate.
| **Third** | | a. Very poor use of headings, text too small or hand-written, figures unclear and unlabelled, no obvious progression of poster theme.
| D1 | 48 | b. Visually unattractive and dull.
| D2 | 45 | c. Many factual inaccuracies with very limited evidence of knowledge of published literature.
| D3 | 42 | d. Most of own data omitted, where inclusion is appropriate.
| **Soft Fail** | | a. No headings used and poster somewhat disorganised.
| E | 35 | b. Visually unattractive and dull.
| | | c. Inaccurate with virtually no evidence of knowledge of published literature.
| | | d. None of own data included.
| **Fail** | | a. No headings used and poster very disorganised and difficult to understand.
| F1 | 25 | b. Visually very unattractive and dull.
| | | c. Inaccurate with no evidence of knowledge of published literature.
| | | d. None of own data included.
| F2 | 10 | A few lines of relevant material presented
| F3 | 0 | No poster presented

1. Only broad classes (A,B,C,D and E) have qualitative criteria attached; the division into (e.g.) C1, C2, C3 etc. is at the discretion of the examiner.
2. The qualitative criteria include consideration of:
a. Structure and organisation of the poster.
b. Visual impact and attractiveness.
c. Accuracy and completeness of the content.
d. Where appropriate, inclusion of students' own experimental data.
QUALITATIVE ASSESSMENT CRITERIA - GENERAL GUIDELINES FOR ORAL PRESENTATIONS

<table>
<thead>
<tr>
<th>CLASS</th>
<th>%</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td></td>
<td>a. Clearly audible, well-paced presentation delivered without obviously reading from notes in the time allocated. Addressed to the audience.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Very well-planned with a clear logical structure focused on the topic being presented. Excellent introduction and summary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Excellent use of visual aids which are easy to read and understand. Main points of slides clearly explained.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Content of presentation very well-researched with relevant data where appropriate. Response to questions asked indicates thorough understanding.</td>
</tr>
<tr>
<td>Upper Second</td>
<td></td>
<td>a. Clearly audible, well-paced presentation delivered with some reading from notes in the time allocated. Mainly addressed to the audience.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Quite well-planned with logical structure focused on topic being presented. Good introduction and summary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Good use of visual aids which are quite clear to read and understand. Good attempt to explain main points of slides.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Content of presentation quite well-researched with relevant data where appropriate. Response to questions asked indicates good understanding.</td>
</tr>
<tr>
<td>Lower Second</td>
<td></td>
<td>a. Audible presentation which may be too fast or too slow. Tendency to read from notes and to address floor or ceiling. May be outside time allocated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Some flaws in structure and not always focused on the topic being presented. Weak introduction and summary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Adequate use of visual aids which are not always easy to read and understand. Little attempt to explain main points of slides.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Some omissions in literature research and little relevant data presented. Response to questions asks indicates incomplete understanding.</td>
</tr>
<tr>
<td>Third</td>
<td></td>
<td>a. Difficult to hear. Too fast or too slow. Read from notes and little attempt to address the audience. Outside allocated time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Poorly-structured, rambling presentation which strays from topic being presented. Very weak introduction or summary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Poor visual aids which are difficult to read and understand. Poor explanation of main points of slides.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Little evidence of literature research and no data presented. Response to questions indicates poor understanding.</td>
</tr>
<tr>
<td>Soft Fail</td>
<td></td>
<td>a. Mumbled, halting presentation. Much too fast or too slow. No attempt to address audience and well outside allocated time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. No discernible structure to presentation with some relevant material. No introduction or summary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Very poor visual aids. No explanation of main points of slides.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Poor literature research and no data presented. Response to questions shows serious weakness in understanding.</td>
</tr>
<tr>
<td>Fail</td>
<td></td>
<td>a. Extremely difficult to hear presentation and well outside allocated time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. No discernible structure and very little relevant material. No introduction or summary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. No visual aids used.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Little evidence of research. Response to questions shows minimal understanding.</td>
</tr>
<tr>
<td>Fail</td>
<td></td>
<td>Very minimal attempt to give a presentation.</td>
</tr>
<tr>
<td>Fail</td>
<td></td>
<td>Failed to give a presentation.</td>
</tr>
</tbody>
</table>

