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Abstract

Sperm protein (Sp17) is an attractive target for ovarian cancer (OC) vaccines because of its over-expression in primary as well
as in metastatic lesions, at all stages of the disease. Our studies suggest that a Sp17-based vaccine can induce an enduring
defense against OC development in C57BL/6 mice with ID8 cells, following prophylactic and therapeutic treatments. This is
the first time that a mouse counterpart of a cancer testis antigen (Sp17) was shown to be expressed in an OC mouse model,
and that vaccination against this antigen significantly controlled tumor growth. Our study shows that the CpG-adjuvated
Sp17 vaccine overcomes the issue of immunologic tolerance, the major barrier to the development of effective
immunotherapy for OC. Furthermore, this study provides a better understanding of OC biology by showing that Th-17 cells
activation and contemporary immunosuppressive T-reg cells inhibition is required for vaccine efficacy. Taken together,
these results indicate that prophylactic and therapeutic vaccinations can induce long-standing protection against OC and
delay tumor growth, suggesting that this strategy may provide additional treatments of human OC and the prevention of
disease onset in women with a family history of OC.
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Introduction

Ovarian cancer (OC) is the sixth most common cancer and the

seventh leading cause of cancer death in women [1,2]. Among

OC, 90% of cases are represented by epithelial ovarian cancers

(EOC), arising from the epithelium lining, the ovarian surface or

from inclusion cysts [3,4]. The lethality of OC stems from the

inability to detect the disease at an early organ–confined stage and

from the lack of effective therapies for advanced-stage disease [4].

The late diagnosis and the high rate of resistance to chemotherapy

limit the treatment options available. OC patients with a family

history of OC account for 10% of all cases [5]. Clinical options for

these patients are surgical intervention that leads to infertility, or

chemoprevention with oral contraceptives, often associated with

severe side effects [6,7]. Immunotherapy strategies including

cancer vaccines are considered less toxic and more specific than

current treatments [8], and therefore hold the potential to provide

benefits for OC patients with evident disease and for high-risk OC

patients. Because of their specificity of action, potent and lasting

effects and applicability to virtually any type of tumor, anti-cancer

vaccines are driving the interest of clinical oncologists. A key step

in the development of basic cancer vaccines is the implementation

of vaccination strategies allowing for the consistent induction of

immune responses to tumor antigens. In this respect, the choice of

appropriate antigens, based on both the frequency and the

specificity of their expression in cancer tissues, is of paramount

importance. Cancer/testis antigens (CTA) [9,10,11,12], which

include the Sp17 antigen [9,13,14,15,16], are emerging as

promising candidates for specific immunotherapeutic targets.

CTA represent a subclass of tumor-associated antigens (TAA)

that are non-mutated self antigens expressed or over-expressed in

tumors, and recognized by CD8 T-cells [12,14,17,18,19,20]. The

immunogenic Sp17 protein has been extensively characterized

[10,20,21,22,23,24,25]. Human Sp17 is highly conserved, having

70% homology with rabbit and mouse, and 97% homology with

baboon [25]. Sp17 has a molecular weight of 17.4 KDa, is

encoded by a gene located on chromosome 11, and is aberrantly

expressed in cancers of unrelated histological origin [25] including

multiple myeloma (MM) and OC [21,22]. Sp17-specific CTL,

generated from normal donors, MM and OC patients, have been

shown to kill HLA-matched tumor cell lines and fresh tumor cells

presenting Sp17 epitopes bound to HLA class I molecules

[13,14,21]. These observations support recent studies suggesting

that Sp17 may be a suitable antigen for immunotherapy in OC
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[13,25]. Recombinant proteins are commonly used in the

development of antiviral vaccines, and may constitute attractive

candidate antitumor vaccines [11,26,27,28,29]. Professional anti-

gen-presenting cells (APCs) detect pathogens through a variety of

receptors such as the Toll-like receptors (TLR), which recognize

pathogen-associated molecular patterns, including CpG oligo-

deoxynucleotides (CpG ODN) within defined flanking sequences

[27,29,30,31]. CpG motifs, which are frequently expressed in the

bacterial genome but genomically suppressed in vertebrates, are

considered foreign by the immune system and, as a result,

stimulate host defense mechanisms [11,27,29,32,33,34]. CpG-

ODN exhibit great potential in the therapeutic treatment of

cancer due to their ability to activate innate and adaptive

immunity [15,26,27,28]. The TLR9-binding CpG induces

secretion of Th1 cytokines, including IFN-c and TNFa, and

production of antigen-specific IgG2a by B cells [11,12,32,33,34].

In this study, we assessed the prophylactic and therapeutic

immune response elicited by repeated vaccination with Sp17

recombinant protein administered with CpG. We used the murine

ID8 OC cell line, derived from a spontaneous in vitro malignant

transformation of C57BL/6 mouse ovarian surface epithelial cells

to induce tumor growth in mice [34]. Our results show for the first

time that priming with Sp17 protein and CpG is an effective

strategy to induce durable OC therapy.

Results Characterization of Sp17 and MHC-I expression in
ID8 cells

Sp17 mRNA (Figure 1a) and Sp17 protein (Figure 1b) were

detected in the ID8 cell line. Further characterization by immuno-

cytochemistry (ICC) and immunofluorescence (IF) revealed cytoplas-

mic and surface staining of these cells (Figure 1c). The cytospin of ID8

permeabilized (P) cells exhibits a positive cytoplasmic staining for

Sp17, which was confirmed by IF. Additionally, the non permeabi-

lized (NP) cells also show clear expression through IF (Figure 1c,

lower quadrants) although less by ICC (Figure 1c, upper quadrants).

We further assayed Sp17 surface expression through flow-cytometric

analysis that showed high frequency of Sp17 positive cells (figure 1d).

Similarly, flowcytometry analysis revealed that 60% of ID8 cells

stained positive for MHC-I under basal culture conditions, while

addition of 100 IU/mL IFN-c for 72 hours resulted in 98% MHC-I

positive cells.

