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Abstract

Recent evidence suggests that agents’ expectations may have played a role in several cycli-
cal episodes such as the U.S. "new economy" boom in the late 1990s, the real estate boom
in Japan in the 1980s and the real estate boom in the U.S. which ended in 2008. One chal-
lenge in the expectations driven view of fluctuations has been to develop simple one sector
models that can give rise to such fluctuations without a compromise on other dimensions.
In this paper we propose a simple generalization of the Greenwood et al. (1988) one sec-
tor model and show it can generate fluctuations that arise as a result of agents difficulty
to forecast productivity embodied in new capital. The two key assumptions in the model
are: (1) the vintage view of capital productivity, whereby each successive vintage has (po-
tentially) different productivity and (2) agents’ imperfect information and learning about
this productivity. The model is consistent with second and third moments from U.S. data.
Simulations of the model suggest that, (a) noise amplifies fluctuations and (b) pure noise
can trigger recessions that mimic in magnitude, duration and depth the typical post WW II
U.S. recession.
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1 Introduction

The idea that business cycles can be driven by shifts in expectations is a long-known con-
cept and dates back to Beveridge (1909), Pigou (1926) and Clark (1935). According to this
idea shifts in agents’ expectations that are orthogonal to current fundamentals can generate
a cycle whereby consumption, investment and hours worked co-move with economic activ-
ity. In early work, Barro and King (1994) (BK) pointed out that changes in beliefs about the
future cannot generate empirically recognizable business cycles within the standard real busi-
ness cycle model. Intuitively, news that future productivity will improve creates a wealth ef-
fect where agents finance the consumption of goods and leisure today from lower investment.
Beaudry and Portier (2004) overcome the obstacles posed by the analysis of Barro and King
(1994) with a carefully designed three sector model where beliefs about future total factor
productivity (TFP) can induce responses of agents that resemble the typical pattern of co-
movement observed in post-WW II U.S. business cycles.

One challenge in this area has been to develop simple one sector models that can give
rise to expectations driven fluctuations without a compromise on other dimensions. In this
paper we show that a simple one sector model with capital embodied productivity can generate
fluctuations that arise as a result of agents difficulty to forecast this productivity. The two
key assumptions in the model are: (1) the vintage view of capital productivity, whereby each
successive vintage has (potentially) different productivity and (2) agents imperfect information
and learning about this productivity. Essentially the model we propose can be interpreted as
a generalization of Greenwood et al. (1988) with the incorporation of Bayesian learning. Our
assumption of learning about vintage specific capital productivity is firmly rooted in empirical
evidence based on learning in manufacturing plants (see for example Bahk and Gort (1993) and
Sakellaris and Wilson (2004)). We consider capital embodied productivity as the sole driving
force in the model given the evidence suggesting its importance as a major driving factor of
U.S. macroeconomic fluctuations, especially during the investment boom and bust of the 1990s
and early 2000s (see e.g. Fisher (2006) and Justiniano and Primiceri (2008)).1

In the model agents receive signals (or news) about the productivity of future capital vin-
tages. However, signals are not necessarily accurate as they can be driven by pure noise and
agents need to disentangle this noise from fundamentals. This is the signal extraction prob-
lem agents need to solve in order to decide on optimal investment, utilization, hours worked
and output produced and consumed. Fluctuations in the model are thus driven by both noise
and fundamentals. Thus learning productivity can potentially add another source of fluctua-

1Other recent theoretical work develops models with and without market frictions which overcome
the Barro and King (1994) challenge. See, for example, Beaudry and Portier (2007), Christiano et al.
(2008), Karnizova (2010), Gunn and Johri (2011) Keiichiro et al. (2007), Kobayashi and Nutahara (2010),
Den Haan and Kaltenbrunner (2009) and Guo (2008).
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tions in macroeconomic aggregates. Noise in the model—and the associated forecast errors it
implies—can make agents over-invest, work and produce more when they are optimistic and
cut investment, hours and output when they are pessimistic.

We ask whether this model is consistent with business cycle facts computed from U.S. data.
We are not only interested in the usual set of moments (i.e. volatilities, serial correlations
and correlations with output) but examine whether it is also in line with a measure of cyclical
(more precise growth) asymmetry present in the data. This type of asymmetry, i.e. the fact that
booms are more gradual than busts which are usually short and sharp, is a characteristic feature
of recent U.S. cyclical episodes. For example, measuring the asymmetry of U.S. business
cycles by computing the skewness of GDP we find that both the Information Technology (IT)
(1991 Q1 - 2001 Q4) and the real estate ”bubble" (2001 Q4 - 2009 Q2) are consistent with
highly asymmetric episodes exhibiting negative skewness, with a gradual expansion and a sharp
recession phase. We find the model can replicate fairly well the usual business cycle moments
and can generate business cycle (growth) asymmetries in line with the data.

The impact of noise—and the associated forecast errors it produces—in the model is sub-
stantial. According to a measure of large size forecast errors we adopt, which occurs in approx-
imately 20% of time in the simulation, agents mistakes in forecasting productivity can give rise
to substantial swings in investment. During periods of pessimism (when agents are underpre-
dicting embodied productivity compared to the truth) we observe a decline in investment in the
order of 4.0 percentage points below what one would observe in an economy without noise and
forecast errors. During periods of optimism (when agents are overpredicting embodied produc-
tivity compared to the truth) we observe a boom in investment in the order of 8.9 percentage
points above the level implied in the economy without noise and forecast errors. We find qual-
itatively similar differences in output, hours worked and utilization rates. Consequently, the
learning mechanism in the model magnifies changes in fundamentals.