1. Only broad classes (A, B, C, D and E) have qualitative criteria attached; the division into (e.g.) C1, C2, C3 etc. is at the discretion of the examiner.
2. The qualitative criteria include consideration of:
 a. Presentation of talk; audibility, speed, use of notes, addressed to audience, time keeping.
 b. Organisation of talk; logical coherent progression with introduction and summary.
 c. Use of visual aids; clarity and explanation of salient points.
 d. Research and response to questioning; evidence of extensive reading, presentation of own data (where relevant), evidence of wider understanding.
Qualitative Assessment Criteria - Research Project Experimental Work

<table>
<thead>
<tr>
<th>CLASS</th>
<th>%</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td></td>
<td>a. Extremely independent and able to work with minimal direct supervision. Shows a great deal of initiative and perseverance when things go wrong.</td>
<td>b. Very well organised; able to plan time in laboratory/field with minimal assistance.</td>
<td>c. Technically extremely competent; learns new methods quickly with minimal training.</td>
<td>d. Excellent critical ability and able to appreciate limitations of techniques used.</td>
</tr>
<tr>
<td>Upper Second</td>
<td></td>
<td>a. Able to work independently with little direct supervision. Shows some initiative and perseverance.</td>
<td>b. Well organised; able to plan time in laboratory/field with little assistance.</td>
<td>c. Technically competent; learns new methods quite quickly when given training.</td>
<td>d. Some critical ability and appreciation of limitations of techniques used.</td>
</tr>
<tr>
<td>Lower Second</td>
<td></td>
<td>a. Needs quite close supervision and shows little initiative. Tendency to give up too quickly when things go wrong.</td>
<td>b. Quite well organised but needs considerable help to plan experiments and time spent in laboratory/field.</td>
<td>c. Technically quite competent, but liable to make mistakes is not supervised closely. Slow at learning new techniques.</td>
<td>d. Limited critical ability and little appreciation of limitations of techniques used.</td>
</tr>
<tr>
<td>Third</td>
<td></td>
<td>a. Little or no ability to work independently. Shows very little initiative. Liable to give up when things go wrong.</td>
<td>b. Poorly organised; unable to plan time in laboratory/field without direct instruction.</td>
<td>c. Technically incompetent. Liable to make mistakes even when supervised closely. Very slow at learning new techniques.</td>
<td>d. Virtually no critical ability or appreciation of limitations of techniques used.</td>
</tr>
<tr>
<td>E Soft Fail</td>
<td></td>
<td>a. No ability to work independently. Minimal effort put into work.</td>
<td>b. Poorly organised and liable to miss planned work sessions.</td>
<td>c. Technically very incompetent. Often makes mistakes, even when closely supervised. Extremely slow at learning new techniques.</td>
<td>d. No critical ability or appreciation of limitations of techniques used.</td>
</tr>
<tr>
<td>F Fail</td>
<td></td>
<td>a. Rarely does any experimental work.</td>
<td>b. Very likely to miss planned work sessions.</td>
<td>c. Often makes errors when carrying out our simple procedures.</td>
<td>d. No critical ability or appreciation of limitations of techniques used.</td>
</tr>
<tr>
<td>F2</td>
<td></td>
<td>Very minimal laboratory/field work attempted.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td></td>
<td>No laboratory/field work attempted</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Only broad classes (A, B, C, D and E) have qualitative criteria attached; the division into (e.g.) C1, C2, C3 etc. is at the discretion of the examiner.
2. The qualitative criteria include consideration of:
 a. Independence and initiative. Perseverance when work does not go according to plan.
 b. Organisational ability; can the student plan their use of time effectively and efficiently?
 c. Technical ability; can the student carry out work competently and learn new techniques quickly?
 d. Critical ability and appreciation of the limitations of the work.
Progression and Compensation BSc Hons (to Parts I and II) and MNutr (to Part I)

MSci prog to Part II
needs 55% average
module pass mark = 40%

* subtract 20 credits
over best 100 credits
for ordinary degree

Appendix 6

Re-sits modules < 40%

Minimum re-sit
modules < 30%

Proceed

All marks ≥ 30%?

Yes

≥ 110 credits*

at ≥ 30%?