In vivo growth of ID8 cells after intraperitoneal injection
Four different doses of ID8 cells (105, 56105, 106 and 26106) were

injected into four groups of mice (five per group) to determine the

optimal dose for induction of tumor/ascites formation. Each set of

experimental inoculations with different doses of ID8 cells was

performed at least three times. Animals from each tumor titration

group were euthanized at different time points, at which a post

mortem examination was conducted on whole animals and dissected

organs (not shown). Optimal tumor growth (based on time and

dimension) was observed with 1 of the 4 conditions (26106 ID8 cells)

tested. Figure 2a shows that an i.p. injection of 105 ID8 cells

generated a tumor growth after 120 days, whilst 56105 ID8 cells

generated a tumor mass/ascites in 90 days (Figure 2b). A dose of 106

cells showed a significant tumor mass/ascites growth by around 60

days (Figure 2c) and when 26106 ID8 cells were injected, the optimal

tumor mass/ascites was achieved in 40 to 45 days (Figure 2d), and

most deaths occurred between 50–65 days, due either to the tumor

mass or sacrifice to avoid excessive discomfort for the mice. Figure 3a

Figure 1. Analysis of Sp17 expression in ID8 cells. Sp17 mRNA in the murine ID8 tumor cells and in mouse testis (positive control). The mRNA
levels were analyzed by RT-PCR for Sp17 expression. A cellular housekeeping gene, B-actin, was included as a control. A PCR-only control (no RT step)
failed to generate a product, indicating that there was no DNA contamination in the samples. In addition to the RT-PCR (see figure 1a), Western blot
was performed and figure 1b shows the expression of Sp17 at the protein level. The ID8 cell line was further characterized by an
immunocytochemistry (ICC) and immunofluorescence (IF). This figure shows a cytospin of ID8 cells permeabilized (P) and a positive staining for Sp17
at the cytoplasm level. In addition, Sp17 was confirmed by IF in the cytoplasm. Additionally, in figure 1c, the non permeabilized (NP) cells show clear
expression via IF and less by ICC. Panel d shows ID8 characterization for surface expression of Sp17 and MHC-I; isot. ctrl, isotypic control antibody;
percentage indicate positive-staining cells. MHC-I expression was evaluated with or without IFN-g stimulation.
doi:10.1371/journal.pone.0010471.g001
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depicts a mouse injected with the optimal dose (26106) of ID8 cells to

generate tumor mass/ascites (44 mm in width) in less than 45 days,

and a control mouse (20 mm in width) that was not injected with ID8

cells. Figure 3b shows the generation of ascites from an i.p injection of

26106 ID8 cells in less than 40 days, and also shows a detailed view of

the peritoneal cavity of a mouse after aspirating 22 mL of ascites,

revealing several metastatic nodes and tumor masses. Furthermore,

figure 3 confirms that the cells in the peritoneum of mice injected with

ID8 cells express Sp17 by immunohistochemistry (IHC), while cells

from a mouse without tumor injection were negative for Sp17

(figures 3e, f and g). These results show that Sp17 is expressed in the

ID8 cell line, in vivo. To confirm the tumor mass/ascites originated

from the ID8 cells, specimens of peritoneal, tumor mass/nodes, lung,

liver, ascites, spleen and ovaries were investigated by RT-PCR.

Results are displayed by figure 3d, (representative picture of 5 mice

per experiment, repeated in triplicate) for ID8-injected mice

(figure 3d-1) and control mice (figure 3d-2). Further, a fluorescence-

based localization assay was performed to detect GFP-positive ID8

cells in vivo, and confirmed the peritoneal localization of ID8 cells

(figure 3h).

Immunization regimens and measurement of tumor
growth

The mice were vaccinated with different formulations: Sp17

only; CpG only; and Sp17+ CpG, co-administered. A total of 22

mice were immunized with each vaccine formulation. The mice

were immunized intra-muscularly (i.m) with 50 mg of Sp17 protein

and 20 mg CpG at different time-points as detailed above.

Evaluation of tumor growth and/or ascites was monitored every

three weeks using engineer calipers. Survival was followed until

tumors reached volumes of more than 1,000 mm3, in accordance

with our Institutional Animal Care and Use Committee

Guidelines.

Evaluation of survival rates after prophylactic and
therapeutic Sp17/CpG vaccinations

Tumor cells were injected 30 days after the 3rd vaccination of

the prophylactic regimen, or 21 days before the first therapeutic

vaccination. All Sp17+CpG vaccinated mice (100%) were tumor-

free 91 days after tumor injection with ID8 cells (26106), whereas

none of the unvaccinated animals (ID8 only) were alive. Figure 4a

displays the survival rates of mice that received prophylactic

immunizations: 12.5% of Sp17+CpG vaccinated mice developed

small tumor masses and ascites after 91 days and died 180 days

after with heavy-load tumors. Moreover, 8% of the vaccinated

mice developed tumors and ascites, and died after 200 days.

However, those tumors were significantly smaller than the ovarian

tumors of the control mice that were vaccinated with PBS only.

The overall survival of Sp17+CpG vaccinated mice was 79% for

over 300 days. Analysis performed by a Log-rank (Mantel-Cox)

Test showed that the overall survival curves were statistically

significant (p,0.0001) for the group vaccinated with Sp17+ CpG

compared with the other vaccine titrations. Figure 4b shows the

survival rates of mice that received therapeutic immunizations.

Figure 2. (a, b, c, d) Tumor growth in ID8-injected mice. Shows the progressive formation of ascites/tumors when i.p. injected with ID8 cells.
ID8 injected mice are shown as m1-m5. Control mice were injected with PBS alone. 1a shows mice injected with 105 ID8 cells. The tumors did not
reach a significant size until after 150 days. 2b shows the progressive formation of ascites/tumors when i.p. injected with 56105 ID8 cells. The tumors
did not reach a significant size until after 120 days. 2c shows the progressive formation of ascites/tumors when i.p. injected with 106 ID8 cells. The
tumors reached a significant size in 90–120 days. 2d shows the progressive formation of ascites/tumors when i.p. injected with 26106 ID8 cells. The
tumors reached a significant size in 35–60 days (p,0,0001); a visible enlargement of the mice was noticed at 30 days.
doi:10.1371/journal.pone.0010471.g002
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Less than 11% of Sp17+CpG vaccinated mice developed small

tumor masses and ascites after 150 days and died after 210 days of

heavy-load tumors. Moreover, less than 10% of the vaccinated

mice developed tumors and ascites, and died after 280 days. The

overall survival of Sp17+CpG vaccinated mice was 80% for over

300 days. Analysis was performed by a Log-rank (Mantel-Cox)

Test and showed that the overall survival curves were statistically

significant (p,0.0001) for the group vaccinated with Sp17+CpG

compared with the other vaccine titrations. Finally, control groups

vaccinated with Sp17 alone and CpG alone showed some to no

protection, that was not statistically significant (figure 4a and 4b).