Noise does not only amplify changes in fundamentals but can also trigger recessions (when
true productivity rises but agents forecast a decline) that would not occur in a perfect informa-
tion economy. We find that noise triggered recessions can generate declines similar in mag-
nitude to declines driven by un-favorable fundamentals. The share of recessions due to pure
noise in the simulation equals 15%. Remarkably, noise can explain a large share of the (aver-
age) peak to trough decline in macroeconomic aggregates observed during U.S. downturns. It
can account for the entire share in the decline of output and consumption and 57 percent of the
decline in investment and hours worked.

Our model has similarities with several earlier studies that focus on expectations driven
business cycles. We incorporate imperfect signals about productivity as in Beaudry and Portier
(2004), although we go a step forward and allow agents to learn from these signals and impor-
tantly allow the signal’s precision to vary in line with evidence from the Survey of Professional
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Forecasters. Flodén (2007) uses a similar model—and the same vintage capital interpretation
of investment specific technologies—as we do. He demonstrates how expectation driven cycles
can arise naturally in this framework. However an important difference in our framework com-
pared to his is the concept of learning we introduce; this feature can give rise to forecast errors
that affect the economy’s equilibrium and as we show amplify changes in fundamentals and
trigger recessions independently of fundamentals. Jaimovich and Rebelo (2009) (henceforth
JR) also develop a one sector model similar to ours. Their model differs from our setting in
that we assume the vintage view of capital embodied productivity whereas they adopt the in-
vestment specific convention. In addition, relative to JR, we explore in greater detail the impact
and importance of forecast errors in aggregate fluctuations and show how agents optimism and
pessimism can amplify the economy’s response to good and bad fundamentals respectively.
Our model also shares similarities with the setup presented in Eusepi and Preston (2011) that
focus on learning dynamics as a propagation mechanism. Similar to theirs, business cycles in
our model are driven partly due to changes in fundamentals and partly due to agents forecast
errors. One important difference is that the speed of learning varies in our model whereas it is
constant in theirs. Lorenzoni (2009) develops a theory of demand (or noise) shocks based on a
signal extraction problem and shows that they can account for a sizable fraction of demand side
volatility. He uses a New Keynesian and focuses on total factor productivity shocks whereas
we use a real model and analyze the impact of capital embodied shocks.

Last, our model rationalizes the relationship between learning and output fluctuations sim-
ilar to earlier work by Cagetti et al. (2001), Evans et al. (1998) and Kasa (2000). In this work,
agents solve a signal extraction problem and output fluctuations, as in our model, can arise as a
result of learning rather than actual changes in productivity.

The remainder of the paper is organized as follows: Section 2 describes the model. Section
3 describes calibration, computation and data. Section 4 presents results from simulations and
section 5 concludes.

2 The Model

We develop a model close in spirit to Greenwood et al. (1988) (henceforth GHH) with two
important differences. First, in contrast to GHH, we interpret capital embodied technology as
vintage specific rather than enhancing the productivity of current investment expenditures. This
difference implies the productivity of current investment is unknown until capital is installed
and used in production. Second, agents receive imperfect signals about the productivity of fu-
ture capital vintages and use Bayesian learning to form expectations about this productivity.
This concept of learning we implement implies that agents make forecast errors that can in turn
give rise to fluctuations that would not otherwise arise had agents possessed perfect informa-
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tion. The model can produce expectations driven cycles. The mechanism in the model works in
much the same way as in Greenwood et al. (1988) and analyzed in detail in Flodén (2007). We
only briefly describe it here. When agents expect the productivity of future capital to increase,
they feel wealthier. They correctly infer current capital to have lower productivity compared
to the newly installed capital. Hence, depreciation today is relatively cheaper than deprecia-
tion tomorrow. This encourages agents to use the existing capital stock more intensively and
increase investment in order to benefit from the high productivity of capital’s vintage to be in-
stalled tomorrow. Additionally, agents want to increase consumption due to the wealth effect.
The simultaneous increase in consumption and investment is permitted by the higher output
resulting from the intensified use of capital. More intensified capital usage also increases the
marginal product of labor leading to an increase in hours worked if the substitution effect dom-
inates the wealth effect. Hence, in response to higher expected productivity of future capital
it is possible for output, investment, consumption, hours worked and capital utilization to all
increase without any change in current fundamentals.

2.1 Firms

The economy comprises of a continuum of perfectly competitive identical firms with unit mass.
Firms produce output, yt, using a Cobb-Douglas production function with three inputs. The
production function is given by,

yt = (utkt)
αh1−α

t , 0 < α < 1 (1)

where kt denotes the sum of all efficiency units of capital available for production in period t
and is defined by:

∞∑
s=0

qt−skt,s = kt, (2)

where kt,s is capital of vintage s that is available at time t. This formulation assumes that the
aggregate capital stock contains distinct vintages of capital which are associated with different
levels of productivity, q. In addition, capital can be utilized at different rates. The utilization
rate is denoted by ut and hours worked by ht.

