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Abstract

We use a simple cost-benefit analysis to derive optimal similarity judgments – ad-

dressing the question: when should we expect a decision maker to distinguish between

different time periods or different prizes? Our key premise is that cognitive resources

are costly and are to be deployed only where they really matter. We show that this

simple insight can explain a number of observed anomalies, such as: (i) time preference

reversal, (ii) magnitude effects, (iii) interval length effects. For each of these phenomena,

our approach allows to identify the direction of the bias relative to the benchmark case

where cognitive resources are costless. Finally, we show that, when applied to choice

under risk, the same insights predict anomalies such as the ratio and certainty effects,

and rationalize Rabin’s risk aversion paradox. This suggests that the theory may provide

a parsimonious explanation of behavioral anomalies in different contexts.
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Matthias Dahm, Mark Dean, Eddie Dekel, Péter Esö, Tatiana Kornienko, Botond Koszegi, Michael Man-
dler, Michael Manove, Pietro Ortoleva, Antonio Penta, Luis Rayo, Arthur Robson, Ariel Rubinstein, Larry
Samuelson, Daniel Seidmann, Jakub Steiner, Colin Stewart, Robert Sugden, Balázs Szentes, Peter Wakker,
Chris Wallace, Jörgen Weibull, Eyal Winter and Piercarlo Zanchettin for useful comments and discussions, as
well as seminar audiences at IIBEO (Alghero), Bamberg, Barcelona GSE, Birmingham, East Anglia, ESEM
(Montreal), Leicester, Nottingham, Royal Holloway, RES (Sussex), SAET (Tokyo), and SITE (Stanford). All
errors are obviously our own.



“After all, tomorrow is another day.”

Scarlett O’Hara.

1 Introduction

The notion that people often simplify problems by bunching together distinct objects has a

a long history in cognitive psychology. Early formalizations include Luce (1962) and, most

notably, Tverski (1977). More recently, Leland (2002) and Rubinstein (2003) point out that

observed anomalies in intertemporal choice can be accounted for if people fail to distinguish

between different time horizons. The salience literature (such as Kőszegi and Szeidl, 2012,

Bordalo et. al., 2012) likewise acknowledges that agents may underweight some aspects of

a problem in which their available options look similar, while focusing disproportionately

on other aspects.1 Although these models provide key insights into observed behavioral

phenomena, they treat similarity (or salience) as primitives. This effectively shifts the “why”

question one step back, from the observed choice to the agent’s perception of the choice

problem (see, e.g., Stevens, 2016). Here, we directly tackle the explanatory question. We

use a simple cost/benefit analysis to derive optimal similarity judgments when distinguishing

involves cognitive costs. Our approach thus follows the long standing tradition in Economics

of using optimality as a tool to reduce the need for ad-hoc assumptions.

Similar to Woodford (2012a, 2012b) and Gabaix (2014), we consider a two-stage process

where the decision maker’s limited perception of the world in the second stage is the outcome

of an optimization exercise in the first stage.2 An Agent (A) faces a choice between two

prize/delivery time bundles (x, t) and (x′, t′) (Stage 2 ). Prior to this and without knowing

the actual choice that A will face, a Principal (P ) optimally decides which differences A will

be able to perceive both in the prize and the time dimensions (Stage 1 ). A chooses between

the two bundles based on the dimensions, if any, in which they are perceived as different.

1See also the heuristic attributes tradeoff model by Scholten and Read 2010. Another approach (Steiner
and Stewart, 2016, Gabaix and Laibson, 2017, Khaw et al., 2019) argues that choice biases may be an optimal
response to (exogenous) imperfections in the agent’s perception or representation of decision problems.

2A two-stage approach of this type is followed in different contexts by Bénabou and Tirole (2002) and
Brunnermeier and Parker (2005), among others. Gabaix (2014) uses a two-stage setting to model inattention.
Rayo and Becker (2007), Netzer (2009) and Rayo and Robson (2014) consider two-stage setups where a
decision maker’s preferences are the solution to a constrained optimization problem faced by Nature. Both
these interpretations are possible in our setup. A further interpretation is in terms of a dual systems, in the
spirit of Kahneman (2003): the principal is the system operating in the unconscious background, while the
agent is the conscious mind.
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The interests of the two parties are fully aligned: P ’s objective is to maximize A’s underlying

payoff from consumption, taking into account the cognitive costs of making distinctions.

The underlying theme of our analysis is simple: people tend to distinguish when there is

more to be gained from distinguishing. This basic insight generates a rich set of implications.

First, optimal similarity relations take the form of similarity intervals: given a point

in time, all sufficiently close time periods will be perceived as indistinguishable to it (and

likewise for prizes, see Figure 1). Intuitively, distinguishing between two prizes or two delivery

times is worthwhile only if they are sufficiently different.

lnx
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Figure 1: Optimal similarity correspondences for log-prizes, lnx, and times, t.

Second, and less obvious, under standard assumptions on payoffs similarity intervals

display the monotonicity properties illustrated in Figure 1. More precisely,

� In the time dimension, the theory predicts diminishing absolute sensitivity. As time

periods move into the future, similarity intervals expand, i.e., there is a lower propensity

to make fine distinctions. That’s because the gain from distinguishing two distant

periods is realized only in the distant future, and its present value is therefore small.

It may thus happen that people distinguish between today and tomorrow, but do not

distinguish between an horizon of one year and one year and one day from now.

� In the prize dimension, the theory predicts augmenting proportional sensitivity. As

prizes increase on a log-scale, similarity intervals shrink, i.e., people make finer distinc-
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tions.3 Intuitively, distinguishing between $1 and $2 yields at most a gain of $1, but

distinguishing between $100 and $200 could yield a gain of $100. In other words, fixing

the ratio between prizes, distinguishing generates higher returns when stakes are large.

Third, although our main focus is intertemporal choice, the analysis also produces useful

insights for choice under risk. Restricting attention to choices between simple lotteries, we

show that similarity judgments exhibit augmenting proportional sensitivity also in the domain

of probabilities. Fixing the ratio between probabilities, the propensity to distinguish is higher

when probabilities are larger. Intuitively, there is more to be gained from distinguishing

between a probability of 0.45 and one of 0.9 than between 0.05 and 0.1.

These features of optimal similarity relations have precise implications for the type of

distortions that may arise compared to the benchmark where the cost of distinguishing is

zero. In particular, changing the bundles’ features (e.g., by moving both delivery times closer

to the present, or by multiplying both prizes by the same constant) may induce the agent’s

preferences to “switch” when, absent cognitive costs, he would consistently prefer either the

smaller/sooner or the larger/later bundle. We show that these preference reversals must

follow specific patterns, and that these patterns match a number of empirical stylized facts

that are at odds with standard models.4 These include,

1) time preference reversal/decreasing impatience: people become less impatient when

facing money/delay tradeoffs that are further in the future,

2) magnitude effect : people become less impatient when stakes are larger,

3) interval length effects: people discount short horizons differently than long horizons,

4) ratio effect and certainty effect : if the winning odds of two gambles are increased

proportionately, people become less willing to choose the riskier option.

5) Rabin’s paradox of risk aversion: people exhibit “unreasonable” risk aversion in gam-

bles with small stakes.
3The terminology “diminishing absolute sensitivity” and “increasing proportional sensitivity” is borrowed

from Scholten and Read (2010), who impose these properties on their time weighting function and their
outcomes value function, respectively. Our model obtains them endogenously, as features of optimal similarity
judgments.

4Time inconsistency and the magnitude effect are two of the classic anomalies in intertemporal choice
identified by Loewenstein and Thaler (1989) and Loewenstein and Prelec (1992), Frederick et al. (2002).
Read (2001) and Scholten and Read (2006, 2010) discuss evidence on preference reversals within the context
of case 3 above (interval length effects). The surveys by Manzini and Mariotti (2009) and Cohen et al. (2019)
on intertemporal choice provide additional references for all three phenomena. The ratio effect and its special
case, the certainty effect, are classic anomalies in the domain of risk (see e.g., Starmer 2000). For Rabin’s
paradox, see Rabin (2000).
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Of course, if similarity judgments are of the “right type”, a model of exogenous similarity

could replicate our empirical predictions, but, at the same time, by appropriately modifying

similarity judgments, it could also predict the opposite. What we do here goes beyond fitting

the model to the data. Optimal similarity judgments predict some patterns of behavior but,

crucially, rule out others. This makes the theory easily falsifiable.

Each of anomalies 1)-5) has been modelled separately.5 What we add to the literature is

the observation that a very simple insight – i.e., that people are more likely to distinguish

when there is more to be gained from distinguishing – can provide a unifying interpretation

for these superficially disjoint phenomena. The notion that behavioral anomalies in risk and

intertemporal choice domains may be linked is reminiscent of Halevy (2008), who argues that

patience (or lack thereof) reflects the inherent uncertainty of future consumption. People

thus exhibit diminishing impatience because they display the common ratio and certainty

effects in uncertain environments (see also Saito, 2011). The point we make here is rather

different. We show that the same underlying mechanism – optimal similarity judgments –

may cause anomalous behavioral patterns in both the contexts of risk and intertemporal

choice. Furthermore, optimal similarity judgments are not only consistent with these behav-

ioral anomalies, they actually rule out the opposite patterns, such as increasing impatience

in the time domain and certainty aversion in the risk domain.

A further advantage of the approach is that it provides a clear benchmark against which

we can assess behavioral anomalies, thus contributing to the debate on welfare analysis

under non-standard behavior (see e.g., Bernheim and Rangel, 2009, Masatlioglu et al., 2012).