Measurement of Sp17-specific antibody responses and
cytokine expression by ELISA assay

Analysis of the Sp17-specific antibody response generated in the

vaccinated mice is shown in figure 5. The representative ELISA

assay was performed to analyze the immune response from 3

different vaccine formulations: Sp17+CpG; CpG only; and Sp17

only. Subsequent vaccinations increased specific anti-Sp17

antibody responses compared to the first vaccination. In

figure 5b, we showed a high amount of specific anti-Sp17

antibodies from both Sp17 formulations at 3rd vaccination. We

explored the repeated vaccination schedule because, in a clinical

setting, patients that are in remission are often continued to be

vaccinated so that there is no recurrence of the tumor. However,

there was a slight decrease of the amount of immune response

compared to the 3rd vaccination analyses in all three formulations

at the 9th vaccination (figure 5c) but anti-Sp17 IgG levels in

Sp17+CpG vaccinated group were still statistically higher

compared with the other vaccine formulations (p,0.001). In the

therapeutic regimen group, Sp17+CpG vaccinated mice showed a

significantly higher (p,0.01) production of IgG anti-Sp17 after

270 days, compared with mice treated with the other formulations

(figure 5d). In figure 6 we showed the expression of cytokines at

day 270 (at the 9th vaccination) in both prophylactic (6a) and

therapeutic (6b) regimens. Serum was collected and analyzed by

ELISA assay (IL-2, IL-4, IL-5, IL-10, IFN-c, TNF-a, GM-CSF)

from mice vaccinated with Sp17+CpG and compared with serum

Figure 3. (a, b, c, d) Analysis of ID8 cells growth and dissemination in vivo. a shows on the left side a control mouse (width of mouse
20 mm) not injected with ID8 cells and on the right side a mouse injected with 26106 ID8 cells after 40 days (width of mouse 44 mm). These mice
represent experiments with similar results. b shows the full peritoneal cavity of ascites induced from an i.p injection of 26106 ID8 in 40 days (left) and
an open view of the cavity with several metastatic nodes and tumor masses (center and right, after aspirating 22 mL of ascites). c shows a
peritoneum negative for Sp17 from a control mouse not injected with ID8 cells. f shows a positive expression of Sp17 on the peritoneum of a mouse
injected with 26106 ID8 cell after 40 days. Testis is the positive control for Sp17 by ICH (g). Figure d shows PCR for Sp17 DNA (and B-actin control): a
tissue panel derived from (1) the organs of a 26106 ID8 injected mouse was positive for Sp17 and a panel of tissues derived from organs of a healthy
mouse revealed no expression of SP17. Positive controls (ID8 and testis) for Sp17 are also shown. Panel h shows in vivo fluorescence pictures of a
control (left) and ID8-injected (right) mouse for the localization of GFP-positive ID8 cells.
doi:10.1371/journal.pone.0010471.g003
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Figure 4. (a,b) Survival analysis with different vaccination schemes. Overall survival of mice from the four prophylaxis (a) or therapeutic (b)
groups, detailed in the text (tumor free, Sp17+CpG vaccinated, unvaccinated, Sp17 or CpG vaccinated). Tumor-bearing mice were i.p. injected with
106 ID8 cells for both the prophylactic and therapeutic regimens. Tumor cells were injected 30 days after the 3rd vaccination of the prophylactic
regimen, or 21 days before the first therapeutic vaccination. In the therapeutic group, the mean difference in weight between tumor-challenged and
tumor-free animals was 10 grams at the beginning of vaccination regimen. Horizontal axis displays time expressed as days from initiation of
treatment. Log-rank test indicated statistically significant difference between unvaccinated and Sp17+CpG vaccinated versus unvaccinated or CpG
treated group (p,0.0001) for both regimens.
doi:10.1371/journal.pone.0010471.g004

Figure 5. Measurement of circulating anti-Sp17 IgG following different vaccinations. Serum from mice undergone different treatments was
collected and analyzed by E.L.I.S.A. for the levels of circulating anti-Sp17 IgG. The X axis shows serial dilutions of serum. a, b and c show results obtained in
the prophylactic vaccination schemes, while d displays the response of mice from the therapeutic regimen. On day 7 (a) the immune response was low for
Sp17. On day 97 (b), the immune response was higher than on day 7. On day 270 (c), the response for Sp17 was little less than on day 97.
doi:10.1371/journal.pone.0010471.g005
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from mice vaccinated with Sp17 alone, CpG alone or PBS alone.

Interestingly, IFN-c from the Sp17+CpG vaccinated mice was

increased by almost two folds compared with the Sp17 vaccinated

animals or around three folds compared with CpG vaccinated

animals (figure 6a and b). In prophylactically vaccinated mice,

TNF-a from Sp17+CpG formulation was increased more than

three folds, as compared with the CpG vaccinated mice and only

two folds compared with Sp17 vaccinated mice (figure 6a). GM-

CSF increments were three folds higher than in CpG vaccinated

mice and less than two folds higher versus Sp17 vaccinated mice

(figure 6a). In therapeutically vaccinated animals, TNF-a from

Sp17+CpG formulation was increased two folds compared with

the CpG and with Sp17 alone formulations (figure 6b). GM-CSF

displayed two-fold and more than one-fold increment compared

with CpG and Sp17 formulations alone, respectively (figure 6b).

Concerning the other cytokines, there was no significant

expression of IL-2, IL-4, IL-5 or IL-10 (figure 6a and b).