Denoting investment by it, the vintages of capital evolve according to:

kt+1,s =

{
it for s = 0

(1− d(ut))kt,s−1 for s ≥ 1.
(3)
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Using (3), the economy’s capital accumulation constraint can be derived from equation (2) as

kt+1 = [1− d(ut)]kt + qt+1it, k0 > 0 is given. (4)

Note that the capital accumulation constraint differs from the standard formulation such
that capital in period t+ 1 depends on the capital embodied shock qt+1. Thus, the productivity
of investment is unknown until the capital is actually installed.

One can interpret the expression q in the capital accumulation equation as the productivity
of a new vintage of capital, whereas the productivity of installed capital remains constant, or as
the efficiency of the production of investment goods. Both interpretations exist in the literature,
but the timing differs. If q is interpreted as the efficiency of the production of investment goods,
it makes sense to assume that there exists information about the production function of these
investment goods at the time of the actual production. In the vintage specific case however,
q is interpreted as the productivity of a new vintage of capital, the productivity of which is
unknown in the period when investment occurs. The productivity may be known (or at least
can be forecasted more accurately) in the period after the investment has been made, i.e. when
the capital is actually installed and used in production.2

Finally, the depreciation rate of capital, d(ut), depends positively on the degree of capital
utilization as follows,

d(ut) = δ + µ(uωt − 1), µ > 0, ω > 1, 0 ≤ δ ≤ 1.

Since d(ut) is strictly increasing and convex, more intensive use of capital accelerates depreci-
ation exponentially. In this function, ω measures the costliness of varying the capital utilization
in terms of capital depreciation and the elasticity of marginal capital utilization equals ω − 1.
The steady state depreciation rate is given by δ. The parameter µ allows to calibrate utilization
and depreciation in the steady state independently from each other consistent with steady state
utilization equal to unity.

Firms in this economy maximize profits period by period, that is max
ht,ut,kt

Πt = yt − rkt utkt −
wtht, by renting capital and labor services at the beginning of the period from households in
perfectly competitive factor markets, subject to the production function (1). The rental rate of
capital and the real wage rate are denoted by rkt and wt, respectively.

2These interpretations of q and the associated timing assumptions are widespread in the literature. An exception
is Greenwood et al. (1988). They interpret qt as the productivity of the capital in period t + 1, which is already
known at the beginning of period t.
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2.2 Technology

We now describe the technology that determines capital productivity. Our goal in this section
is not to develop a fully endogenized model that determines the productivity of future capi-
tal vintages (see for example Comin and Mulani (2009) for a growth theory that is based on
the general innovation concept) but to use a parsimonious way to make learning about capital
embodied productivity interesting in our one sector framework.3 We assume that the state of
productivity of each future vintage can take on two values, a high value, denoted by ηH and
a low value denoted by ηL. We furthermore assume that the future state of productivity is in-
fluenced by the number of general innovations available for adoption. This assumption can be
motivated by the fact that in the aggregate, sectors that produce capital equipment benefit from
general innovations that are adopted widely across the economy. One such important innova-
tion has been the advent and widespread use of Information Technology (IT).4 Some empirical
evidence for this channel is provided in Basu et al. (2003). Basu et al. (2003) report that both
IT producing and IT using industries in the US have experienced significant acceleration of to-
tal factor productivity (TFP) growth in the post-1995 period, coinciding with the IT equipment
investment boom of the 1990s.5 We parameterize these considerations in the process below,

qt+1 = ηt+1v
κt
t + ϵt+1, with 0 < κt < 1. (5)

where, vt is the number of new general innovations available for adoption in period t and
ηt+1 is an ergodic two-state Markov process with ηt+1 ∈ {ηL, ηH}. The term ϵt+1 is i.i.d. with
mean zero and constant variance σ2

ϵ . This latter term constitutes noise in our model.
The number of new general innovations available for adoption follows the process:

vt = (1− ρ) + ρvt−1 + ξt, with v0 = 1, 0 < ρ < 1,

where ξt is i.i.d. with mean zero and variance σ2
ξ . We assume only a fraction of the available

innovations, vκt
t , are adopted since there may be innovations that will not improve capital’s

3This endeavor will require a fully fledged endogenous multi-sector technological change model which is
beyond the scope of this paper.

4Some have argued that the advent of IT (the computer revolution) and its incorporation into production has
slowly pushed the average rate of embodied technological change higher (see Greenwood and Yorukoglu (1997),
Helpman and Trajtenberg (1994) among others), especially after 1973.

5Of course this acceleration of TFP assumes that the official price indices do not fully reflect quality embodi-
ments. Examples of general innovations include, personal computers, internet search engines, the Ford assembly
line, management practices, financial innovations and others.
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productivity. We therefore require that κt ∈ (0, 1). We assume that κt is given by:

κt =
1

1 + exp{−(τ vt−vt−1

vt−1
)}
, τ > 0.

Comin (2009) suggests that the adoption behavior of general innovations is pro-cyclical over
the business cycle. The formulation for κt above is consistent with this consideration. Produc-
tivity of future vintages of capital, qt+1 can thus change either as a result of a state change or
an change in the number (or the rate of adoption) of new innovations.