For each behavioral anomaly, we answer the question: what would the agent prefer if he

could perfectly distinguish in all dimensions? This may deliver surprising insights, at least

at first glance. For instance, compared to the benchmark, we find that time preference

reversal reflects excessive patience when confronting delivery times that are distant from

the present. This is because, unlike today and tomorrow, two sufficiently faraway time

periods are perceived as indistinguishable. The result thus suggests a counterargument to

the common view that the agent’s preferences when comparing distant horizons are a better

5Well-known examples in the intertemporal context include hyperbolic discounting (Loewenstein and Pr-
elec 1992, Laibson 1997), Manzini and Mariotti’s (2006) (σ, δ)−model, Benhabib et al.’s (2010) fixed cost
model. In the Supplementary Appendix, we carefully compare our predictions with those of existing leading
models. In the context of risk, important examples include the models of the certainty effect by Gilboa (1988),
Jaffray (1988), Schmidt (1998) and Cerreia-Vioglio et al. (2015), as well as the model of small stakes risk
aversion by Khaw et al. (2019).
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reflection of his true welfare, since they are not influenced by “inefficient” urges for immediate

gratification.6

The remainder of the paper is organized as follows. We present the model in the next

section and illustrate the main result with examples in Section 3. Section 4 provides the

main theorem and analyzes its implications. Section 5 focuses on time preference reversal,

magnitude effect, and interval length effects. Section 6 presents a number of extensions,

including choice under risk. Concluding remarks are in Section 7.

2 Model

We consider the following two-stage process. In the first stage, a principal (P ) decides which

periods (or which prizes) should be perceived by an agent (A) as similar or distinct. In

the second stage, A makes a consumption choice using the similarity judgments that were

selected in the first stage.

Agent A is a decision maker who, in the present, must select between two two-dimensional

bundles y = (y1, y2) and y′ = (y′1, y
′
2), with yi ∈ [y

i
, yi] ⊆ R+, i = 1, 2. For most of the paper,

we will identify dimension 1 as the prize dimension (denoted with x) and dimension 2 as the

delivery time dimension (denoted with t). In Section 6.3, dimension 2 will be interpreted

as the probability to win the prize (denoted with π). The bundles featuring in A’s problem

are randomly selected by Nature, who draws prizes and delivery times from a joint density

f(y1, y
′
1, y2, y

′
2), f : Y2 → R+, Y :=

∏
i=1,2[y

i
, yi]. We assume that,

Assumption 1. The bundle-generating process satisfies:

1. (Independence across dimensions) (y1, y
′
1) ⊥⊥ (y2, y

′
2).

2. (Exchangeability within dimensions) For any dimension i = 1, 2, (yi, y
′
i) are distributed

with joint density pi, where pi is continuous, has full support and is invariant with respect

to permutations of its arguments, i.e. pi(yi, y
′
i) = pi(y

′
i, yi) for all (yi, y

′
i) ∈ [y

i
, y]2.

This ensures that the two bundles are a priori identical – so that labelling a bundle y

or y′ is inconsequential – and that the bundles’ realized values in one dimension provide no

information about the bundles’ attributes in the other dimension. Section 6.4 discusses what

happens when Assumption 1 is relaxed.

6See e.g., O’Donoghue and Rabin (2000).
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Principal P sets the stage forA’s decision-making by determining similarity relations. These

specify what A perceives as identical and what he perceives as distinct, and are chosen before

the bundles featuring in A’s choice are drawn. More precisely, for all possible (yi, y
′
i) pairs

and all dimensions i = 1, 2, P decides whether A distinguishes between yi and y′i (yi 6≈ y′i)

or not (yi ≈ y′i). We assume,

Assumption 2. (Separability of similarity judgments) For all i = 1, 2, j 6= i, and (yi, y
′
i) ∈

[y
i
, yi]

2, whether yi ≈ y′i or yi 6≈ y′i is independent of (yj , y
′
j).

In words, if A distinguishes between yi and y′i, he will always perceive these values as

distinct, independently of the attributes in the other dimension. Several experimental and

neuro-science works provide indirect support for separability between different dimensions,

such as the temporal and the magnitude aspects of consumption.7 In addition, if similarities

in one dimension could be made contingent on ex-post realizations in other dimensions, this

would necessarily lead to extreme conclusions, such as A never perceiving differences in more

than one dimension. This is because P would always ensure that A picks the “right” bundle

by letting him distinguish only in one dimension, where the desired bundle is superior to the

alternative.

Since P moves before the bundles featuring in A’s choice are drawn, when determining

A’s similarity judgments, P only knows the joint distribution, f , of the characteristics of the

two bundles. There is no conflict of interests between the principal and the agent; P simply

chooses A’s similarity judgments to maximize an underlying payoff generated by A’s choice

(defined below), net of cognitive costs.

Cognitive cost Making distinctions entails costly cognitive effort, paid in the present (when

A’s choice is made). More precisely, distinguishing between any pair (yi, y
′
i) carries a fixed

cognitive cost ci > 0. The cognitive costs of distinguishing are thus independent of the values

of the attributes to be distinguished. This helps to clarify that the effects we highlight arise

entirely from expected benefit considerations, rather than from the (untestable) features of

7Using functional magnetic resonance imaging, Ballard and Knutson (2009) identify distinct patterns of
brain activity associated with each dimension. Activation in the mesolimbic projection regions correlates
with increasing the magnitude of future rewards, while activation in lateral cortical regions correlates with
increasing delays of future rewards (see also Pine et al., 2009 and Kable and Glimcher, 2007, 2010). Amasino
et al. (2018) provide similar evidence using eye-tracking measures. Finally, for choices between lotteries,
Arieli at al. (2011) argue that the eye patterns of decision makers suggest that they compare prizes and
probabilities one at a time.
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the cognitive cost technology.8

Underlying payoff The underlying payoff associated with bundle y = (y1, y2) is sep-

arable in the time and prize dimensions, and is given by u(y) = φ1 (y1)φ2 (y2), with

φi : [y
i
, yi] → R+, i = 1, 2, continuous and strictly monotone. In what follows, we will

first state a number of results that hold generally, for any φ1 (.) and φ2 (.) that satisfy these

conditions. Further results are then obtained by assuming standard exponential discount-

ing/isoelastic consumption utility (EDIU).

A’s preferences We assume that, when faced with the choice between two bundles, A’s

preferences are Monotone Along Distinguished Dimensions (MADD), as follows.

1. if A distinguishes between the two bundles in both dimensions, he prefers the bundle

yielding the highest underlying payoff.

2. if A distinguishes between the two bundles only in dimension i = 1, 2, he prefers the

bundle that is better in that dimension, i.e. the one corresponding to max{φi(yi), φi(y′i)}.

3. if A does not distinguish between the two bundles in any dimension, he is indifferent.

MADD preferences are closely related to Rubinstein’s (2003) (*) procedure, and are an

example of an Intra-Dimensional Comparison (IDC) heuristic, first documented by Tversky

(1969). They satisfy the Separability axiom introduced in Tserenjigmid’s (2015) model of

the IDC heuristic. In Section 6.5, we argue that, in a more general setup where P optimally

selects A’s preferences as well as similarity judgments, MADD preferences are optimal under

intuitive restrictions.

Tie breaking rule We assume that, whenever A perceives no difference between two bundles

in any dimension (as well as in the knife-edge cases where the two bundles generate the same

payoff in the dimensions that A distinguishes), he selects either bundle with probability 1/2.

Note however that all of the formal statements in the paper would largely remain unaffected

if we instead considered a slightly modified setup, in which failing to distinguish in any

dimension leads to randomization only if neither of the two bundles is strictly dominated,

8Assuming that the cost depends on the values of the attributes to be distinguished in an “intuitive”
fashion, e.g., it is higher when these are closer to one another, would only reinforce our results. These would
also continue to apply if we adopted a more general cost specification, provided that we rule out pathological
cases, such as, e.g., that the cost of distinguishing between time periods or prizes decreases sharply as these
get close to one another, or that the cost of distinguishing faraway periods is lower than that of distinguishing
periods close to the present.
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and A chooses the dominant bundle with probability one otherwise. As will become clear,

none of our results require that A selects strictly dominated bundles.

Principal’s problem For all pairs of attributes (yi, y
′
i) ∈ [y

i
, yi]

2 and i = 1, 2, P chooses

whether yi ≈ y′i or yi 6≈ y′i to maximize

Q(y,y′)u(y) + (1−Q(y,y′))u(y′)− c1I1(y1, y
′
1)− c2I2(y2, y

′
2), (1)

where Ii : [y
i
, yi]

2 → {0, 1} takes value 1 if yi 6≈ y′i and 0 otherwise. Q : Y2 → {0, 1/2, 1} is

a function returning the probability that A chooses y when y′ is also available,

Q(y,y′) =


1 if y � y′

1
2 if y ∼ y′

0 if y ≺ y′,

(2)

which depends on Ii(yi, y
′
i) via MADD preferences:

y % y′ ⇔
∏
i=1,2

φi (yi)
Ii(yj ,y′j) ≥

∏
i=1,2

φi
(
y′i
)Ii(yi,y′i) . (3)

Given Assumption 2 (separability), similarity relations in dimension i = 1, 2 are determined

independently of dimension j 6= i. In practice, this implies that P chooses whether yi ≈ y′i

or not to maximize the expected value of (1), where the expectation is taken with respect to

the attributes in dimension j.

Timing To sum up, the decision process in our setup is determined by the following stages.

1. P decides what differences A perceives in the prize and time dimensions;

2. Bundles (y,y′) ∈ Y2 in A’s problem are drawn;

3. Given the similarity relation in 1., A chooses a bundle and incurs cognitive costs∑2
i=1 ciIi(yi, y

′
i).