No

Yes

≥ 90 credits*

Proceed

≥ 80 credits*

No

No

≥ 70 credits*

Proceed

≥ 60 credits*

Proceed

Yes

Yes

No

Yes

Yes

No

Yes

Yes

No

Yes

No

Yes

Yes

No

Yes

Proceed

Pass marks
in all modules?

Yes

Average mark ≥ 50%?

No

≥ 95 credits*

Proceed

≥ 90 credits*

Proceed

≥ 85 credits*

Proceed

≥ 80 credits*

Proceed

≥ 75 credits*

Proceed

≥ 70 credits*

Proceed

≥ 65 credits*

Proceed

≥ 60 credits*

Proceed

≥ 55 credits*

Proceed

≥ 50 credits*

Proceed

≥ 45 credits*

Proceed

≥ 40 credits*

Proceed

≥ 35 credits*

Proceed

≥ 30 credits*

Proceed

MSci prog to Part II
needs 55% average
module pass mark = 40%

* subtract 20 credits
over best 100 credits
for ordinary degree

Proceed

Average mark ≥ 45% #?

No

≥ 95 credits*

Proceed

≥ 90 credits*

Proceed

≥ 85 credits*

Proceed

≥ 80 credits*

Proceed

≥ 75 credits*

Proceed

≥ 70 credits*

Proceed

≥ 65 credits*

Proceed

≥ 60 credits*

Proceed

≥ 55 credits*

Proceed

≥ 50 credits*

Proceed

≥ 45 credits*

Proceed

≥ 40 credits*

Proceed

MSci prog to Part II
needs 55% average
module pass mark = 40%

* subtract 20 credits
over best 100 credits
for ordinary degree

Proceed

Average mark ≥ 40% #?

No

≥ 95 credits*

Proceed

≥ 90 credits*

Proceed

≥ 85 credits*

Proceed

≥ 80 credits*

Proceed

≥ 75 credits*

Proceed

≥ 70 credits*

Proceed

≥ 65 credits*

Proceed

≥ 60 credits*

Proceed

≥ 55 credits*

Proceed

≥ 50 credits*

Proceed

≥ 45 credits*

Proceed

≥ 40 credits*

Proceed

MSci prog to Part II
needs 55% average
module pass mark = 40%

* subtract 20 credits
over best 100 credits
for ordinary degree

Proceed

Average mark ≥ 35% #?

No

≥ 95 credits*

Proceed

≥ 90 credits*

Proceed

≥ 85 credits*

Proceed

≥ 80 credits*

Proceed

≥ 75 credits*

Proceed

≥ 70 credits*

Proceed

≥ 65 credits*

Proceed

≥ 60 credits*

Proceed

≥ 55 credits*

Proceed

≥ 50 credits*

Proceed

≥ 45 credits*

Proceed

≥ 40 credits*

Proceed

MSci prog to Part II
needs 55% average
module pass mark = 40%

* subtract 20 credits
over best 100 credits
for ordinary degree

Proceed

Average mark ≥ 30% #?

No

≥ 95 credits*

Proceed

≥ 90 credits*

Proceed

≥ 85 credits*

Proceed

≥ 80 credits*

Proceed

≥ 75 credits*

Proceed

≥ 70 credits*

Proceed

≥ 65 credits*

Proceed

≥ 60 credits*

Proceed

≥ 55 credits*

Proceed

≥ 50 credits*

Proceed

≥ 45 credits*

Proceed

≥ 40 credits*

Proceed

MSci prog to Part II
needs 55% average
module pass mark = 40%

Proceed

Average mark ≥ 25% #?

No

≥ 95 credits*

Proceed

≥ 90 credits*

Proceed

≥ 85 credits*

Proceed

≥ 80 credits*

Proceed

≥ 75 credits*

Proceed

≥ 70 credits*

Proceed

≥ 65 credits*

Proceed

≥ 60 credits*

Proceed

≥ 55 credits*

Proceed

≥ 50 credits*

Proceed

≥ 45 credits*

Proceed

≥ 40 credits*

Proceed

MSci prog to Part II
needs 55% average
module pass mark = 40%

Proceed

Average mark ≥ 20% #?