2.3 Households

The economy is populated by a unit measure of identical, infinitely lived households. The
representative household maximizes the discounted stream of expected utilities over its lifetime

max
ct,kt+1,ht,ut

E0

∞∑
t=0

βtU(ct, ht, xt), 0 < β < 1. (6)

subject to a flow budget constraint,

ct + kt+1 = (1− d(ut))kt + wtht + rkt utkt (7)

and the capital accumulation equation, (4).
Households supply labor and capital in perfectly competitive markets and earn a wage rate

wt and a rental rate rkt .
The utility function is given by

U(ct, ht, xt) =
(ct − ϕh1+γ

t xt))
1−σ − 1

1− σ
, with γ ≥ 0, ϕ > 0, σ ≥ 1,

where

xt = cχt x
1−χ
t−1 , 0 ≤ χ ≤ 1.

and ct, denotes consumption and ht denotes hours worked. The parameter γ is the inverse
of the Frisch elasticity of labor supply and σ is the intertemporal elasticity of substitution
parameter. The specification of the utility function follows Jaimovich and Rebelo (2009) and
nests two preference classes. For χ = 0 the utility function has the properties of the class
proposed by Greenwood et al. (1988) and for χ = 1 one obtains preferences as discussed in
King et al. (1988). As long as χ > 0 the utility is time-non-separable in consumption and hours
worked. It further implies stationary hours worked. The household’s optimality conditions will
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be presented collectively in the social planner’s problem formulation in section 2.6.

2.4 Information and Forecasting

We now turn to describe the information assumptions and the expectation formation mechanism
in this economy. Agents enter period t with information set It ≡ {kt, qt, vt, κt, xt−1, ct−1, it−1,

ut−1, ht−1, yt−1, wt−1, rt−1}, where zt denotes the infinite history of any variable z that belongs
to the information set above. The agents in this economy face a simple signal extraction prob-
lem. They observe the whole history of q but do not observe the state, η or noise, ϵ separately.
Agents know the distribution of the noise, ϵ, and are aware that the state (or signal), η, follows
an ergodic two-state Markov process with states ηL and ηH and a transition matrix Π. For the
agent’s investment decision today it is essential to predict tomorrow’s capital productivity. At
the beginning of period t agents—conditional on It—form expectations about productivity in
period t+ 1 using Bayesian updating.

Specifically, agents evaluate the posterior probability of ηt to be in a high state as follows:

P (ηt = ηH |It) =
Ψ(qt|ηt = ηH , It)P (ηt = ηH)

Ψ(qt|ηt = ηH , It)P (ηt = ηH) + Ψ(qt|ηt = ηL, It)(1− P (ηt = ηH))
. (8)

Here, Ψ(·) denotes a normal probability density function. The probabilities of a state change
are stated in the transition matrix

Π =

[
pHH pLH

pHL pLL

]
, (9)

where pij denotes the probability that the economy transits from state i to state j. From the
ergodicity of the Markov chain it follows that pij ∈ (0, 1) and piH + piL = 1. We further
assume the transition matrix Π to be symmetric in order to ensure that all asymmetry in the
resulting dynamics is endogenous. This assumption and the previous equality implies that
pHL = pLH and pHH = pLL.

The product of the posterior probabilities that productivity was in state ηL, ηH in period t
as computed in (8) above, with the transition matrix imply a prior belief about the probability
of η to be in a certain state in period t+ 1:

[P (ηt = ηH |It), P (ηt = ηL|It)]Π = [P (ηt+1 = ηH |It), P (ηt+1 = ηL|It)]. (10)

Finally, this prior belief allows agents to form an expectation for the productivity of capital in
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period t+ 1. Since Etϵt+1 = 0, using (5) the expectation is given by

q̃t+1 = Etη̃t+1v
κt
t , (11)

with η̃t+1 = [P (ηt+1 = ηH |It), P (ηt+1 = ηL|It)]

[
ηH

ηL

]
,

where z̃t+1 denotes the forecasted value in period t for the realization of any variable, z in t+1.
The essence of the learning mechanism in the model works as follows. The process for produc-
tivity (5) implies that the productivity of a new vintage is determined by the amount of adopted
innovations vκt

t , a signal component η and a noise term, ϵ. The signal and the noise component
cannot be observed by agents. However, by the Bayesian updating process described in (8) –
(11) agents are able to make forecasts for η and therefore next period’s productivity. This for-
mulation implies that an increase in the amount of adopted innovations precipitates an increase
in the precision of the posterior probability of the state of η. More precise information about the
posterior probability implies an increase in the forecast precision for next period’s productivity.
At the beginning of a boom phase forecast precision is low (as the rate of adoption of general
innovations is procyclical; evidence consistent with this is reported by Comin (2009)) but it
rises with the amount of adopted innovations. The peak of the boom is characterized by very
high productivity. This implies a very high signal precision and a relatively precise forecast for
next period’s productivity. At this stage, the response of capital’s expected future productivity
to a negative signal is much stronger than the reaction to a similar shock in a situation with low
precision. At the peak of the boom, agents learn much faster and therefore a negative signal
can potentially trigger a quick and sharp adjustment of the economy. Hence, the boom phase
is, due to the learning mechanism, more gradual than the bust phase.

A key assumption in generating an empirically realistic (i.e. consistent with forecast mo-
ments from the Survey of Professional Forecasters) learning process is a pro-cyclical signal-
to-noise ratio. This requires that the variance of the noise term (ϵt+1) rises at a slower rate
than the variance of the signal, adjusted by the amount of adopted innovations (ηt+1v

κt
t ) when

productivity increases. In other words, during a boom, the impact of the noise on next period’s
productivity becomes relatively smaller compared to the impact of the signal and vice versa
during a recession. The signal-to-noise ratio from (5) equals

var(ηt+1v
κt
t )

var(ϵt+1)
= var(vκt

t )
σ2
η

σ2
ϵ

.