Evaluation of CTL antitumor responses
In figure 7a, the ELISPOT IFN-c assay was performed on day

270 (9th vaccination) using spleen cells of Sp17+CpG prophylac-

tically immunized mice. The strategy of repeated vaccinations in

this animal model is to reflect current human clinical trials. These

results suggest that the frequency of Sp17-specific CTL increased

in the optimal group (Sp17+CpG vaccinated mice) and showed

220630 positive spots in the spleen cells versus the Sp17

vaccinated (184618) and versus the CpG-vaccinated mice that

were as low as 962. In figure 7b, the ELISPOT TNF-a assay was

performed on day 270 (9th vaccination of prophylactic schedule)

using spleen cells of Sp17+CpG immunized mice (that was the best

formulation for a strong immune response). These results suggest

that the frequency of Sp17-specific CTL increased in the optimal

group (Sp17+CpG vaccinated mice), showing 240635 positive

spots in the spleen cells versus the Sp17 vaccinated only (200631)

and versus the CpG vaccinated mice that were as low as 1262.

Analogously, in the therapeutic vaccination regimen, the frequen-

cy of Sp17-specific CTL increased in the Sp17+CpG group with

259620 IFN-c and 159630 TNF-a positive spots, versus 100620

IFN-c and 70610 TNF-a positive spots in Sp17 and CpG only

formulations, respectively (figure 6c and d). These results overall

suggest a high and specific immune reaction induced by Sp17

when it is co-administered with CpG, regardless of the adopted

vaccination schedule For the cytotoxicity assay by 51Cr-release

measurement, splenocytes were collected at the time of the 1st, 3rd

and 9th vaccinations from Sp17 vaccinated mice, CpG vaccinated

mice, and Sp17+CpG vaccinated mice. The CTL assay showed

stronger CTL responses in Sp17+CpG vaccinated mice compared

with the mice immunized with Sp17 or CpG only, both in

prophylactic (figure 8) and therapeutic (figure 9) regimens. Because

in normal ID8 culture conditions in vitro, there is a low expression

of MHC Class I molecules ID8 cells were treated in vitro with IFNc
(100 IU/mL for 72 hours) to induce higher expression levels, as

previously reported (figure 1d, lower panel). ID8 cells activated

with IFN-c were used as better targets for the cytotoxicity assay.

Evaluation of Th-17 and T-reg cell frequency
Figure 10 shows the frequency of Th-17 or T-reg cells in

SP17+CpG vaccinated or control mice splenocytes, collected at

different time points (no tumor: day 0; ID8 only: day 45;

prophylactic and therapeutic day 270).

Both prophylactic and therapeutic vaccinations elicited a

significant increase in Th-17 and a decrease in T-reg cell mean

frequencies (3-and 1.5-folds respectively, fig. 10) compared with

tumor-challenged unvaccinated animals (unpaired t-test p,0.001,

for vaccinated versus control untreated mice). Therapeutic and

prophylactic vaccines consisting in Sp17 or CpG alone also

induced an increment in Th17 frequencies; however, such effect

was not significant (unpaired t-test p.0.05, for SP17- or CpG-

only vaccinated versus control untreated mice). Sp17 or CpG

administered alone reduced T-reg population frequencies at a

higher extent compared with combined Sp17+CpG formulations

in both therapeutic and prophylactic regimens; this reduction was

significant when compared with tumor challenged unvaccinated

mice (unpaired t-test p,0.01), but not when compared with

Sp17+CpG vaccinations (unpaired t-test p.0.05).

Discussion

The lethality of ovarian carcinoma primarily stems from the

inability of physicians to detect the disease at the early organ–

confined and usually asymptomatic stage, combined with the lack

of effective therapies for advanced-stage disease [14,33,35,36].

The late diagnosis and the high rate of chemo-resistance of this

form of cancer proves a need for new therapeutic targets and a

better understanding of the mechanisms involved in the spread of

OC.

In the present study, we assessed the efficacy of Sp17

recombinant protein plus CpG in prophylactic and therapeutic

settings in the murine ID8 model. Sp17 has been shown here to be

expressed strongly in the cytoplasm and on surface membranes of

ID8 cells (by ICC, IF and flow cytometry). We were able to follow

tumor growth using Sp17 as a biomarker (figures 1 and 3). This

murine model generates ascites as shown in figures 3a and 3b, and

so it seems to reflect the pathology of the most aggressive and

Figure 6. (a,b) Measurement of cytokines in mice treated with different vaccines. On day 300, serum was collected and analyzed by
E.L.I.S.A. for the measurement of the indicated cytokine levels in prophylactically (a) or therapeutically (b) vaccinated mice. For both regimens, IFN-
gamma, TNF-alpha and GM-CSF statistically significant increments were detected only in Sp17+CpG vaccinated mice compared with controls (PBS).
No significant differences were evidenced for IL-2, IL-4, IL-5 or IL-10 levels.
doi:10.1371/journal.pone.0010471.g006

Sp17 for OC Vaccine
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frequent form of human ovarian disease at stages III and IV. The

generation of tumor nodes and fusion of the peritoneum also

resemble the human process (see figure 3b), as well as the typical

peritoneal localization evidenced in vivo by fluorescence imaging

(figure 3h). The use of this animal model has been reported for

different studies related to tumor targeting and vascular growth

factor [23,37], but this is the first time that a mouse counterpart of

a human tumor associated antigen, Sp17, has been shown to be

expressed in an OC mouse model.

One of the major criteria in deciding which candidate self-

antigen to target for prevention or therapeutic strategies is creating

an immune response in a safe manner, and the evidence here

suggests that Sp17 may be such a candidate. We have previously

shown that adoptively transferred Sp17-specific T cells have anti-

tumor activity [13,14,21,22], but Sp17-targeted therapeutic or

prophylactic vaccination has not been tested in a tumor model.