No

≥ 95 credits*

Proceed

≥ 90 credits*

Proceed

≥ 85 credits*

Proceed

≥ 80 credits*

Proceed

≥ 75 credits*

Proceed

≥ 70 credits*

Proceed

≥ 65 credits*

Proceed

≥ 60 credits*

Proceed

≥ 55 credits*

Proceed

≥ 50 credits*

Proceed

≥ 45 credits*

Proceed

≥ 40 credits*

Proceed

MSci prog to Part II
needs 55% average
module pass mark = 40%

Proceed

Average mark ≥ 15% #?

No

≥ 95 credits*

Proceed

≥ 90 credits*

Proceed

≥ 85 credits*

Proceed

≥ 80 credits*

Proceed

≥ 75 credits*

Proceed

≥ 70 credits*

Proceed

≥ 65 credits*

Proceed

≥ 60 credits*

Proceed

≥ 55 credits*

Proceed

≥ 50 credits*

Proceed

≥ 45 credits*

Proceed

≥ 40 credits*

Proceed

MSci prog to Part II
needs 55% average
module pass mark = 40%

Proceed

Average mark ≥ 10% #?

No

≥ 95 credits*

Proceed

≥ 90 credits*

Proceed

≥ 85 credits*

Proceed

≥ 80 credits*

Proceed

≥ 75 credits*

Proceed

≥ 70 credits*

Proceed

≥ 65 credits*

Proceed

≥ 60 credits*

Proceed

≥ 55 credits*

Proceed

≥ 50 credits*

Proceed

≥ 45 credits*

Proceed

≥ 40 credits*

Proceed

MSci prog to Part II
needs 55% average
module pass mark = 40%

Proceed

Average mark ≥ 5% #?

No

≥ 95 credits*

Proceed

≥ 90 credits*

Proceed

≥ 85 credits*

Proceed

≥ 80 credits*

Proceed

≥ 75 credits*

Proceed

≥ 70 credits*

Proceed

≥ 65 credits*

Proceed

≥ 60 credits*

Proceed

≥ 55 credits*

Proceed

≥ 50 credits*

Proceed

≥ 45 credits*

Proceed

≥ 40 credits*

Proceed

MSci prog to Part II
needs 55% average
module pass mark = 40%

Proceed

Average mark ≥ 0% #?

No

≥ 95 credits*

Proceed

≥ 90 credits*

Proceed

≥ 85 credits*

Proceed

≥ 80 credits*

Proceed

≥ 75 credits*

Proceed

≥ 70 credits*

Proceed

≥ 65 credits*

Proceed

≥ 60 credits*

Proceed

≥ 55 credits*

Proceed

≥ 50 credits*

Proceed

≥ 45 credits*

Proceed

≥ 40 credits*

Proceed

MSci prog to Part II
needs 55% average
module pass mark = 40%
Pass marks in all modules?

Yes

≥ 35% in both exams and c/w in all modules

Yes

Proceed

No

Re-sit exam and/or c/w components

<35% and any modules <40%

Following re-sits

Yes

≥ 35% in both exams and c/w in all modules

Yes

Proceed

No

Refer to BSc progression chart for transfer to BSc

No

Offer transfer to BSc Nutrition

No

Appendix 6
Appendix 7

School of Biosciences Qualitative Marking Schemes
Supplementary Guidelines

Marking at Different Levels Within Degree Programmes

The School’s qualitative marking schemes provide general guidance for assessment of various types of work. However, in applying these schemes to individual assessments, account must be taken of the level at which students are working. The criteria outlined below provide general guidance, and not all criteria will be applicable to all forms of assessment.

Academic Levels

Level 1: Certificate level, generally qualifying year students
Level 2: Diploma level, generally taken by year 2 students
Level 3: Degree level, generally taken by year 3 students
Level 4: Masters levels, generally taken by post-graduate or year 4 undergraduate students

Major considerations

Mark Class A

Level 1: Draws on available evidence to make sound conclusions supported from a range of sources.
Level 2: There is evidence of further reading and careful analysis offering alternative views.
Level 3: There is critical analysis offering alternative views. There is clear expression of own views, which are supported by appropriate literature. Draws on available evidence to make persuasive conclusions.
Level 4: Detailed, orderly and critical work with clearly specified focus/foci exhibiting rigorous analysis, synthesis and evaluation. There must be evidence that the student has developed their own arguments.