9

9Note that we are assuming that the cost of distinguishing in dimension i is the same, independently of
whether A also distinguishes in dimension j 6= i. This is immaterial. Assuming, for instance, that the cost
increases in the number of dimensions that A distinguishes would slightly complicate the analysis without
changing any substantial result.
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3 Two simple properties

To build intuition, we start with two examples that illustrate the logic behind our main

results. Suppose that the underlying payoff is u(x, t) = xe−δt, δ > 0. To abstract from the

prize dimension, we fix the prizes of the two bundles and assume that the bundles featuring

in A’s problem are of the type (1, t) and (2, t′), where delivery times t ≥ 0 and t′ ≥ 0 are

randomly drawn and 1 6≈ 2. If ex-post A distinguishes between any t and t′ = t + `, ` > 0,

he will choose the bundle that maximizes the underlying payoff, i.e. (1, t) if 1 ≥ 2e−δ` and

(2, t′) otherwise. If he doesn’t distinguish in the time dimension, he will go for the bundle

with the larger prize, (2, t′). The benefit from distinguishing between t and t′ = t+ ` is thus

0 if 2e−δ` ≥ 1 and

e−δt(1− 2e−δ`) (4)

otherwise. Keeping ` constant, (4) is decreasing in t. This implies that the benefit from

distinguishing between two time periods is consistent with diminishing absolute sensitivity:

fixing the lag separating the two periods, it decreases as these are pushed into the future.

Intuitively, the gain from distinguishing between two distant periods will only be realized in

the distant future, and therefore has a small present value.

Focusing now only on the prize dimension, let’s fix the delivery times and assume that A

has to choose between bundles (x, 0) and (x′, 1), where x ≥ 0 and x′ ≥ 0 are unknown to P

and 0 6≈ 1. Let r ≡ x/x′. If A does not distinguish between x and rx, he will choose the early

bundle (x, 0). If he distinguishes, he will select the bundle that maximizes the underlying

payoff. The additional benefit accrued from making the distinction is 0 if e−δr ≤ 1 and

x(e−δr − 1) (5)

otherwise. Expression (5) is increasing in x and is thus consistent with augmenting pro-

portional sensitivity : fixing the ratio between the prizes, the benefit from the distinction is

larger when stakes are higher.
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4 Optimal similarity judgments and resulting preferences

In general, P selects what A will distinguish by comparing, for each dimension i and for

all possible pairs of realizations yi and y′i, the expected benefit bi (yi, y
′
i) from distinguishing

between yi and y′i to the cost ci of making the distinction. This happens in both dimensions

simultaneously and without knowing which realized bundles A will face. For instance, when

choosing whether to let A distinguish or not between, say, prizes x and x′, P does not know

which time periods will be associated with these prizes (if they happen to feature in A’s

choice), and needs to consider all the possibilities. Depending on the realized values of t and

t′ and on whether A distinguishes between them or not, it is possible that distinguishing

between x and x′ may improve, have no effect or even worsen the quality of A’s choice.10

Symmetric considerations apply to the decision to let A distinguish between any two time

periods. The nature of P ’s problem implies that uniqueness of the optimal similarity relation

is not guaranteed, which complicates the task of providing a full characterization.11 It is

however possible to derive properties that must apply to optimal similarity judgments in a

given dimension irrespective of the shape of similarity judgments in the other.

Theorem 1. Under MADD preferences and Assumptions 1 and 2, for all i = 1, 2, the

expected benefit bi (yi, y
′
i) from distinguishing between any yi and y′i takes the form

bi
(
yi, y

′
i

)
= max{φi (yi) , φi

(
y′i
)
} · Bi

(
∆
(
yi, y

′
i

))
, (6)

where

∆
(
yi, y

′
i

)
:= | lnφi(yi)− lnφi(y

′
i)|, (7)

and Bi (.) is a continuous, strictly increasing function that satisfies Bi (0) = 0 and that

depends on (yi, y
′
i) only through ∆.

Proof : See Appendix.

The Theorem establishes that the expected benefit from distinguishing between yi and y′i

10The first two cases are quite straightforward. For an example of the third case, suppose that x > x′ and
that t and t′ are such that u(x, t) < u(x′, t′) but t ≈ t′. If x 6≈ x′, A selects (x, t). However, if x ≈ x′, A
randomizes, obtaining a larger expected payoff.

11An illustrative example with a discrete distribution: let x ∈ {1, 2} and t ∈ {0, 1}, e−δ = 0.5, and
c1 = c2 = c ∈ [0.1, 0.19]. Each bundle is drawn from {(1, 0) , (1, 1) , (2, 0) , (2, 1)} with uniform probabilities.
It is then easy to check that expected payoff net of cognitive costs is maximized by either (i) prize dimension:
1 6≈ 2, time dimension: 0 ≈ 1, or (ii) prize dimension: 1 ≈ 2, time dimension: 0 6≈ 1.
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can always be factored into the product of max{φi (yi) , φi (y′i)} and another function Bi (.)

that depends on yi and y′i only through ∆. Intuitively, max{φi (yi) , φi (y′i)} reflects the

importance of dimension i, expressed by the magnitude of the payoff potentially associated

with it, while ∆(yi, y
′
i) is a measure of the distance in the payoff space between the two

bundles in dimension i. The expected benefit is increasing in both distance and importance,

and is zero when the bundles are identical in a given dimension. Under the convention that

a distinction occurs only if the benefit is strictly higher than the cost, optimal similarity

judgments satisfy,

yi 6≈ y′i ⇔ bi
(
yi, y

′
i

)
> ci (8)

or, equivalently, yi 6≈ y′i ⇔ ∆
(
yi, y

′
i

)
> B−1

i

(
ci

max{φi (yi) , φi (y′i)}

)
, (9)

where B−1
i (.) is strictly increasing and such that B−1

i (0) = 0. The optimal similarity relation

is reflexive (since bi(yi, yi) = 0 < ci) and symmetric (since bi (yi, y
′
i) = bi (y′i, yi)). In the Sup-

plementary Appendix, we also prove that it generally admits a numerical representation.12

A’s preferences are given by representation (3) with Ii(yi, y
′
i) = 1 iff inequality (9) holds.

The preference relation � is irreflexive and asymmetric, but it is not generally transitive.13

In this respect, the preferences we obtain are closely related to the additive difference model

postulated by Tversky (1969). Our microfoundation adds to Tversky’s model the feature

that the “contribution” of dimension i to A’s choice does not only depend on the distance

in payoffs, ∆(yi, y
′
i), but also on the dimension’s importance, max{φi(yi), φi(y′i)}.

Salience Our theory naturally lends itself to an interpretation in terms of salience. When

A perceives yi and y′i as identical, dimension i is irrelevant (not salient) for A’s choice. In

contrast, if A distinguishes between yi and y′i , then dimension i is accounted for (salient)

in his decision. We can think of optimal similarity jugments as assigning a weight to each

attribute, which is 1 ifA distinguishes between the two bundles’ realizations in that dimension

and 0 otherwise.14 Clearly enough, ceteris paribus a larger distance ∆ (yi, y
′
i) makes it more

likely that dimension i is salient. This is somewhat reminiscent of Assumption 1 of Kőszegi

and Szeidl’s (2013) salience model, which posits that the agent focuses more on attributes

12We also prove that, within the context of the choice under risk application, the numerical representation
of optimal similarity judgments is incompatible with expected utility.

13The notion that similarity judgments may be a source of intransitivity has long been understood (see e.g.
Armstrong 1951 and Luce 1956).

14Probabilistic distinctions are explored in the Supplementary Appendix.
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which generate a greater range of utility within the choice set (although their interpretation

of what constitutes an attribute differs from ours). Theorem 1 however makes clear that

the relationship between payoff distance and salience is mediated by the importance of a

dimension, in the sense given above.

We now explore a number of implications of the Theorem.

4.1 Similarity intervals

The first result reflects the idea that the expected benefit from distinguishing necessarily

decreases as two attributes become more similar.

Corollary 1. Given yi, bi (yi, y
′
i) is U-shaped in y′i, reaching a minimum of zero at y′i = yi.

Optimal similarity judgments thus take the form of similarity intervals.

Proof: See Appendix.

The logic behind the second statement in Corollary 1 is illustrated in figure 2. For each

realization yi, we can identify an interval around yi such that A sees all realizations belonging

to that interval as indistinguishable from yi, and all those outside the interval as different

from it. Ceteris paribus, dimension i is thus more likely to be salient when the (absolute

value of the) difference between yi and y′i is larger. Note that, from symmetry, if y′i belongs

to yi’s similarity interval, the opposite also holds: yi belongs to y′i’s similarity interval.

y′i

b(yi, y
′
i)

ci

yi

Figure 2: Similarity intervals.

While the Theorem and Corollary 1 are obtained without imposing specific functional

forms on the underlying payoff, for concreteness it is instructive to take a stance before

12



proceeding with further characterization. Accordingly, in all the results that follow we focus

on,

u (x, t) =
x1−ρ

1− ρ
e−δt (10)

with δ > 0 and 1 > ρ ≥ 0. This ensures that, in the absence of cognitive costs, our setting

reduces to the standard Exponential Discounting Isoelastic Utility (EDIU) model (more

general payoffs are discussed in Section 6.1). The EDIU model has the following properties.

In the time dimension

∆ (t, t+ `) = δ|`|, (11)

which is independent of t. In the prize dimension

∆ (x, rx) = (1− ρ) | ln r|, (12)

which is independent of x. Hence, the expected benefit from distinguishing between t and t+`

depends on t only through the term max{φ2(t), φ2 (t+ `)} in (6), and the expected benefit

from distinguishing between x and rx depends on x only through max{φ1(x), φ1 (rx)}. The

two properties identified in Section 3 thus apply more generally, as summarized below.

Corollary 2. Under EDIU payoff, b1(x, rx) is strictly increasing in x and b2(t, t + `) is

strictly decreasing in t. On a log-scale, the similarity interval of x thus shrinks as x increases

(augmenting proportional sensitivity). On a linear scale, t’s similarity interval widens as t

increases (diminishing absolute sensitivity).

Proof : See Appendix.