Since both the variance of the Markov process σ2
η and the noise variance are constant, the signal-

to-noise ratio is pro-cyclical if var(vκt
t ) increases in a boom and decreases in a recession.6

6Our calibration procedure ensures that var(vκt
t ) is procyclical. The noise variance is restricted to be constant
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Discussion of learning. The key ingredient of the model is learning capital’s productivity.
Evidence of learning regarding vintages of capital embodied technological change is docu-
mented in Bahk and Gort (1993). Using data from 1973 to 1986 consisting of 2,000 firms from
41 industries, Bahk and Gort (1993) find that a plant’s productivity increases by 15 percent over
the first fourteen years of its life due to learning effects. The idea here is that the installation of
new vintages of capital equipment is often associated with complementary investments in train-
ing workers as well as implementation of new organization structures or management practices
and these take time to become fully productive. This process was coined by Arrow (1962),
”learning by doing". Uncertainty about capital’s productivity before and after its installation is
also documented elsewhere in the investment literature.7 These considerations suggest learning
about the productivity of future vintages as a natural assumption to incorporate in the model.
In the model it also takes time for agents to learn the productivity of a new vintage, although
there are no explicit ”learning by doing" effects. Agents learn over time and asymptotically
know with certainty the true productivity of a specific vintage.

An implication of learning in the model is that forecast precision is positively correlated
with productivity. A possible explanation for this correlation might be that an increase in pro-
ductivity enables firms to devote more resources to market research which leads to improve-
ments in forecast accuracy. Some corroborative evidence for this implication of the model is
available using data from the Survey of Professional Forecasters (SPF). We regress the cycli-
cally (using the HP filter) adjusted labor productivity on the forecast errors for nominal GDP.
Consistent with the prediction of the model the size of the absolute forecast errors in output are
negatively correlated with labor productivity.8

In sum, the speed of learning—measured as the speed in which beliefs converge to the
truth—increases during booms and decreases during recessions due to varying levels of forecast
precision over the business cycle. The specific mechanism used in this paper is similar in spirit
to the one used in Van Nieuwerburgh and Veldkamp (2006); both rely on changes in signal
quality over the business cycle. Signals at the peak of the business cycle contain more precise
information and cause stronger reactions by agents compared to signals in the trough, hence
a bad signal at the peak will have a more pronounced effect compared to a good signal at the
trough. However, while in the set up of Van Nieuwerburgh and Veldkamp (2006) signal quality
increases during recovery due to higher factor inputs, in our model signal quality increases due

only for simplicity. This restriction can be relaxed: The noise variance can vary over time as long as it is guaranteed
that the signal-to-noise ratio remains pro-cyclical.

7Dixit and Pindyck (1994) for example argue that the combination of irreversibility and uncertainty about
capital’s productivity creates an option value of waiting to invest. Jovanovic and Lach (1989) describe that due to
learning-by-doing the uncertainty about capital’s productivity decreases after its installation.

8We regress the log absolute forecast error of one to five quarters ahead forecasts for nominal GDP on HP
filtered labor productivity. Forecast errors are constructed using data from the Survey of Professional Forecasters
(1968 Q4-2009 Q2).
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to an increase in the amount of adopted innovations.

2.5 Equilibrium

Equilibrium in the decentralized economy described above is a sequence of quantities and
prices that solve: (1) firms’ problem, (2) households’ problem and (3) satisfy market clearing.
Market clearing implies the aggregate resource constraint,

yt = ct + it. (12)

2.6 The Social Planner Problem

The decentralized economy has a social planner analog. We work with this formulation. A
benevolent social planner maximizes the utility of the representative agent (6), subject to the
capital accumulation constraint (4) and the resource constraint (12). The planner’s problem
can be formulated in a recursive way. At the beginning of period t, ηt and ϵt are realized but
cannot be observed. However, the social planner observes the productivity of capital installed
in period t, qt. The planner uses the forecasting mechanism described in (8) – (11) to form an
expectation about the productivity of the vintage in period t+1, q̃t+1. Hence, the social planner
enters the period with state variables st = (kt, xt−1, q̃t+1). The state variables determine the
choice of ht, kt+1 and ut. Since the choice of investment depends on q̃t+1, the value of the
state variable kt+1 can differ from the realized capital stock in period t + 1. This depends on
the difference between q̃t+1 and qt+1 and hence on forecast precision. Consumption in turn is
determined from the recourse constraint. Formally, the planner solves:

V (kt, xt−1, q̃t+1) = max
ht,ut,kt+1

U(ct, xt−1, ht) + βEt|kt,xt−1,q̃t+1 [V (kt+1, xt, q̃t+2)]

s.t. kt+1 = (1− d(ut))kt + itqt+1

ct = (utkt)
αh1−α

t − it

xt = cχt x
1−χ
t−1

with x−1, q1 and k0 given. V denotes the value function.