These results clearly indicate that the co-administration of

Sp17+CpG i.m. injected every 30 days for a total of ten

vaccinations prevented the formation of tumors up to 300 days,

with a survival rate of 77% for the prophylactic group and 80% for

the therapeutic vaccination group. Notably, the effects of the

vaccination in the prophylactic and therapeutic regimens were

similar. Both regimens induced a strong immunity that prevented

tumor growth in tumor-challenged mice. The mice that ultimately

succumbed to the disease showed delayed development of tumor

growth compared with the unvaccinated mice. We hypothesize

that our therapeutic regimen will be effective in rejecting

differently staged OC, since our therapeutic vaccinations did not

start until the ID8 tumors showed a significant growth, with

features usually observed in human stage III-IV OC, including

cancer spread beyond the pelvis, to the lining of the abdomen or to

the lymph nodes (www.ovariancancer.org) [38]. Tumor-injected,

unvaccinated animals displayed tumor spread to the peritoneum,

lymph-nodes, lungs, liver and spleen. Indeed, the mean difference

in weight between tumor-challenged and tumor-free groups was

10 grams, corresponding to about 50% mean animal weight

before tumor injections (20 grams).

The activation of a strong immune response against Sp17 was

demonstrated by ELISA and ELISPOT assays, showing an

increase in anti-Sp17 antibodies in mice serum, expression of

Th1-associated cytokines and tumor-specific cytotoxic responses.

It is noteworthy that no significant serological reactivity to Sp17

was detectable before vaccination, indicating the ability of the

vaccine to prime specific naı̈ve B cells. Comparing the results of

Sp-17 specific antibody titers obtained with different therapeutic

vaccine formulations, we found only a small but evident increase

Figure 7. ELISPOT for the assessment of IFN-gamma and TNF-alpha serum levels. On day 270 (9th vaccine) splenocytes from different
formulations of vaccinated mice and controls were collected and analyzed by E.L.I.SPOT assay. a,b) frequency of IFN-gamma and TNF-alpha positive
cells in prophylactic vaccinations; c,d) frequency of IFN-gamma and TNF-alpha positive cells in therapeutic vaccinations. These results are presented
as spot-forming cells per 106 splenocytes. Spot numbers represent the mean of ten mice in each vaccinated group; bars, SE.
doi:10.1371/journal.pone.0010471.g007
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of anti-SP17 antibody production in CpG+SP17 vaccinated

animals compared with the other groups, especially following the

9th vaccination. Therefore, we cannot judge whether tumor

rejection following CpG+Sp17 vaccinations can be attributed to

humoral responses. Given that the differences in antibody titers

between groups are small, we would conclude that the tumor

antigen-specific cellular immune responses we detected most

probably make a larger contribution to tumor rejection in

Figure 8. Cytotoxicity assay in the prophylaxis regimen. Splenocytes from the three different formulations of prophylactically vaccinated mice
and controls were collected and analyzed by 51Chromium-release assay on days 7 (first vaccine), 97 (third vaccine) and 270 (ninth vaccine), using
splenocytes as effector cells and ID8 as target cells. These results were obtained from three independent experiments. X axis indicate effector:target
ratios.
doi:10.1371/journal.pone.0010471.g008

Figure 9. Cytotoxicity assay in the therapeutic regimen. Splenocytes from the three different formulations of therapeutically vaccinated mice
and controls were collected and analyzed by 51Chromium-release assay. These results show three independent experiments after third vaccine (day
97) and ninth vaccine (day 270), using splenocytes as effector cells and ID8 as target cells. X axis indicate effector:target ratios.
doi:10.1371/journal.pone.0010471.g009

Sp17 for OC Vaccine
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CpG+Sp17-vaccinated animals only. Interestingly, the co-admin-

istration of Sp17+CpG was better than Sp17 alone or CpG alone

as an adjuvant. It has been well documented that i.m. injections of

proteins generally do not induce significant immune responses

unless they are mixed with adjuvants [30,32,39]. Effective

adjuvants display at least 2 mechanisms of action: a depot effect

that leads to prolonged antigen exposure in the host, and a

capacity to trigger the innate immune system through activation of

dendritic cells (DC) via toll-like receptors (TLRs)[35]. Upon

proper antigen presentation, activated DC play a key role in the

induction of T cell responses[29,34,40,41,42]. Because of their

high efficacy, several recently identified TLR ligands are

promising vaccine adjuvants. Synthetic ODNs containing un-

methylated CpG dinucleotides flanked by two 59 purines and two

39 pyrimidines (CpG motif) have been reported to have

immunomodulatory activities[30]. CpG motifs potently enhance

T cell responses in multiple murine vaccination mod-

els[30,31,32,33,39]. By binding toll-like receptors, CpG can

activate DC and macrophages to trigger the production of IL-1,

IL-6, IL-12, and TNF-a, and lymphocytes, to produce IFN-c.

Overall, CpG DNA stimulates Th1-type responses, characterized

by IL-12 and IFN-c secretion with very little secretion of Th2

cytokines and a predominance of IgG2a over IgG1 in the mouse

[27,30,32,39,43,44]. We detected increased levels of TNF-alpha,

INF-gamma and GM-CSF in the serum of animals treated with

CpG+Sp17: this suggests a Th1 bias that is in accordance with the

expected CpG adjuvant activity [27,30,32,39,43,44]. Thus,

although not formally demonstrated, the most likely source would

be CD4+ Th1 T cells, and possibly CD8+ T cells.

Sp17 is a known cancer testis antigen [22] and has already been

studied for OC T cell therapy [22,36], showing potential

application in its treatment. The cytotoxicity assays in this study

showed strong anti-tumor responses in the Sp17+CpG vaccinated

mice compared to the Sp17 and CpG immunized mice, both in

prophylactic and therapeutic vaccinations. Vaccination with Sp17

protein in the absence of CpG resulted in weak cytotoxic responses

and lack of anti-tumor effects in C57BL/6 mice indicating that

CpG serves a critical role in generating effective tumor-specific

cytotoxic responses and humoral responses. The killing assay

showed significant differences at a high E:T ratio (100:1); however,

since the effector cells were whole splenocytes and the frequency of

anti-tumor CTL in total splenocytes in the absence of a secondary

in vitro stimulation is likely to be very low [41,42], high E:T ratios

are usually required to detect cytotoxic activity.

The Sp17+CpG vaccination did not induce significant side

effects associated with inflammatory infiltration of normal tissues.