Mark Class B

Level 1: Content is accurate and relevant with appropriate use of supporting material.
Level 2: There is sound analysis with good expression and argument with evidence of independent thinking supported by appropriate material.
Level 3: There is sound critical analysis. Alternative views are expressed using supporting evidence from a variety of sources.
Level 4: Evidence of originality and significant critical analysis. There is evidence of integration of material from a variety of sources.
Appendix 7
Mark Class C

Level 1: Content is largely accurate and relevant with some evidence of understanding.

Level 2: There is adequate analysis with limited evidence of wider study.

Level 3: There is reasonable understanding, with some attempt at analysis and limited use of supporting material.

Level 4: There is reasonable understanding and analysis supported by a range of relevant evidence.

Mark Class D

Level 1: Some relevant content but with evidence of only very limited understanding.

Level 2: Some relevant content with limited understanding but little evidence of wider study.

Level 3: Basic understanding with limited evidence of wider study.

Level 4: Basic understanding with limited evidence of understanding and some attempt at analysis.

Mark Classes E/F

All levels: Work does not demonstrate above criteria and reference should be made to the qualitative criteria in deciding final mark.

Modules offered at levels A-C are considered intermediate between Levels 1-2, 2-3 and 3-4 respectively.
School of Biosciences: Tutoring Statement

The following statement demonstrates how each of the specific outcomes of the University’s principles of tutoring are delivered in the School of Biosciences.

<table>
<thead>
<tr>
<th>Principle</th>
<th>Outcome achieved in Biosciences through . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The student should feel acknowledged, recognised and accepted within their school/department as an individual with distinct academic needs and preferences.</td>
<td>A detailed Week One programme incorporating course-specific teaching and learning support sessions.</td>
</tr>
<tr>
<td></td>
<td>A specific Course Manager for each degree from whom students can obtain individual academic advice.</td>
</tr>
<tr>
<td></td>
<td>Module registration days (three times/year) when students can obtain individual academic guidance on their module choices.</td>
</tr>
<tr>
<td></td>
<td>Each student is allocated a personal tutor and this is one of the first people they meet when they arrive in the School.</td>
</tr>
<tr>
<td>2. The student should feel part of the school/department community, experiencing frequent contact with academic staff on an individual or small group basis and building relations with particular members of staff over an extended period.*</td>
<td>Three formal meetings with tutors/year, in addition to which students are encouraged to meet mid-semester with their personal tutors.</td>
</tr>
<tr>
<td></td>
<td>Learning Community Forum deals with all issues affecting campus life (eg social, residential and catering) as well as academic issues.</td>
</tr>
<tr>
<td></td>
<td>Close working relationship developed with project supervisor during final year of studies.</td>
</tr>
<tr>
<td></td>
<td>Student Guild – an SB-based branch of the Students’ Union which has combined social and representational roles.</td>
</tr>
<tr>
<td></td>
<td>Semester One tutor appointed to give particular assistance to first year students at the start of their course. Semester One discussion group at end of first semester to seek feedback on students’ experiences.</td>
</tr>
<tr>
<td></td>
<td>Most first year students and many from later years reside in Bonington Hall. The Hall is closely integrated with all aspects of Campus and School life and is central to the SB community.</td>
</tr>
<tr>
<td></td>
<td>Campus-based alumni organisation (OKA) provides continuity for graduates and is also involved with travel awards, fund-raising, communication and development.</td>
</tr>
<tr>
<td>3. The personal development of the student should be promoted; leading to improved communication skills and greater confidence in presentation and dealing with the unfamiliar.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Many modules require presentations, group working and practical skills to be developed – see: http://www.nottingham.ac.uk/biosciences/study-with-us/employability/employability-skills.aspx.</td>
<td></td>
</tr>
<tr>
<td>Final year research project involves significant personal development as an individual researcher and scientist. MSci students take undertake an additional project in which their professional skills are further developed. MNutr students undertake clinical placements giving them first-hand experience of communicating with the public.</td>
<td></td>
</tr>
<tr>
<td>Project assessment includes an oral presentation.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Students should receive prompt, helpful and detailed feedback on their assessments, in a manner that enhances learning and improves future assessment performance.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coursework returned to students (within a 21 day turn-around time) with individual comments – often on a standard assessment feedback form. Models of good practice in feedback are provided on School intranet.</td>
</tr>
<tr>
<td>Standard module feedback which is provided at the end of each module on performance over the course of the module, including the formal summative assessment.</td>
</tr>
<tr>
<td>Module timetables routinely specify submission and feedback dates for coursework.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Students struggling with aspects of individual modules, or more generally with their programme of studies, should have clearly signposted and ready access to a reasonable level of academic advice and support designed to remedy their difficulties.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guidance available from Course Manager, Module Convener, Module Registration Days, Personal tutor and School Office staff.</td>
</tr>
<tr>
<td>Colleagues from Academic Support hold drop in sessions on campus throughout term-time.</td>
</tr>
<tr>
<td>In 2014-15, appointment of a new Student Experience and Support Officer.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Students should receive the level of support in developing their study skills necessary to perform satisfactorily on their programme of studies.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A well-developed Study Skills Handbook, to which students are introduced during a specific session in Week One. Personal tutors also provide study-skill advice.</td>
</tr>
<tr>
<td>A year-long Academic Development and Employability module delivered to first year students.</td>
</tr>
<tr>
<td>Provision of self-assessment materials from the Virtual Writing Centre for students’ use.</td>
</tr>
<tr>
<td>Course staff provide specific aspects of guidance, especially in relation to coursework.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>7.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>9.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>10. Students should receive appropriate advice and support when considering changing their programme of study or contemplating leaving the University.</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>11. Students should be prepared for periods of study away from their home campus and appropriately supported during those periods.</td>
</tr>
<tr>
<td>12. The procedures for submitting extenuating circumstances regarding assessments should be straightforward and well publicised.</td>
</tr>
</tbody>
</table>
| 13. Students with **disabilities** should be clear as to the support they will receive and where it is available, and the support should be in line with University policies.