This yields the first-order conditions:

(ct − ϕh1+γ
t xt)

−σ − χψtc
χ−1
t x1−χ

t = λt, (13)
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ψt − (ct − ϕh1+γ
t xt)

−σϕh1+γ
t = βEtψt+1(1− χ)Etc

χ
t+1x

−χ
t . (14)

(ct − ϕh1+γ
t xt)

−σϕ(1 + γ)hγt xt = λt(1− α)(utkt)
αh−α

t , (15)

πt
λt

=
1

Etqt+1

, (16)

αuα−1
t kαt h

1−α
t =

πt
λt
µωuω−1

t kt, (17)

πt = βEt

{
λt+1αu

α
t+1k

α−1
t+1 h

1−α
t+1 + πt+1(1− δ − µ(uωt+1 − 1))

}
, (18)

where πt is the multiplier on the capital accumulation equation, λt is the multiplier on the re-
source constraint, and ψt the multiplier on the equation that defines the auxiliary variable xt.
Equations (13) and (14) determine optimal consumption. Equation (15) sets the household’s
marginal rate of substitution between consumption and hours worked equal to the real wage
and determines labor supply. Note that for χ > 0, the intertemporal decision for optimal hours
worked depends on the real wage rate as well as on consumption. Equation (16) determines
the real price of investment and is given by the ratio of the two multipliers. Equation (17)
determines the optimal rate of capital utilization by setting the marginal user cost equal to the
marginal benefit of capital services. The marginal user costs of capital on the right hand side
of the equation consists of the partial derivative of d(ut) with respect to ut, which represents
the marginal cost in terms of increased depreciation of using capital at a higher rate. This cost
is scaled by 1/qt+1, which determines current replacement costs of old capital in terms of new
capital. Finally, equation (18) determines optimal investment. Note that we interpret q as the
productivity of a new vintage of capital rather than as the efficiency of the production of in-
vestment goods. This preserves the model’s ability to generate business cycles that are driven
by expectations shifts. We will show below that the model is able to generate the comovement
pattern of the macroeconomic aggregates which is typical for expectations driven business cy-
cles.

It is important to note that the planner’s problem described above is based on the assump-
tion that the planner does not take into account the effect of optimal choices on the evolution
of beliefs. Thus there is no feedback between actions and beliefs in this economy and learn-
ing is passive. This is similar to Van Nieuwerburgh and Veldkamp (2006) but different from
Eusepi and Preston (2011) who allow actions to affect beliefs. The possibility of active learn-
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ing would invalidate the Welfare theorems in the social planning economy and hence there
will be no decentralized counterpart to the planner’s equilibrium.9 The passive learning is re-
flected in the iteration process of the social planner described above: Expectations of capital’s
productivity are formed at the beginning of the period. Based on these expectations and the
endogenous state variables (kt, xt−1), optimal actions are chosen. Given these, expectations
are updated at the beginning of the next period. This process is repeated until the expectations
coincide with the actual policies.

3 Calibration, computation and data

3.1 Calibration

Table 1 reports the parameter values used for calibrating the model. The model is calibrated
on a quarterly basis. We assume the depreciation rate of capital, δ = 0.025, quarterly discount
factor, β = 0.99 and the capital share of production, α = 0.36. These are all standard values in
the literature.

Our calibration of the inverse of the Frisch labor supply elasticity and the parameter which
determines the costliness of varying the capital utilization are based on the values used in
Jaimovich and Rebelo (2009). Setting the inverse of the Frisch labor supply elasticity γ = 0.4
is a value widely used in the literature implying an intertemporal elasticity of substitution for
labor supply of approximately 2.5. In general there are no widely accepted guidelines in the
empirical literature about the magnitude for the parameter which determines the costliness of
capital utilization. Setting ω = 1.15 implies an elasticity of marginal capital utilization of 0.15.
We set σ = 1.0 corresponding to logarithmic utility. The parameter that determines the wealth
effect on labor supply, χ is set equal to 0.001, (almost) corresponding to GHH preferences.
Finally, ϕ and µ are free parameters and we calibrate these to guarantee that capital utilization
is equal to unity and hours worked are equal to one third of the total time endowment in the
steady state.10

The following parameters are specific to the learning and the productivity process. In or-
der to compute the probability of a state change in productivity we first re-write the ergodic
two-state Markov chain as an AR(1) process. Since the transition matrix is symmetric the au-
toregressive parameter is given by (2pHH − 1). The relative price of investment (i.e. the price
of investment relative to consumption goods) should provide a good empirical measure of the
quality improvements embodied in new capital. Hence we use this relative price in order to

9In an economy with active learning the provision of information is a public good and information externalities
emerge in this case. This implies that the provision of information will collapse as no agent will have an incentive
to confer benefits on other agents.

10The derivation of the expressions for ϕ and µ can be found in Appendix 1.
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calibrate the parameters of the productivity process. Specifically, we use the (detrended) mea-
sure of relative price of investment constructed by Fisher (2006) which has an autocorrelation
of 0.99. There are other estimates (e.g. Greenwood et al. (2000) using a different relative price
series) indicating a first-order serial correlation equal to 0.64. We give more weight to Fisher’s
measure and set pHH = (0.9 + 1)/2 = 0.95. It then follows from the structure of the transition
matrix that the probability of a state change equals 0.05.

The parameter τ in the equation that describes κt governs the impact of the growth rate of
general innovations on their adoption rate. While the empirical literature provides indications
about the qualitative changes (see Comin (2009)) in the adoption behavior of general innova-
tions over the business cycle, it is silent about the quantitative changes. We choose τ = 45
which ensures that changes in the growth rate of general innovations cause a substantial change
in the adopted share. While this value is somewhat arbitrary it nevertheless guarantees that κt
visits all values in its domain during the simulations equally likely.