Our goal was also to provide a better understanding of the role

played by immunosurveillance in OC biology and progression.

Thus, we further extended our analysis to better characterize

the cell-mediated anti-tumor responses elicited by Sp17+CpG

vaccine. We detected a significant increase in CTL-stimulatory

Th-17 cells and a decrease in immunosuppressive T-reg cells in

vaccinated mice compared with non vaccinated tumor-bearing

mice in both prophylactic and therapeutic regimens. This suggests

that our Sp17-based vaccine formulation could have the potential

to prevent the activation of immunosuppressive mechanisms that

has been reported after systemic treatment with high-doses CpG

and can potentially represent a major obstacle in the use of ODN-

adjuvanted vaccines [40]. Although it has been recently shown

that epithelial ovarian cancer-associated CD4+ regulatory T

lymphocytes are characterized by a notable plasticity and can be

reprogrammed into functional Th-17+ cells in vitro [45], it is known

that Th-17+ and Foxp3+ T cells can originate from naı̈ve CD4+

lymphocytes with high frequencies [46,47,48,49] in vivo: this is in

accordance with our finding that vaccines consisting in Sp17 or

CpG administered alone induced a marked decrease in T-reg

population frequency, with even higher degree than combined

Sp17+CpG did in both therapeutic and prophylactic regimens,

but were unable to significantly increase the occurrence of Th-17+

cells, as prophylactic or therapeutic combined Sp17+CpG. Since

Figure 10. Analysis of Th-17 and T-reg population frequencies. Splenocytes from mice that received prophylactic or therapeutic vaccinations
or controls (mice with no tumor or tumor-bearing mice without vaccinations) were collected at different time points (no tumor: day 0; ID8 only: day
45; prophylactic and therapeutic vaccines: day 270) analyzed by flow-cytometry for the measurement of a) Th-17 population (CD4/IL-17-double
positive) or b)T-reg population (CD4/Foxp3-double positive) frequency.
doi:10.1371/journal.pone.0010471.g010
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only Sp17+CpG injected animals efficiently rejected syngenic ID8-

OC tumors, we hypothesized that a reduction in T-reg population

alone without a significant increment in Th-17+ population is not

sufficient to raise effective anti-tumor immune surveillance.

Although some recent reports suggest that the presence of Th-

17+ cells may contribute to tumor promotion [50,51], other studies

provide strong evidence that Th-17 T cell responses correlate with

antitumor activity [30,42,52,53,54]. Notable studies from Restifo

and colleagues have shown that adoptively transferred CD4+ Th17

cells were markedly more effective than CD4+ Th1 cells in

eradication of advanced B16 melanoma in a mouse model [55].

Of particular significance, recent clinical investigation has shown

that Th17 cell infiltration in ovarian tumors has a strong positive

correlation with prolonged overall survival [56], an observation

that stands in sharp contrast to the known association of Treg

infiltration with poor prognosis and increased mortality in ovarian

cancer patients [57].

Our results suggest that our vaccine formulation has the ability to

redirect T lymphocyte activation from suppressor T-reg to activator

Th-17 phenotype in vivo, in accordance with the findings by Paese and

colleagues [58]. This possibility is intriguing for translation to clinical

settings since in ovarian carcinoma patients tumor lesions have been

shown to specifically recruit CD4+CD25+Foxp3+ T-reg cells, while

tumor-infiltrating Th-17 cells recruit effector T cells to the tumor

microenvironment and their levels positively correlate with clinical

outcome. Accordingly, it has been proposed that vaccine strategies

promoting Th-17 responses may achieve effective tumor control and

increased survival in OC patients [54,59]. Further, no effective

prophylactic OC vaccines have been developed to date for the

prevention of the disease in high-risk women. Therefore, we believe

that our results provide the rationale for a paradigm shift in planning

OC immunotherapy, showing that the Sp17 prophylactic and

therapeutic vaccinations are capable of long-term protection against

tumor onset, progression and dissemination. The innovative

strategies we presented here are likely to be successfully used in

tandem with standard treatment for the cure of primary and

metastatic/recidivated OC and for tumor onset prevention in

patients with a family history of the disease or genetic predisposition.

Materials and Methods

Mice
Six-week-old female C57BL/6 mice were obtained from the

Jackson Laboratory (Bar Harbor, ME). Approval for the study was

obtained from the local Institutional Animal Care & Use

Committee. All mice were maintained in filtered-air laminar-flow

cabinets under specific pathogen-free conditions. Treatment and

care of the animals were in accordance with Institutional

Guidelines and the Animal Welfare Assurance Act.

Oligodeoxynucleotides
Both ODN 1826 (TCCATGACGTTCCTGACGTT) and non-

CpG ODN 1982 (TCCAGGACTTCTCTCAGGTT) were phos-

phorothioate modified and synthesized by Invitrogen (Carlsbad, CA).

ODNs were diluted in endotoxin-free water (Invitrogen).

Construction of pQE30/Sp17 recombinant expression
vectors

A primer pair, P1 (59-GGATCC ATGTCGATTCCTTTCTC-

39) and P2 (59-GGTACCTCAATTGTCTGCCTCTTC-39), was

designed based on the nucleotide sequence of the Sp17 mouse

gene. The amplified fragment was purified and subsequently

digested with Bam HI and Kpn I (Promega, Madison, WI) and

ligated with vectors pQE30 to construct the recombinant vectors

pQE30/Sp17 m according to standard methods. Escherichia coli

(M15) was transformed with the resulting ligation mixture, and the

transformed colonies were selected on medium containing

ampicillin and kanamycin, and confirmed by sequencing.

Expression and purification of Sp17 recombinant
proteins

The recombinant Sp17 was made as previously described [25].