This implies that A’s ability to draw distinctions in the prize dimension sharpens as prizes

become larger, and, in the time dimension, as delivery times move closer to the present. An

optimal similarity correspondence thus has the monotonicity properties illustrated in Figure

1 (see Introduction).15

15There is an interesting connection between similarity intervals in the prize dimension and the generalized
Fechner-Weber Law in psychology (introduced to accommodate the most common deviations from the simple
form of the law see, e.g., Norwich 1987), which says that q+, the threshold for detecting an increment in
an initial quantity q is given by: q+ = k0 + k1q, where k0 and k1 are positive constants. This implies that
ln q+ − ln q = ln(k0/q + k1), which is decreasing in q. Thus, on a log-scale, smaller quantities have larger
similarity intervals.

13



4.2 Rescaling of prizes and uniform shifts in delivery times

We now highlight some comparative statics properties of optimal similarity judgments. If

A optimally distinguishes between two prizes or two delivery times, he will continue to

do so if, say, both prizes are doubled, or if both periods shift closer to the present by

one year (although, crucially, the opposite does not necessarily hold). Intuitively, these

changes increase the importance of the prize or time dimensions, whilst leaving the distance

∆ unaffected. The expected benefit from distinguishing is accordingly larger. Formally,

Corollary 3. Under EDIU payoff:

In the time dimension, for all s > 0: t+ s 6≈ t′ + s⇒ t 6≈ t′.

In the prize dimension, for all α > 1: x 6≈ x′ ⇒ αx 6≈ αx′.

Proof : See Claim 4 in Appendix.

This has direct consequences in terms of A’s preferences over bundles.

Corollary 4. Under EDIU payoff:

i) For t > t′ and s > 0 : (x, t+ s) ≺ (x′, t′ + s)⇒ (x, t) ≺ (x′, t′).

ii) For x > x′ and α > 1 : (x, t) � (x′, t′)⇒ (αx, t) � (αx′, t′).

Proof See Claim 5 in Appendix.

To see the logic behind the result, suppose that A strictly prefers $2 tomorrow to $1

today. This requires that A perceives $2 and $1 as different, or else he would never prefer

the bundle with the greater (but delayed) prize. Moreover, either A does not distinguish

between today and tomorrow or, if he does, he is happy to delay consumption by one day

in order to double the prize. Corollary 3 then implies that A also prefers $4 tomorrow to $2

today (since he must also distinguish between these two prizes). Similarly, if A prefers $1 in

one year to $2 in one year and one day, then he must also prefer $1 today to $2 tomorrow.

4.3 Distortions compared to the benchmark

Finally, we discuss how A’s preferences may differ from the benchmark case where cognitive

costs are zero (in which case A always maximizes the underlying payoff). We focus on

distortions that alter the direction of A’s strict preferences compared to the benchmark.

At first glance, these distortions may appear to be negligible, since, ex-ante, the expected
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loss in payoff is bounded by the cognitive cost, and thus likely to be small. However, while

small, these distortions are systematic, and may thus have a large cumulative effect. The

first observation is that, from (3), A never strictly prefers a dominated bundle. Consider

then a choice between a larger/later bundle (x, t) and smaller/sooner bundle (x′, t′), where

x > x′ and t > t′. Two cases are in principle possible.

a. (Early gratification bias) u(x, t) > u(x′, t′) but similarity judgments are x ≈ x′ and t 6≈ t′,

so that (x, t) ≺ (x′, t′) .

b. (Delayed gratification bias) u(x′, t′) > u(x, t) but similarity judgments are x 6≈ x′ and

t ≈ t′, so that (x′, t′) ≺ (x, t).

Hence, distortions may take the form of making A more (case a.) or less (case b.) willing

to engage in early gratification compared to the benchmark. Corollary 2 implies that case a.

is more likely to arise when prizes are small and consumption in the smaller/sooner bundle

is immediate or nearly so (as in the case of small impulse purchases). Case b. occurs when

prizes are relatively large and the periods involved are faraway (as in the case of careerist

workaholics, who commit in advance to too many projects).

5 Empirical “anomalies”

Corollaries 3 and 4 can help us shed light onto a number of empirical “anomalies” that cannot

be easily explained by standard models. To this purpose, we consider two different choice

frames with the property that, in the standard EDIU model with zero cognitive costs, A

would consistently prefer either the sooner/smaller or the larger/later bundle in both frames.

5.1 Time preference reversal

Our first result deals with the observed tendency by decision makers to exhibit greater

impatience when the money/delay tradeoffs they are faced with are closer to the present – a

phenomenon that is commonly (and somewhat imprecisely) referred to as (time) preference

reversal.16 Consider the following two frames. For some s > 0, t > t′ and x > x′,

16The reversals we focus on here occur when the same person makes decisions now both for the near
future and for the distant future, and the resulting pattern violates standard models (what Ericson and
Laibson, 2019 call semi strong preference reversals). As noted e.g., by Manzini and Mariotti (2009), however,
although commonly used, the “reversal” terminology may be misleading, in the sense that, even if A switches
preferences when delivery times are closer to the present, strictly speaking nothing is really reversed, as the
bundles he is facing are different. That’s why Halevy (2008) simply uses the term “decreasing impatience.”
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(a) A must choose between (x, t) and (x′, t′) [Near term frame.]

(b) A must choose between (x, t+ s) and (x′, t′ + s) [Distant frame.]

Given EDIU, u(x, t) ≶ u(x′, t′)⇔ u(x, t+ s) ≶ u(x′, t′ + s) and, hence, if cognitive costs

were zero, A would prefer either the smaller/sooner or the larger/later bundle in both frames.

With positive cognitive costs, however, a reversal of preferences may occur.

Proposition 1. (Time preference reversal) Any reversal of strict preferences between the

two frames consistent with optimal similarity judgments must take the form: (x, t) ≺ (x′, t′)

and (x, t + s) � (x′, t′ + s). Preference reversal occurs if and only if, given the similarity

relation, prizes and delivery times in the two frames satisfy: (i) x 6≈ x′, (ii) t 6≈ t′, (iii)

t+ s ≈ t′ + s (iv) u(x, t) < u(x′, t′).

Proof: See Claims 6 and 7 in Appendix.

Hence, any reversal between the two frames must necessarily take the form of decreasing

impatience. A switches from preferring the smaller/sooner bundle in a) to preferring the

larger/later bundle in b). Intuitively, while in the near term frame the time dimension is

salient (t 6≈ t′), in the distant frame it is not (t+ s ≈ t′+ s), which causes A’s preferences to

differ in the two frames. Importantly, the theory predicts that decreasing impatience is the

only type of preference reversal that arises. The opposite pattern (increasing impatience)

would require delivery times being salient when they are faraway (t + s 6≈ t′ + s) but not

when they are close to the present (t ≈ t′), which would contradict Corollary 3.

Consider now the benchmark case where cognitive costs are zero. What would A consis-

tently prefer in that case? The smaller/sooner or the larger/later bundle? Part (iv) of the

Proposition provides the answer.

Remark 1. Whenever time preference reversal occurs, A would prefer the smaller/sooner

bundle in both frames in the absence of cognitive costs.

In other words, the inability to perfectly distinguish causes A to be excessively patient

in the distant frame. The issue of how to interpret preference reversal in terms of welfare is

clearly important, but it is also far from straightforward.17 In our model, the reversal arises

as the solution to an optimization problem which takes cognitive costs into account, and, in

that sense, it is an optimal phenomenon. At the same time, it is also clear that it reflects a

17This is highlighted, e.g., by Bernheim (2009), Bernheim and Rangel (2009).
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bias compared to the benchmark. This naturally raises questions on the nature of this bias.

Does it induce A to postpone consumption in the distant frame, or to bring consumption

forward in the near term frame? This is a counterfactual question that cannot be answered

by empirical evidence. However, starting from Strotz (1956), the explicit or implicit narrative

attached to time preference reversal is that it takes the form of A being “too impatient” in the

near term frame. Our analysis provides a counterargument to this logic. When evaluating

faraway periods, A perceives them as indistinguishable. His preferences over bundles are

therefore based on an incomplete perception of reality, and are thus distorted compared to

the case where he perfectly distinguishes in both dimensions. This of course should not be

taken to imply that cognitive costs never distort A’s choices towards early gratification. This

type of distortions can arise, as seen in Section 4.3 (and in the next section), but never in

conjunction with time preference reversal.

Finally, note that, as highlighted in part (i) of the Proposition, for time preference reversal

to occur the prize dimension must be salient in both frames (x 6≈ x′). Applying Corollary 3,

this delivers the following prediction,

Corollary 5. If time preference reversal occurs when prizes are x and x′, then it also occurs

when prizes are αx and αx′, where α > 1, but not vice-versa.

5.2 Magnitude Effect

Consider the following two frames. For some α > 1, t > t′ and x > x′,

(a) A must choose between (x, t) and (x′, t′) [Small stakes frame.]

(b) A must choose between (αx, t) and (αx′, t′) [Large stakes frame.]

EDIU implies u(αx, t) ≶ u(αx′, t′)⇔ u(x, t) ≶ u(x′, t′) and, hence, if cognitive costs were

absent, A’s preferences would be consistent across the two frames. With cognitive costs,

Proposition 2. (Magnitude effect) Any reversal of strict preferences between the two frames

consistent with optimal similarity judgments must take the form: (x, t) ≺ (x′, t′) and (αx, t) �

(αx′, t′). Preference reversal occurs if and only if, given the similarity relation, prizes and

delivery times in the two frames satisfy: (i) t 6≈ t′, (ii) x ≈ x′, (iii) αx 6≈ αx′ and (iv)

u(x, t) > u(x′, t′).

Proof: See Claims 6 and 7 in Appendix.
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Any preference reversal must take the form of a magnitude effect. A becomes more

patient as stakes increase, switching from preferring the smaller/sooner bundle in (a) to

preferring the larger/later in (b). Intuitively, the prize dimension is salient in the large, but

not in the small stakes frame (αx 6≈ αx′ and x ≈ x′). Note that the magnitude effect is

the only preference reversal that may occur between the two frames. The opposite pattern

(A becoming less patient as stakes increase) would violate Corollary 4, as it would require

prizes being salient when they are small but not when they are large (x 6≈ x′ and αx ≈ αx′).