The next objective is to calibrate the standard deviations of the three processes and the au-
tocorrelation parameter of the adoption process, ρ. Ideally we want to strike a balance between
the size of the noise variance and the variance of the signal such that learning about capital
productivity is difficult. The relation between these variances implies a certain signal precision
since it determines the difficulty to learn: the noise variance must be high enough to make a
boom look like a recession. If it is very low, learning is trivial. However, if the noise variance is
very high, estimates about the current state of η will be quite inaccurate and this makes learn-
ing almost impossible. Estimates for the signal precision of investment-specific technological
change are not available due to a lack of forecast data for this variable. We calibrate ση, σϵ,
σε and ρ in order to match as close as possible three moments from the Survey of Professional
Forecasters: signal precision (mean absolute forecast error), standard deviation and serial cor-
relation of forecast errors for GDP. This choice guarantees the average ”difficulty" of learning
in the model is similar to that observed in the data.11

The calibration above implies a standard deviation for the noise, σϵ = 0.01. As we compare
percentage deviations in the model the absolute values of ηH and ηL are not relevant. However,
the distance is important since it has an impact on the volatility of the Markov chain. Assigning
the values [0.93, 1.07] to ηL and ηH implies a standard deviation ση = 0.07. Finally, this calibra-
tion procedure implies σξ = 0.035 and ρ = 0.8.12 The calibration of these parameters guarantees
that the model generates procyclical rate of adoption consistent with Comin (2009).13

11The targeted/model moments are: signal precision (0.39/0.32), standard deviation (0.85/1.05), serial correla-
tion (-0.023/-0.035). For this calculation we use the one quarter ahead forecasts for nominal GDP from 1968:4 to
2009:2. This is the longest forecast series available from this survey.

12We also run simulations of the model with ρ = 0.9 or ρ = 0.7, values that without any material change in our
results.

13In the simulations of the model with the learning mechanism, the correlation between output and the number
of adopted general innovations is 0.61.
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Table 1: Parameter values—baseline calibration

β = 0.99 ω = 1.15 τ = 45
α = 0.36 χ = 0.001 ρ = 0.8
δ = 0.025 ϕ = 0.5822 σξ = 0.035
γ = 0.4 µ = 0.0305 ση = 0.07
σ = 1.00 pHH = 0.95 σε = 0.01

3.2 Computational details and data

The model is solved using value function iteration. We use the policy functions to simulate
the model 500 times over 255 periods. The first 50 periods of each simulation are discarded
to avoid influences due to the choice of the starting values. Statistics are calculated over the
remaining 205 periods corresponding to the sample size (1958 Q2 to 2009 Q2). Second mo-
ments are calculated from HP filtered series. Since the model is calibrated on a quarterly basis
the smoothing parameter is 1600. Skewness is calculated from first-differenced series.

The U.S. data for output is real GDP (GDPC96). Investment is defined as gross private
domestic investment (GPDIC96) and consumption is real personal consumption expenditures
(PCECC96). These series are quarterly, seasonally adjusted and in billions of chained 2005
dollars from the US Department of Commerce, Bureau of Economic Analysis (BEA). The data
for hours of all persons in the non-farm business sector (HOANBS) and the series of civilian
non-institutional population (CNP16OV), used to derive per-capita time-series, are from the
US Department of Labor, Bureau of Labor Statistics. The forecast error statistics we use for
nominal GDP (NGDP) are from the Survey of Professional Forecasters. This survey pools pro-
fessional forecasters to obtain one to five quarter ahead predictions for different variables. Data
availability issues restrict us from using the same window as for the macroeconomic aggre-
gates. We use forecasts from 1968 Q4 to 2009 Q2 to calculate the forecast errors. The forecast
error for a given quarter is the log absolute difference between the median of all forecasters
predictions for nominal GDP and the final revised value of nominal GDP as it appears today.

4 Results

Our first goal is to evaluate the model ability to match a set of business cycle statistics. We then
evaluate the effects of learning and focus on (a) the ability of the model to generate asymmetry
of cycles, (b) the effects of forecast errors and (c) characteristics of recessions. To do this we
compare the outcomes of a model which allows agents to learn over the business cycle with the
outcomes of a model without learning (i.e.perfect information case). Business cycle asymmetry
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is measured by the skewness of macroeconomic aggregates. The more gradual the boom and
the sharper the recession, the more negative is the skewness measure. In Appendix 3 we briefly
discuss the ability of the model to generate co-movement in response to a shift in expectations
of capital productivity. Flodén (2007) has extensively analyzed the theoretical restrictions that
need to be satisfied for this vintage capital model to generate this type of co-movement.