The Study Skills Handbook which gives information about support available for students with disabilities. This is articulated during Week One by the Disability Liaison Officer (DLO) who gives a presentation to all new students. The DLO provides support to students throughout their course, and directs students to relevant support services.

Tutors who are trained to deal with students with disability.

A close working relationship which is maintained between the School’s DLO and the University’s Senior Disability Officer, who is available on the Sutton Bonington campus once/week.
14. The procedures for submitting **academic appeals and complaints** should be well publicised and staff should be aware of their responsibilities within these procedures.

The process for submitting academic appeals and complaints which is publicised in the students’ Study Skills Handbooks and Course Handbooks.

The School Manager (Academic Administration) who gives advice and support to students who wish to submit a complaint or an appeal.

Guidance available from tutors and Course Managers.

Learning Community Fora provide an opportunity for complaints to be resolved informally. |
| 15. Students being subjected to the **academic offences** procedure should receive clear information and advice.

Information about what constitutes plagiarism and how to avoid it which is provided in the students’ Study Skills Handbooks and Course Handbooks. This information is articulated in a dedicated session during Week One.

On-going guidance on how to avoid plagiarism provided by module conveners and tutors.

Personal tutors and the School Manager (Academic Administration) who give support for students being subjected to the academic offences procedure. |
| 16. Students should receive relevant **health and safety** guidance, especially in laboratory or workshop-based subjects.

General information on health and safety is provided to all students during Week One induction and in the School’s Study Skills Handbooks. Specific information related to laboratories and practical classes is included in module documentation. Students’ attention is drawn to safety matters, including risk assessments and safety procedures, by individual course staff at times appropriate to their application. Some courses, such as those where pathogens will be used, contain a compulsory lab safety module. |
| 17. Students should be directed in a timely and appropriate manner to

The School’s Study Skills Handbooks, Course Handbooks, Personal Tutor, Senior Tutor, |
University support services for assistance with all of the above matters as necessary.

School Office staff and the Student Services Centre.

The student Study Skills book is produced annually and provided in hard copy to all new students. It can also be found online at http://www.nottingham.ac.uk/~sazintra/student/current/docs/Biosciences%20Study%20Skills%20-%20updated%20July%202014.pdf

January 2015