The observation that people become more patient when larger stakes are involved is well

documented by lab experiments, but is incompatible with standard models of linear/isoelastic

consumption utility.18 This is problematic, not least because, as many argue, for small

amounts (as monetary prizes in experiments tend to be), the utility function ought to be

linear. Even leaving this issue aside, Noor (2011) shows that the curvature of utility required

to accommodate the evidence may be too extreme to be realistic in any environment. Our

theory provides an alternative explanation of magnitude effects, based on optimal similarity.

Next, we assess the nature of the distortion compared to the benchmark case of zero

cognitive costs. From part (iv) of the Proposition,

Remark 2. Whenever a magnitude effect occurs, A would prefer the larger/later bundle in

both frames in the absence of cognitive costs.

Intuitively, when prizes are small, A fails to correctly perceive the difference between

them, and this induces a bias compared to the benchmark case. The distortion thus takes the

form of excessive impatience in the small stakes frame. Note that part (i) of the Proposition

suggests that, for a magnitude effect to arise, the time dimension must be salient in both

frames (t 6≈ t′). Applying Corollary 3, this implies,

Corollary 6. If a magnitude effect occurs when delivery times are t and t′, then it also

occurs when delivery times are t− s and t′ − s, where s > 0, but not vice-versa.

18Many studies obtain these magnitude effects by eliciting indifference points. For instance, Benhabib et
al. (2010) ask questions of the type: “What amount of money y would make you indifferent between x today
and y in τ days?”, where x is equal to $10, $20, $30 etc., and τ is equal to 3 days, 2 weeks, 1 month etc.,
depending on the treatment. In the Supplementary Appendix we show that our setup can rationalize the
evidence obtained with this type of data.
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5.3 Super/subadditivity (Interval Length Effects)

Our third observation addresses the issue of interval length effects. Consider the following

two frames. For some r > 1, ` > 0, and κ > 1,

(a) A must choose between (x, t) and (rx, t+ `) [Short horizon frame.]

(b) A must choose between (x, t) and (rκx, t+ κ`) [Long horizon frame.]

Note that, absent cognitive costs, A would consistently prefer the smaller/sooner bundle

in both frames if r1−ρe−δ` < 1 (and the larger/later bundle under the reverse inequality).

Borrowing from the literature, we use the following terminology.

Definition 1. A’s preferences exhibit subadditivity if (x, t) � (rx, t+`) and (x, t) ≺ (rκx, t+

κ`); A’s preferences exhibit superadditivity if (x, t) ≺ (rx, t+ `) and (x, t) � (rκx, t+ κ`).

Proposition 3. (Interval length effects) Both sub and superadditivity are consistent with

optimal similarity judgments. Given an optimal similarity relation, subadditivity occurs if

and only if prizes and delivery times in the two frames satisfy: (i) t 6≈ t+ `, (ii) x ≈ rx, (iii)

x 6≈ rκx and (iv) u(x, t) < u(rx, t+ `). Superadditivity occurs if and only if (i) t ≈ t+ `, (ii)

t 6≈ t+ κ`, (iii) x 6≈ rx and (iv) u(x, t) > u(rx, t+ `).

Proof: See Claim 8 in Appendix.

Here, preference reversal may occur in both directions. The empirical literature, starting

from Read (2001), documents subadditivity. Subsequent work such as Scholten and Read

(2006) also reports the opposite tendency, superadditivity.19 Our results suggest that sub-

additivity is more likely when the short interval (i.e., `) is “long” (so that t 6≈ t + `), while

superadditivity is more likely when it is “short” (so that t ≈ t+ `). This is in line with the

findings of Scholten and Read (2006). Finally, for a given r, our results predict that subaddi-

tivity should be more likely when stakes are smaller, since this increases the likelihood that

x ≈ rx, while the opposite holds for superadditivity. This corresponds to the inseparability

anomaly identified empirically by Scholten and Read (2010). Consider now the benchmark

case where A faces no cognitive costs of making distinctions.

Remark 3. In the case of subadditivity, if cognitive costs were absent A would prefer the

larger/later bundle in both frames. In the case of superadditivity, if cognitive costs were

19Similar to the case of magnitude effects, many empirical studies obtain interval length effects by eliciting
indifference points. In the Supplementary Appendix we show our setup can rationalize the evidence obtained
with this type of data.
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absent A would prefer the smaller/sooner bundle in both frames.

In other words, in both sub and superadditivity, A’s choice is distorted when faced

with the short, but not the long horizon frame. Intuitively, in the long horizon frame,

the differences in prizes and delivery times between two bundles are larger, and hence A

distinguishes between the two bundles in both dimensions. This may help understand the

effects of lock-in saving clauses or illiquid savings (as in Laibson 1997).20 Consider for

instance an individual who may consume x now or may save it for later consumption, and

let us denote the gross interest rate as R > 1. If the individual knows that he won’t be able

to withdraw until an amount of time t has passed, his choice effectively becomes one between

(x, 0) and
(
Rtx, t

)
. If t is small, then x and Rtx may be undistinguishable. However, if t

is sufficiently large, then Rtx falls outside x’s similarity interval. As a result, A perceives a

sensible difference between the two quantities, and may thus be less inclined to inefficiently

favor immediate consumption over saving. This provides a possible mechanism through which

lock-in clauses or illiquidity may help reduce choice distortions due to cognitive costs.21

6 Discussion and extensions

6.1 Relaxing EDIU

Our results give precise predictions on how similarity judgments (and, thus, A’s preferences

over bundles) are affected by larger prize magnitudes or earlier delivery times. The EDIU

model is a natural benchmark, as it is standard in economic theory and in the experimental

literature. Exponential discounting also has the additional advantage of highlighting how

optimal similarity judgments may generate preferences that display decreasing impatience

even when this is not directly in-built. To what extent do our predictions rely on the specific

functional forms we have selected for φ1 and φ2? Clearly enough, so long as (i) φ1 is such

that the expected benefit from distinguishing between x and rx is everywhere increasing in

x, all our results in the prize domain would remain unchanged. Similarly, so long as (ii)

20A careful analysis should take into account that P may be aware that A may have the option to adopt
a commitment device, something we currently do not allow. We conjecture that this should make P even
less inclined to let A make fine distinctions in the short horizon, thus strengthening the case for introducing
lock-in clauses. However, this intuition should be formally verified.

21This shares similarities with the theoretical analysis of Bernheim at al. (2015), who identify a potential
role of lock-up clauses to address self-control problems. The forces at work in their model are however different
from ours.
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φ2 is such that the expected benefit from distinguishing between t and t + ` is everywhere

decreasing in t, all our results in the time dimension would continue to apply. This holds for

exponential discounting but also for alternative specifications such as hyperbolic discounting,

since both ensure that ∆ (t, t+ `) is non-increasing in t. In the prize dimension, (i) holds

when φ1 is isoelastic (as in our application), but also when φ1’s elasticity is increasing in x

since, in both cases, ∆ (x, rx) is non-decreasing in x.

Note however, while sufficient, these conditions are not necessary for our results. Suppose

for instance that φ1’s elasticity is decreasing, so that an increase in x reduces ∆ (x, rx).22

In this case, the elasticity effect works as a countervailing force and the overall effect of

an increase in x on the benefit from distinguishing between x and rx is ambiguous. If the

elasticity of φ1 tends to drop when prizes become very large, we expect that our predictions

will continue to hold for small and medium stakes (which are typical in lab and field exper-

iments), but for very large stakes the elasticity effect will dominate. It is thus possible to

envisage situations where similarity intervals initially shrink in prize magnitude, and then

eventually start expanding as prizes become very large. This might perhaps explain why we

are equally bad at perceiving the difference between ¢1 and ¢2 and between $10 and $20

billion, while most people have no problem in distinguishing between $100 and $200.

6.2 Generalizability to other setups

Our main theorem is proved for two dimensional environments. As shown in the Supplemen-

tary Appendix, it easily generalizes to N > 2 dimensions with underlying payoff
∏N
i=1 φi (yi).

In the Appendix, we also show that our comparative statics results can be stated in more

general form. The mechanism behind our findings can be described as follows. Suppose that

we wish to isolate the effect of changes in a given dimension (prize, time, ..) for similarity

judgments and preferences. To this purpose we consider two frames,

(a) A must choose between bundles y and y′,

(b) A must choose between z and z′.

In all dimensions except the the one we are interested in, y is identical to z and, similarly,

y′ is identical to z′. In the remaining dimension (say, dimension i), the two frames differ

22To see this, consider r > 1 (the argument for r < 1 is analogous). Then, ∆ (x, rx) = lnφ1(rx)− lnφ1(x),

and ∂∆(x,rx)
∂x

=
rφ′

1(rx)

φ1(rx)
− φ′

1(x)

φ1(x)
. This is ≤ 0 if

xrφ′
1(rx)

φ1(rx)
≤ xφ′

1(x)

φ1(x)
i.e. φ1’s elasticity is decreasing.
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but the distance ∆ is kept constant in both frames. Then,

(1) In dimension i, P is more likely to let A distinguish when that dimension is more

important in the sense of Theorem 1, i.e. when it potentially generates a larger payoff.

For prizes, this happens in the large stake frame, while for delivery times it happens in the

near term frame.

(2) Because of (1), in the frame where dimension i is relatively less important, A is more

likely to ignore it when comparing bundles. This leads to preference reversals between the

two frames.