Briefly, Escherichia coli(M15) cells transformed with pQE30/sp17 m

were propagated overnight in LB medium containing ampicillin

(50 mg/L) and kanamycin (50 mg/L) at 37uC with shaking over

night. The next day, 1 mL of the overnight culture was inoculated

into 100 mL of fresh LB medium plus antibiotics and the culture

was allowed to grow to an optical density of 0.6 at 600 nm

absorbance. The culture was induced with 1 mM IPTG and

grown for an additional 4 hours at 37uC. The cells were harvested

by centrifugation at 2,0006g for 10 minutes. The recombinant

Sp17 protein was purified using the Ni-NTA fast start kit (Qiagen,

Valencia, CA) according to the manufacturer’s protocol. The

protein was tested for endotoxins and it was endotoxin-free, as

assayed through the Endotoxin Colorimetric Assay Kit, HEK-

BlueTM (InvivoGen). Purity was confirmed by sodium dodecyl

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).

Western blot analysis
The protein concentration from cells or tissues was quantified

by Bradford assay (Bio-Rad). 25 mg of protein was resolved by

SDS-PAGE, and then transferred to a PVDF membrane. After

blocking, the membrane was incubated with primary mouse

monoclonal anti-Sp17 antibody [22], and then washed and

incubated with a horseradish peroxidase-conjugated secondary

antibody (Amersham). After washing, the membrane was

incubated in ECL (Enhanced Chemiluminescence, Amersham),

then exposed to imaging film (Amersham) [20,24].

Cell lines
The murine OC cell line ID8 (kindly provided by Dr. Roby,

University of Kansas) was cultured in RPMI 1640 medium

supplemented with 10% fetal bovine serum and penicillin/

streptomycin (10 mg/mL of each) in 5% CO2 at 37uC, and used

within 20 passages after the initiation of the culture. Prior to

injection, cells were detached from flasks by exposing them to

0.25% trypsin/PBS/EDTA for 3 minutes. ID8 cell lines were

washed once and then suspended in PBS, counted, and adjusted to

the appropriate densities as single cell suspensions prior to

inoculation. For the evaluation of MHC-I expression, cells were

cultured in the presence or in the absence of 100 IU/mL mouse

IFN-c (R&D Systems).

In vivo determination of ID8 cell dose and cell injection
105, 56105, 106, or 26106 ID8 cells were i.p. injected into

groups of C57BL/6 mice (five mice per group). Each set of

experimental inoculations was performed at least three times,

independently. The ID8 cells were i.p. injected at day 70 after the

first tumor i.p injection. A group of control and one of tumor

injected animals were euthanized 45 days later for a post mortem

examination on the whole animals and dissected organs.

Peritoneal tumor masses and ascitic fluid specimens were collected

for further investigations.

In vitro tumor cell identification
To detect ID8 cells at distal sites to that of the injection, Sp17

was identified at the mRNA level by reverse transcription-
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polymerase chain reaction (RT-PCR) and at the protein level by

immunohistochemistry (IHC), immunofluorescence (IF) and

Western blot.

Reverse Transcription-Polymerase Chain Reaction (RT-
PCR)

Total RNA was extracted from cells and organs of healthy

control mice, and vaccinated and unvaccinated mice by means of

Tri-reagent (Sigma, St Louis, MO). All total RNA specimens were

treated with 5 mg of RNase–free DNase I (Promega) at 37uC for

2 hours. mRNA was then separated by using Oligotex mRNA

Mini Kit (QIAGEN, Valencia, CA). First-strand complementary

DNA (cDNA) synthesis was performed by using oligo (dT) 15

primers that amplify cDNA of approximately 500 base pairs (bp).

The PCR primers for Sp17 were as follows: 59-GGCAGT TCT

TAC CAAGAAGAT-39 and 59-GGA GGT AAA ACC AGT

GTC CTC-39. PCR was performed by means of 35 amplification

cycles at an annealing temperature of 57uC. Two positive control

amplifications (containing the cDNA of testis and the pQE30/

Sp17 plasmid) and negative controls for the PCR reaction mixture

(water) were also performed each time. RNA integrity in each

sample was checked by PCR amplification of a b-actin gene

segment. Successful removal of genomic DNA contamination was

confirmed in each sample by amplification of the RNA without

prior reverse-transcription. PCR products were visualized on an

ethidium bromide agarose gel for a DNA band of the expected

size, using an ultraviolet light trans-illuminator. All results were

confirmed by four independent RT-PCRs.

Immunization and tumor challenge
Female C57BL/6 mice (6 weeks old) were immunized i.m. with

50 mg Sp17 protein (in 20 ml of sterile water) and 20 mg CpG (in

20 mL of sterile water). The mice were injected every 30 days for a

total of 300 days. As control groups, the mice were vaccinated with

50 mg Sp17 protein only or 20 mg CpG only. 70 days after the first

vaccination, mice were challenged i.p. with the optimal dose of

26106 ID8 murine OC cells. Survival was followed until tumors

reached volumes of .1,000 mm3.

Immunohistochemistry (IHC)
Tumor tissue was treated by the freezing tissue procedure, or

tissue in paraffin, and 30% of the tissue organs were prepared as

single cell suspensions and stored at 220uC [30]. After

deparaffining and re-hydration, antigen retrieval was performed

in a thermostatic bath (Fisher Scientific, Pittsburgh, PA) at 98uC
for 30 minutes in a freshly prepared 1 mM EDTA solution. After

15 minutes incubation in a 3% H2O2 solution, the sections were

exposed for 1 hour at room temperature to the primary mouse

monoclonal anti-human Sp17 antibody [17,22], diluted in TBS +
BSA (0.2%) + NaN3 (0.02%), or to 1 mg/mL mouse IgG1

(DAKO, Carpinteria, CA) as a negative control. After washing 3

times for 5 minutes in TBS + Tween 20%, sections were incubated

for 30 minutes with the secondary antibody (Envision system,

DAKO) followed by 5 minutes dark incubation with DAB system

(DAKO), performed to visualize brown precipitates as reaction

results. Cells were counter-stained with hematoxylin (Fisher

Scientific) and results were evaluated by light microscope [30].