These observations hold generally (as shown in the proofs provided in the Appendix),

but, of course, the nature of the application will determine their implications in terms of

observables. Below, we discuss choice under risk.23

6.3 Implications for choice under risk

Rubinstein (1988) was the first to point out that similarity may provide the key to under-

standing “puzzling” phenomena such as the certainty effect or the common ratio effect.24

The theory, however, falls short of providing an explanation for why similarity judgments

should take a particular form. Here, we investigate the implications of optimal similarity

judgments for choice under risk. Suppose that (as in Rubinstein 1988) A has to choose

between two simple lotteries.

Probability Prize Probability Prize

L1 : π x L2 : π′ x′

1− π 0 1− π′ 0

23Whilst leaving a careful analysis to future research, we believe that another potentially interesting appli-
cation is choice between sequences. Intuitively, P may find it optimal to induce A to distinguish sequences
more finely than single outcomes. That’s because the benefit from distinguishing between, x and x′ is accrued
only once, while that of distinguishing between x, x, x, x and x′, x′, x′, x′ is accrued four times and is hence
larger. It is thus possible that when choosing between $1000 on Dec 1st OR $997 on Nov 1st, the agent
may perceive $997 and $1000 as similar (and thus chooses based on delivery times), while if facing,

April 1 July 1 Oct 1 Dec 1
$1000 $1000 $1000 $1000

OR
March 1 June 1 Sept 1 Nov 1
$997 $997 $997 $997

he may perceive a sensible difference in prizes and thus select the option with the larger prizes, as in Rubinstein
(2003).

24These anomalies refer to the tendency to choose the safer lottery when winning probabilities are large,
while reverting to the riskier one when they are small, and are well documented by the experimental literature
(see e.g., Starmer 2000, and references therein). Loomes (2010) proposes a descriptive theory where the
perception of the ratio between two probabilities is affected by their difference, thus generating behavior that
is consistent with the ratio effect.

22



Each lottery is fully described by two numbers, the prize (x) and the winning probability

(π). If, at the ex-ante stage, prizes and winning probabilities are statistically independent,

and we let u(x, π) = πφ1(x) (as in standard expected utility), then Theorem 1 applies, with

∆(π, rπ) =| ln r |. The benefit from distinguishing between π and rπ is thus increasing in π.

Consider then the following frames. For some α > 1, 1 ≥ π′ > π > 0 and x > x′ > 0,

(a) A must choose between (x, απ) and (x′, απ′) [Large odds.]

(b) A must choose between (x, π) and (x′, π′) [Small odds.]

Proposition 4. (Common ratio effect) Any reversal of preferences between the two frames

must take the following form: (x, απ) ≺ (x′, απ′) and (x, π) � (x′, π′).

Proof: See Claim 6 in Appendix.

Preference reversal takes the form of A switching from the safer option in (a), when odds

are large, to the riskier option in (b), when odds are small, matching the evidence on the

ratio effect. The opposite pattern is incompatible with our theory, as it would contradict

a general version of Corollary 4. In the special case where π′ = 1, any preference reversal

takes the form of a certainty effect, again matching the evidence.25

Similar to Bordalo et al. (2012), while prizes are salient in both cases (x 6≈ x′), proba-

bilities are salient when odds are large but not when they are small (απ 6≈ απ′ and π ≈ π′).

What we add to the story is the reason for why this happens: because the expected benefit

from distinguishing between two small probabilities is low. Moreover, similar to Corollary

5, if the common ratio effect occurs when prizes are x and x′, then it necessarily occurs also

when prizes are κx and κx′, where κ > 1, but not vice-versa. Ceteris paribus, the common

ratio effect is thus more likely when prizes are large.26 Finally, it is straightforward to prove

that, in the absence of cognitive costs, A would prefer the safer gamble in both frames. The

bias due to cognitive costs thus takes the form of inducing too much risk taking when odds

are small.

It is also possible to investigate the implications of rescaling prizes – the equivalent of

what we did in Section 5.4 for intertemporal choice. Suppose that u(x, π) = πx1−ρ/(1 − ρ)

25In that case, A’s problem becomes: (a) choose between (x, π) and (x′, 1) [Certain vs uncertain], and (b)
choose between (x, απ) and (x′, α) [Both uncertain]. The observation that people display a disproportionate
preference for certainty when choosing between certain and uncertain options dates back at least to Allais
(1953), and has been widely confirmed by experimental evidence (see, e.g. Tversky and Kahneman 1986).

26The available evidence on the Allais paradox broadly goes in this direction, see e.g. Huck and Mueller
(2012), but we are not aware of any specific test of this hypothesis within the broader context of the ratio
effect.
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(i.e., the underlying payoff corresponds to standard CRRA), and consider the following two

frames. For some α > 1, 1 ≥ π′ > π > 0 and x > x′ > 0,

(a) A must choose between (x, π) and (x′, π′) [Small stakes gambles.]

(b) A must choose between (αx, π) and (αx′, π′) [Large stakes gambles.]

Given u(x, π), in the absence of cognitive costs A would consistently choose either the

riskier or the safer gamble in both frames. With cognitive costs,

Proposition 5. (Risk aversion in the large and small) Any reversal of preferences between

the two frames must take the following form: (x, π) ≺ (x′, π′) and (αx, π) � (αx′, π′).

Proof: See Claim 6 in Appendix.

Preference reversal must take the form of A preferring the safer lottery in (a), when

stakes are small, while preferring the riskier lottery (with a larger prize) in (b), when stakes

are large. Intuitively, while probabilities are salient in both frames (π 6≈ π′), prizes are not

salient in (a) but they are in (b) ( x ≈ x′ and αx 6≈ αx′). Proposition 5 may shed light on

Rabin’s (2000) observation that the degree of risk aversion displayed by subjects in small

stakes gambles is too high to yield anything but paradoxical implications with large stakes

– the so-called “paradox of risk aversion in the large and small”.27 Our explanation is that,

when stakes are small (but not when they are large), A perceives them as indistinguishable

and chooses between the gambles based on winning probabilities alone. This makes him

appear very risk averse. However, it is straightforward to see that, if cognitive costs were

absent, A would prefer the riskier gamble in both large and small stakes frames. When stakes

are small, the presence of cognitive costs thus makes A take on less risk compared with the

benchmark.28

6.4 Systematic tradeoffs

What happens when Assumption 1 is relaxed, so that the characteristics of the bundles in

one dimension provide information about their attributes in the other? Here, we want to

27Rabin’s (2000) original argument was based on a thought experiment, but subsequent studies explicitly
consider evidence from subjects making choices in small- and large-stakes bets (see e.g., Cox et al. 2013 and
Khaw et al. 2019).

28This shares similarities to Woodford (2012) and Khaw et al. (2019), where “excessive” risk aversion
results from a perceptual bias which is however optimal (in the sense that it maximizes expected payoff
subject to cognitive constraints). The underlying mechanisms at work in these models, however, are different
from ours.
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focus in particular on environments where A systematically faces tradeoffs that take the form

of trading an egg today against a chicken at a future date.

A potential problem that arises when relaxing the independence assumption is that the

expected benefit from distinguishing between time periods may no longer decrease when

these are pushed further in the future, since later delivery times may be associated with

larger expected prizes, creating a countervailing effect. For the same reason, the expected

benefit from distinguishing between prizes may no longer increase when these are scaled up.

That said, Assumption 1 is only sufficient for our results. In particular, it is possible to

retrieve most of the results in settings where the time lag separating the two delivery times

is correlated with the size of the later prize relative to the sooner one. This fully captures

the idea that “good things come to those who wait”. In our setting, this would imply that

t and x are still independent, while allowing for positive correlation between ` and r. In the

Supplementary Appendix, we establish a weaker version of the main theorem for a class of

bundle-generating processes that allow for such tradeoffs.

6.5 Optimality of MADD preferences

So far, we have taken as a given that A’s preferences follow the MADD principle: A prefers

the bundle that generates the largest underlying payoff along the salient dimensions. In this

section, we ask, if P could design A’s preferences, under what conditions would he choose

MADD preferences? For our purposes, a preference relation can be fully described by the

function Q given in (2). Let Q denote the set of functions Q : Y2 → {0, 1/2, 1}. Suppose

then that P provides A with a preference relation (a function Q ∈ Q) in order to maximize

the net payoff,

Q(y,y′)[u(y)− u(y′)]. (13)

We restrict attention to the following class of Q functions.

Assumption 3. For all pairs (y,y′) ∈ Y2, if (z, z′) ∈ Y2 are identical to (y,y′) in all

dimensions i such that yi 6≈ y′i, and zi ≈ z′i whenever yi ≈ y′i, then Q(y,y′) = Q(z, z′).

If P could make A’s preferences depend on things that A does not distinguish, there

would be no need to incur the cognitive cost of making distinctions. P could simply “hard

wire” the desired choice into A’s preferences. By requiring that A’s preferences can only
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depend on what he can distinguish, Assumption 3 makes similarity judgments relevant. The

next result establishes that, under this constraint, MADD preferences emerge endogenously

as a solution to P ’s augmented optimization problem.

Lemma 1. Under Assumptions 1 and 3, Q maximizes (13) if A’s preferences are MADD.

Proof. See Lemma A.1 in the Supplementary Appendix.

The result is stated in terms of “if” rather than “if and only if” simply because optimality

has no bite when A fails to distinguish in any dimensions (so that Q need not be equal to

1/2 in those cases). Finally, note that Assumption 1 is needed to rule out peculiar cases of

correlation across dimensions where, from P ’s perspective, the expectation of gains along

a non-salient dimension justifies accepting certain losses in the salient one, thus making it

optimal to choose the bundle that looks actually worse in the salient dimension.

7 Related literature and concluding remarks

The main contribution of our paper consists in providing a foundation to the literature on

similarity (Tverski, 1977, Leland 2002, Rubinstein 1988, 2003), by endogenizing similarity

judgments. Optimal similarity judgments arise from an optimization exercise in which the

benefits of acquiring more information are weighed against cognitive/attention costs. This

approach is clearly aligned with the literature on rational inattention, which has been steadily

gaining popularity following the seminal contribution by Sims (2003) – Caplin and Dean

(2015) and de Olivera et al. (2016) are recent contributions that specifically address the

implications of rational inattention for revealed preferences and choice data. A recent paper

by Alaoui and Penta (2015) shows that a cost-benefit representation of cognition may apply

to a large class of reasoning processes. Our novelty with respect to this literature is the

application of this type of analysis to similarity judgments.

Our paper is also related to the body of work on the evolutionary foundations of pref-

erences.29 A common theme of that literature is that apparent behavioral anomalies may

actually be the solution of an optimization problem in which Nature maximizes individual

fitness, subject to some physiological, cognitive or informational constraints. The accounts

29Important contributions in this literature include Robson (2001), Samuelson (2004), Rayo and Becker
(2007), Herold (2012), Rayo and Robson (2014).
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by Dasgupta and Maskin (2006) and Netzer (2009) specifically focus on time preference re-

versal, but the mechanisms at work in their settings are very different from ours. Moreover,

these works are silent about other behavioral anomalies.

Our simple theory generates rich implications for optimal similarity judgments, which

shed light on a number of seemingly unrelated stylized facts not easily explainable with

standard models. While these have all been independently modelled, to our knowledge no

existing single setting has addressed all the phenomena explained by our model. There are

a few approaches which, similar to us, have tried to produce a unified explanation for many

different behavioral anomalies. One is the dual-self literature, such as, e.g. Fudenberg and

Levine (2006, 2011). Our two-stage setting can be thought of in terms of dual-self, albeit

with an important difference, namely that the agent’s “myopia” is endogenous and depends

on what he does/does not distinguish. Other works have emphasized the portability of the

rational inattention framework (see e.g. Woodford 2012a, 2012b, Gabaix 2014, 2019), and

the model we consider is certainly in this spirit. Although the quest for a parsimonious,

unifying account of behavioral anomalies is far from over, our results indicate that optimal

similarity judgments may be part of the picture.

8 Appendix

Proof of Theorem 1 In what follows, it will be convenient to transform bundle realizations

(y,y′) into their log-payoff values. Specifically, let u(v) = exp (v1 + v2), where vi = lnφi(yi)

and v = (v1, v2). We will use vi 6≈ v′i (vi ≈ v′i) as a shorthand, to mean that yi 6≈ y′i (yi ≈ y′i).

Note that ∆(yi, y
′
i) = |vi − v′i| and that MADD preferences imply

∑
i=1,2(vi − v′i)Ii(vi, v′i) ≥

0⇔ y % y′. Note also that the independence/exchangeability assumptions (Assumption 1)

on (Yi, Y
′
i ) trivially extend to random variables (Vi, V

′
i ) in the log-welfare space.

The proof is divided into several claims.

Claim 1. Given v > 0 and ∆ > 0, let lnφi(yi) = v and lnφi(y
′
i) = v+ ∆. Then, bi(yi, y

′
i) =

ev+∆Bi(∆) where Bi is continuous and independent of v.

Given MADD preferences, A’s choices are as follows:

1. Suppose v 6≈ v+∆. Then, for j = 1, 2 6= i, y′ � y ⇔ vj ≈ v′j ∨ vj−v′j < ∆, ; y � y′ ⇔

vj 6≈ v′j ∧ vj − v′j > ∆. Finally, y′ ∼ y ⇔ vj 6≈ v′j ∧ vj − v′j = ∆.
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2. Suppose v ≈ v + ∆. Then, y′ � y ⇔ vj 6≈ v′j ∧ vj − v′j < 0; y � y′ ⇔ vj 6≈ v′j ∧

vj − v′j > 0. Finally, y′ ∼ y ⇔ vj ≈ v′j ∨ vj − v′j = 0.

Consider the benefit from distinguishing between v and v + ∆. Comparing 1) and 2), if

A distinguishes in dimension j, A would choose y′ anyway if vj − v′j < 0 and would choose

y anyway if vj − v′j > ∆. Hence, the benefit from v 6≈ v + ∆ is always zero in these cases.

Ignoring zero measure cases, distinguishing in dimension i thus affects A’s choice either if

a) vj ≈ v′j or b) vj 6≈ v′j ∧ vj − v′j ∈ (0,∆). In a) distinguishing in dimension i leads A to

pick bundle y′ with probability one rather than 1/2. In b) vi 6≈ v′i leads A to pick y′ with

probability one instead of y. Given Assumption 2, P chooses whether v 6≈ v + ∆ or not

considering all possible realizations (vj , v
′
j) in dimension j. Hence, he takes expectations with

respect to random variables (Vj , V
′
j ). Let E∅ denote the event {Vj ≈ V ′j }. For z ∈ R, let E−z

denote the event {Vj 6≈ V ′j }∩{Vj−V ′j < z} and E+
z denote the event {Vj 6≈ V ′j }∩{Vj−V ′j > z}.

[We can ignore zero probability events like {Vj − V ′j = 0} or {Vj − V ′j = ∆}.] The expected

benefit from distinguishing between v and v + ∆ is thus

P(E∅)
1

2
E
[
eV
′
i +V ′j − eVi+Vj

∣∣∣ E∅]+ P(E+
0 ∩ E

−
∆)E

[
eV
′
i +V ′j − eVi+Vj

∣∣∣ E+
0 ∩ E

−
∆

]
=

ev+∆

P(E∅)
1

2
E
[
eV
′
j − e−∆+Vj

∣∣∣ E∅]+ P(E+
0 ∩ E

−
∆)E

[
eV
′
j − e−∆+Vj

∣∣∣ E+
0 ∩ E

−
∆

]
︸ ︷︷ ︸

:=Bi(∆)

 , (14)

where the expectation is taken with respect to (Vj , V
′
j ). From Assumption 1, all probabilities

and expectations are independent of the realized values of (Vi, V
′
i ), so that Bi is constant

with respect to v. Continuity of Bi in ∆ (except possibly at ∆ = 0) follows from continuity

of the distributions of bundle characteristics.

Claim 2. For all ∆ > 0, Bi(∆) is increasing.

We now establish that, given ∆′ > ∆′′ > 0, Bi(∆
′) > Bi(∆

′′). From (14),

Bi(∆
′)−Bi(∆′′) = P(E∅)

1

2
E
[
e−∆′′+Vj − e−∆′+Vj

∣∣∣ E∅] +

P(E+
0 ∩ E

−
∆′)
(
E
[
eV
′
j

∣∣∣ E+
0 ∩ E

−
∆′

]
− e−∆′E

[
eVj
∣∣ E+

0 ∩ E
−
∆′
])
−

P(E+
0 ∩ E

−
∆′′)

(
E
[
eV
′
j

∣∣∣ E+
0 ∩ E

−
∆′′

]
− e−∆′′E

[
eVj
∣∣ E+

0 ∩ E
−
∆′′
])

(15)
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Given ∆′ > ∆′′, the term on the first line of (15) is strictly positive whenever P(E∅) > 0.

We thus just need to evaluate the difference between the second and third lines. Given

e−∆′′ > e−∆′ , and using E−∆′′ ⊂ E
−
∆′ , the difference is strictly larger than

P(E+
0 ∩ E

−
∆′ ∩ E

+
∆′′)E

[
eV
′
j − e−∆′+Vj

∣∣∣ E−∆′ ∩ E+
0 ∩ E

+
∆′′

]
. (16)

where, since ∆′ and ∆′′ are both positive, E+
0 ∩E

−
∆′ ∩E

+
∆′′ = E−∆′ ∩E

+
∆′′ . Then, the expectation

in (16) becomes

E
[
exp

(
V ′j
) (

1− exp
(
Vj − V ′j −∆′

))
|E−∆′ ∩ E

+
∆′′
]
> 0 (17)

where the inequality comes from the expectation being conditional on {Vj−V ′j < ∆′} through

E−∆′ . Finally, note that, since from Assumption 1 the joint density of (Vj , V
′
j ) has full support,

P(E−∆′ ∩ E
+
∆′′) > 0 whenever P(E∅) = 0, so that (15) must be positive.

Claim 3. Bi is equal to zero for ∆ = 0.

For ∆ = 0, the first term in (14) is zero given exchangeability (the second part of

Assumption 1). The second term is zero since P(E−0 ∩ E
+
0 ) = 0. Note also that, for any

sequence {∆n}n∈N, ∆n > 0, such that ∆n → 0, Bi(∆n)→ 0, which implies no discontinuity

at ∆ = 0.