Immunocytochemistry/Immunofluorescence (ICC/IF)
A standardized technique for detecting Sp17 in ID8 cells was

performed as previously described [21,22]. Briefly, an ID8 single

cell suspension was counted (56104 cells/100 mL) and washed

with PBS. Afterwards, slides were set up with a filter card and

introduced into the Shandon Cytospin-2 and spun at 800 rpm for

three minutes. The funnel and filter were removed from the glass

slides, fixed with SlideRite (Fisher Scientific) and the cells were

allowed to air-dry overnight. 5610cells were permeabilized with

0.5% Triton X-100 (Sigma Ltd, St. Louis, MO, USA) 0.1%

sodium citrate in PBS at 4uC for 15 minutes. Cells were then

treated with either primary mouse antibodies raised against

human Sp17 (mouse monoclonal anti-human Sp17 antibody

[30], dilution 1:400 in PBS) at room temperature for two hours, or

with 1 mg/mL mouse IgG1 (DAKO) as a negative control. This

was followed by 30 minutes incubation with the Envision System

(DAKO). The DAB system (DAKO) was used to yield brown

reaction products in the case of ICC, while FITC conjugated

rabbit IgG secondary antibody (Abcam, Cambridge, MA) was

used to bind the primary antibody for IF. The immunocytochem-

ical reactions were observed using a light microscope [30]. For IF,

results were analyzed using an Olympus IX71 inverted microscope

equipped with a Fluoview 300 confocal laser system (Olympus,

Center Valley, PA).

Cytotoxicity assays
Standard 4-hour 51Cr-release assays were performed to

determine the cytotoxic activity of the Sp17-stimulated spleno-

cytes. The ID8 target cells endogenously express Sp17. All

experiments were set up in quadruplicates and repeated at least

three times. Standard deviations (SD) were determined based on

the quadruplicates. For all targets, cell viability was .90% with

the maximum release in excess of 2000 cpm and the spontaneous

release ,30% of the maximum release.

ELISPOT- CD8 T cell assay
Immune responses generated by the vaccines were measured

using ELISPOT assays to detect CD8 T cells secreting IFN-c
(Mabtech, Inc., Mariemont, OH) using purified CD8 T cells

(Miltenyi Biotech, Auburn, CA). Serial dilutions of CD8 T cells

were tested against 36106 stimulator cells. Spot counting was done

with an AID ELISPOT Reader System (Cell Technology, Inc.,

Columbia, MD).

ELISPOT IFN-c and TNF-a Assays
Cytokine expression by T cells from the immunized animals was

evaluated using the ELISPOT assay (U-CyTech, Utrecht, The

Netherlands) according to the instruction manual. Briefly, the 96-

well filtration plates (Millipore, Bedford, MA) were coated with

100 ml diluted antibodies. After overnight incubation at 4uC, the

wells were washed and blocked with washing and blocking buffer.

T cells from the spleens of vaccinated mice (36106 cells/mL) were

added to triplicate wells and incubated with 20 mg/mL Sp17

protein at 37uC in an atmosphere of 5% CO2 for 48 hours.

Positive control wells were added with Con-A (5 mg/mL), and

background wells were added with RPMI 1640 medium. The

plates were then washed extensively (10 times) and incubated with

100 ml biotinylated detection antibodies at 4uC overnight. After

washing six times, 50 ml diluted GABA was added and incubated

for 1 hour at 37uC and then washed twice. The spots were

developed by adding 30 ml Activator I/II solution and incubating

at room temperature for 25–30 minutes. Spot counting was done

with an AID ELISPOT Reader System (Cell Technology, Inc.,

Columbia, MD).

ELISA for Sp17 antibodies
Animals were vaccinated every 30 days and their blood samples

were collected before each injection. Briefly the 96-well plates were
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coated with Sp17 recombinant protein (5 mg/ml) and incubated

overnight at 4uC. After washing and blocking, the goat Sp17

polyclonal antibody as positive control or serial dilution of mice

sera were added and incubated at 37uC for 1 hour. After washing

with PBS/0.05% Tween-20, HRP-conjugated rabbit anti-goat

antibody (Abcam) was added and allowed to incubate at 37uC for

1 hour. The reaction was developed by adding TMB Microwell

substrate and stopped by 2 M H2SO4. The absorbance was read

at 450 nm.

ELISA for cytokines of the sera
Cytokine concentration determined from standard curves. Sera

from vaccinated mice were collected to measure Sp17 levels.

Serum cytokine levels were measured by using commercial ELISA

kits (R&D Systems, Minneapolis, MN), in accordance with the

manufacturer’s instructions. Briefly add 50 uL of Standard,

Control, or sample per well. Incubate for 2 hours at room

temperature. Plate layouts are provided to record standards and

samples assayed. After the last wash, add 100 uL of mouse

cytokines Conjugate to each well and Incubate for 2 hours at

room temperature. Repeat the aspiration/wash, then add 100 uL

of Substrate Solution to each well. Incubate for 30 minutes at

room temperature. Add 100 uL of Stop Solution to each well.

Gently tap the plate to ensure thorough mixing. Determine the

optical density of each well within 30 minutes, using a microplate

reader set to 450 nm.

Flow-cytometry
Flow-cytometric analyses were performed through BD FACS-

CantoTM II Flow Cytometry System (BD Biosciences) and

CellQuest software. For analysis of ID8 cells, exponentially-

growing cells were detached with trypsin for 5 minutes, washed

twice in PBS supplemented with 1% BSA and fixed with 2%

paraformaldehyde at room temperature for 10 minutes. Then,

cells were washed twice in PBS/BSA and allowed to incubate for

1 hour on ice with anti-MHC-I antibody (Abcam) and mouse anti-

SP17 monoclonal antibody (developed in our lab). For analysis of

splenocytes, cells were washed twice in PBS, fixed with 2%

paraformaldehyde at room temperature, and then permeabilized

with 0.5% saponin for 10 minutes on ice. After washing with PBS,

anti-CD4-PE, Foxp3-PE (Abcam) and IL-17-Alexa FluorH 700

(BD Biosciences) were added and allowed to incubate for 1 hour

on ice. Then, cells were washed twice with PBS and analyzed.

Statistical analysis
Tumor growth and chromium release assay, ELISPOT assay,

ELISA assay and flowcytometry data were analyzed by a one-

tailed, paired Student’s test and survival rates were analyzed by

log-rank test. All statistical analyses were performed through

GraphPad Prism 5H (GraphPad Software, Inc., La Jolla, CA).
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