Finally, note that, since the two bundles are ex-ante identical, one can always set v =

min{vi, v′i} and ∆ = max{vi, v′i} −min{vi, v′i} to obtain

bi(yi, y
′
i) = exp

(
max{vi, v′i}

)
Bi (∆) = max{φi(yi), φi(y′i)}Bi (∆) , (18)

where all properties of Bi follow from the claims above. �

Proof of Corollary 1 Assume y′i > yi, where yi is constant. If φi is increasing, then, from

Theorem 1

bi(yi, y
′
i) = φi(y

′
i)Bi(lnφi(y

′
i)− lnφi(yi)), (19)

which is increasing in y′i. If φi is decreasing, then

bi(yi, y
′
i) = φi(yi)Bi(lnφi(yi)− lnφi(y

′
i)), (20)
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which is again increasing in y′i. Suppose now that y′i < yi. Then, expressions (19) and (20)

apply to the cases where φi is decreasing and increasing, respectively. This in turn implies

that bi(yi, y
′
i) is decreasing for all y′i < yi. Finally, bi(yi, yi) = 0 follows from Bi(0) = 0. �

Proof of Corollary 2 The first statement directly follows from Theorem 1 once we note

that, in the time (prize) dimension, ∆ = δ|`| (∆ = (1− ρ)| ln r|) is constant with respect to

t (x). As for the second statement, let [t−, t+] be t’s similarity interval. From Theorem 1,

t+ and t− solve

e−δtB2(δ[t+ − t]) = c2, e
−δt−B2(δ[t− t−]) = c2, (21)

which, having defined `+ := t+ − t and `− := t− t−, implies

B2(δ`+) = c2e
δt, eδ`

−
B2(δ`−) = c2e

δt, (22)

Since each LHS is an increasing function and each RHS is increasing in t, both `+ and `−

must be increasing in t. Hence t+ − t− = `+ + `− must be increasing in t. Using a log-scale

for the prize domain, let [lnx−, lnx+] denote the similarity interval for lnx. Similar to the

time dimension, we have

r+B1((1− ρ) ln r+) =
c1

x
, B1((1− ρ) ln r−) =

c1

x
, (23)

where both r+ ≡ x+/x and r− ≡ x/x− are decreasing in x, so that lnx+−lnx− = ln r++ln r−

is decreasing in x. �

Proof of Corollaries 3, 4, and Propositions 1-5

We prove these results by establishing a number of general implications of the main

Theorem. Fix two pairs of bundles (y,y′) ∈ Y2 and (z, z′) ∈ Y2, with yi > zi, y
′
i > z′i,

yi 6= y′i and ∆(yi, y
′
i) = ∆(zi, z

′
i). Note that this general formulation encompasses the

following as special cases

1. Exponential discounting and, for s > 0, z = (x, t), z′ = (x′, t′), y = (x, t + s),

y′ = (x′, t′ + s) (so that ∆(t, t′) = ∆(t+ s, t′ + s) = δ|t− t′|).

2. Isoelastic utility and, for α > 1, z = (x, t), z′ = (x′, t′), y = (αx, t), y′ = (αx′, t′) (so

that ∆(x, x′) = ∆(αx, αx′) = (1− ρ)| lnx− lnx′|).
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3. Expected utility and, for α > 1, z = (x, π), z′ = (x′, π′), y = (x, απ), y′ = (x′, απ′)

(so that ∆(π, π′) = ∆(απ, απ′) = | lnπ − lnπ′|).

The following result establishes Corollary 3.

Claim 4. Whenever φi is increasing, zi 6≈ z′i ⇒ yi 6≈ y′i. Symmetrically, when φi is decreas-

ing, zi 6≈ z′i ⇐ yi 6≈ y′i.

Proof. This follows since, given ∆(yi, y
′
i) = ∆(zi, z

′
i), bi(yi, y

′
i) > (<)bi(zi, z

′
i) when φi is an

increasing (decreasing) function.

WLOG, assume now yi > y′i. The next result establishes Corollary 4.

Claim 5. If (y,y′) and (z, z′) are identical in dimension j 6= i, then z � z′ ⇒ y � y′ if φi

is increasing and z � z′ ⇐ y � y′ if φi is decreasing.

Proof. Consider φi increasing. z � z′ requires

φi(zi)
Ii(zi,z

′
i)φj(zj)

Ij(zj ,z
′
j) > φi(z

′
i)
Ii(zi,z

′
i)φj(z

′
j)
Ij(zj ,z

′
j). (24)

This implies

(
φi(yi)

φi(y′i)

)Ii(yi,y′i)
≥
(
φi(zi)

φi(z′i)

)Ii(zi,z′i)
>

(
φj(z

′
j)

φj(zj)

)Ij(zj ,z′j)
=

(
φj(y

′
j)

φj(yj)

)Ij(yj ,y′j)
, (25)

where the first inequality comes from ∆(yi, y
′
i) = ∆(zi, z

′
i), yi > y′i, and, given zi 6≈ z′i ⇒ yi 6≈

y′i, Ii(yi, y
′
i) ≥ Ii(zi, z

′
i). The middle inequality follows from (24). The last equality comes

from yj = zj and y′j = z′j . In turn, (25) implies y � y′. The argument for φi decreasing is

symmetric.

The next result establishes Propositions 4-5 and the first part of Propositions 1-2.

Claim 6. If (y,y′) and (z, z′) are identical in dimension j 6= i, any reversal of strict

preferences must take the form of y � y′ and z ≺ z′ if φi is increasing and y ≺ y′ and

z � z′ if φi is decreasing.

Proof. Consider again the case where φi is increasing. Then, if yi > y′i, we know from Claim

5 that z � z′ ⇒ y � y′, so that no reversal can occur when z � z′. A symmetric argument

applies to the case where φi is decreasing.
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The following result establishes the second part of Propositions 1 and 2.

Claim 7. If (y,y′) and (z, z′) are identical in dimension j 6= i, necessary and sufficient

conditions for a reversal of strict preferences are: i) yi 6≈ y′i, 2) zi ≈ z′i, 3) zj 6≈ z′j, 4)

φj(zj) < (>)φj(z
′
j) when φi is increasing (decreasing).

Proof. Consider again φi increasing. z ≺ z′ and y � y′ require

φi(zi)
Ii(zi,z

′
i)φj(zj)

Ij(zj ,z
′
j) < φi(z

′
i)
Ii(zi,z

′
i)φj(z

′
j)
Ij(zj ,z

′
j)

φi(yi)
Ii(yi,y

′
i)φj(yj)

Ij(yj ,y
′
j) > φi(y

′
i)
Ii(yi,y

′
i)φj(y

′
j)
Ij(yj ,y

′
j) (26)

or, given zj = yj and z′j = y′j ,

(
φi(yi)

φi(y′i)

)Ii(yi,y′i)
>

(
φj(y

′
j)

φj(yj)

)Ij(yj ,y′j)
=

(
φj(z

′
j)

φj(zj)

)Ij(zj ,z′j)
>

(
φi(zi)

φi(z′i)

)Ii(zi,z′i)
, (27)

Note that, since ∆(yi, y
′
i) = ∆(zi, z

′
i), φi(yi)/φi(y

′
i) = φi(zi)/φi(z

′
i), so that, given yi > y′i, the

above can only hold if Ii(yi, y
′
i) = 1 and Ii(zi, z

′
i) = 0 (so that yi 6≈ y′i and zi ≈ z′i). Moreover,

given Ii(zi, z
′
i) = 0, the last inequality cannot hold strict if Ij(zj , z

′
j) = 0 or φj(zj) > φj(z

′
j).

This implies that zj 6≈ z′j and φj(zj) < φj(z
′
j) are also necessary. It is then straightforward

to check that these conditions are also sufficient. Finally, a symmetric argument applies to

the case where φi is decreasing.

In order to establish Proposition 3, we can use a similar approach. Let (z,y,y′) ∈ Y3

denote three bundles, with the properties that: (a) for all i = 1, 2 yi > y′i > zi, (b) for κ > 1,

∆(zi, yi) = κ∆(zi, y
′
i). Let φ2 be decreasing and φ1 increasing. Note that Proposition 3 is

a special case since in the short horizon frame, ∆(t, t + `) = δ` and ∆(x, rx) = (1 − ρ) ln r,

while in the long horizon frame ∆(t, t+ κ`) = κδ` and ∆(x, rκx) = κ(1− ρ) ln r.

Claim 8. Subadditivity (z ≺ y ∧ z � y′) occurs if and only if: i) A always distinguishes

in dimension 2, ii) in dimension 1, z1 6≈ y1 but z1 ≈ y′1, iii) φ1(z1)φ2(z2) < φ1(y′1)φ2(y′2).

Superaddivity (z ≺ y′ ∧ z � y) occurs if and only if: i) A always distinguishes in dimension

1, ii) in dimension 2, z2 6≈ y2 but z2 ≈ y′2, iii) φ1(z1)φ2(z2) > φ1(y′1)φ2(y′2).

Proof. z ≺ y and z � y′ (Subadditivity) requires
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(
φ2(z2)

φ2(y2)

)I2(z2,y2)

<

(
φ1(y1)

φ1(z1)

)I1(z1,y1)

(28)

and

(
φ1(y′1)

φ1(z1)

)I1(z1,y′1)

<

(
φ2(z2)

φ2(y′2)

)I2(z2,y′2)

⇔
(
φ2(z2)

φ2(y2)

)κI2(z2,y′2)

>

(
φ1(y1)

φ1(z1)

)κI1(z1,y′1)

, (29)

where the second inequality follows from the first and ∆(zi, yi) = κ∆(zi, y
′
i) for all i =

1, 2. Note that, given yi > zi and the the fact that φ2 is decreasing and φ1 increas-

ing, φ2(z2)/φ2(y2) > 1 and φ1(y1)/φ1(z1) > 1. Note also that, from Theorem 1, given

φ2 decreasing and B2(κ∆) > B2(∆), b2(z2, y2) > b2(z2, y
′
2), so that I2(z2, y2) = 1 is im-

plied by I2(z2, y
′
2) = 1. Suppose first that φ1(z1)φ2(z2) < φ1(y′1)φ2(y′2) (which implies

φ1(z1)φ2(z2) < φ1(y1)φ2(y2)). Clearly, for both inequalities (28) and (29) to hold simul-

taneously, it is necessary and sufficient that I2(z2, y2) = I1(z1, y1) = I2(z2, y
′
2) = 1, and

I1(z1, y
′
1) = 0. To establish that φ2(z2)φ1(z1) < φ2(y′2)φ1(y′1) is also necessary, suppose that

φ2(z2)φ1(z1) ≥ φ2(y′2)φ1(y′1). Then, for both (28) and (29) to hold simultaneously, it must

be that I2(z2, y2) = 0 and I2(z2, y
′
2) = 1. As pointed out above, however, this would violate

the main Theorem. Hence, subadditivity cannot arise in this case.

Symmetrically, superadditivity (z ≺ y′ and z � y) requires that both inequalities (28)

and (29) are reversed. In this case, one can invoke Theorem 1 to establish that I1(z1, y
′
1) = 1

implies I1(z1, y1) = 1. The rest of the argument is the mirror image of the one given

above.
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