4.1 Business cycle statistics

In this section we evaluate the ability of the model to match business cycle statistics computed
from U.S. data. We focus on relative volatilities, serial correlations, co-movement and growth
asymmetry. We compute second moments from HP filtered series. We evaluate asymmetry
by computing a variable’s skewness from its log first difference. If negative changes are larger
than positive changes as in the data then variables will exhibit negative skewness.14 We simulate
two versions of the model: a no-learning, perfect information version and the full version which
incorporates learning about productivity. In the no-learning version, agents observe the state of
ηt at the beginning of period t and hence have a perfect signal about productivity (except for
the i.i.d. noise), whereas in the learning version the state of ηt is not revealed.15

Table 2 reports various moments from the data (panel A) and the two versions of the model
(panel B and C). Both versions of the model match reasonably well the relative volatilities
and correlations with output. Specifically, both correctly rank investment to be more volatile
than output and consumption to be less volatile than output. However, they under-predict the
volatility of hours worked which is more volatile than output in the data.16 They also match
reasonably close the serial correlations, although the full model generates slightly lower serial
correlations compared with the data. This is a direct consequence of the difference in the serial
correlation between the actual, q and forecasted productivity, q̃. In the learning version, the
latter’s serial correlation is markedly lower compared to the true process; for learning to be
realistic (i.e. neither impossible nor trivial) the noise shock has to be big enough to make
a boom look like a recession. This however implies that agents’ may wrongly infer a state
change in capital’s productivity when none has occurred. Thus conceptually, agents’ forecasted
productivity is ”changing state" more often than true productivity and this imparts a lower

14Since the HP filter is a two-sided filter, information from the past as well as the future are used. De-trending
with this filter implies that agents have information about the future which can have an impact on their decision
today. Using a two-sided filter diminishes the filtered values prior to a downturn. This reduces the magnitude of
the bust and influences our evaluation of business cycle asymmetry. To avoid this distortionary effect of two-sided
filters – such as the commonly used HP or bandpass filter – we calculate the variable’s skewness from the log
first-differences.

15The no learning version of the model differs from Greenwood et al. (1988) only by the fact that productivity
of the newly installed capital is subject to the additive i.i.d. shock ϵ which cannot be observed by the agents.

16The low relative volatility of hours is a well known problem of RBC models. It can be addressed by introduc-
ing for example the Hansen (1985) indivisible labor approach into the utility function.
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autocorrelation in forecasts for q̃.
The main difference between the two versions of the model in Table 2 is with respect to the

generated asymmetry. In particular, only the learning version can generate asymmetry in all
variables in line with the data (panel C)—the no-learning version fails in this dimension. More
precisely the point estimate in the data skewness measure is within two standard deviations of
the model’s skewness. This can be seen in the last column of Table 2. In panel B the skewness
of output is close to zero, indicating that boom and recession phases are symmetric. More-
over the future productivity of capital, q, has skewness close to zero. Since agents perfectly
observe the signal— as the state of ηt is revealed at the beginning of period t—their forecast
for productivity, q̃, differs from q only by the additive noise shock, ϵt+1. This noise shock on
its own is not a source of asymmetry which explains why the skewness of q̃ is close to zero
and very similar to the one for q. Since there is no other mechanism in the model to make
booms longer and more gradual than recessions, all other macroeconomic aggregates exhibit
skewness which is close to zero as well. The main reason for the generated growth asymmetry
is that in the learning version the skewness of agent’s forecast for productivity, q̃, is negative
in contrast to the no-learning version. The introduction of agent’s learning over the business
cycle is the crucial mechanism to generate growth asymmetries in line with the data. Booms
tend to be more gradual than recessions because agent’s speed of learning varies procyclically
over the business cycle. The asymmetry in agent’s forecast for productivity imparts negative
skewness in the remaining macro-aggregates in the learning version. This effect is very strong
for output, investment, hours worked and capital utilization while it is less so for consumption.
These results demonstrate the importance of the learning mechanism to generate the growth
asymmetries present in the data.

4.2 The role of forecast errors: optimism and pessimism

This section provides a more detailed analysis about the functioning of the learning mecha-
nism by evaluating the role of forecast errors. Specifically we wish to examine the effects
of optimism and pessimism on the cyclical fluctuations of the model. We define an agent as
pessimistic (optimistic) when we observe a ”large" (to be defined below) negative (positive)
forecast error in the simulation. A negative (positive) forecast error implies that agents under-
predict (overpredict) capital’s productivity.

We use the simulation set-up described in section 4.1 in order to study how forecast errors
can affect the equilibrium allocations in the model. We simulate the learning and no-learning
economies using an identical sequence of the shocks that determine the productivity of next
period’s capital (signal, noise and adoption process shocks).

Table 3 reports the behavior of the model in periods during which agents make forecast er-
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Table 2: Key moments of macroeconomic aggregates

Relative First-order Correlation Skewness
std deviation autocorrelation with y

Panel A: Data

y 1.00 0.85 1 -0.27
i 4.62 0.79 0.90 -0.76
h 1.16 0.91 0.87 -0.74
c 0.80 0.87 0.87 -0.69

Panel B: Model without learning

y 1 0.824 1 0.004
(0.000) (0.042) (0.000) (0.332)

i 3.537 0.782 0.948 -0.036
(0.276) (0.047) (0.021) (0.394)

h 0.746 0.811 0.992 0.022
(0.009) (0.044) (0.002) (0.331)

c 0.387 0.813 0.772 0.026
(0.052) (0.066) (0.047) (0.319)

u 1.488 0.818 0.991 0.019
(0.016) (0.044) (0.002) (0.333)

q 0.707 0.817 0.944 0.018
(0.018) (0.041) (0.015) (0.318)

q̃ 0.692 0.832 0.970 0.012
(0.015) (0.039) (0.008) (0.332)

Panel C: Model with learning

y 1 0.708 1 -0.171
(0.000) (0.078) (0.000) (0.312)

i 3.499 0.670 0.954 -0.170
(0.260) (0.079) (0.017) (0.335)

h 0.747 0.695 0.993 -0.157
(0.008) (0.078) (0.002) (0.297)

c 0.379 0.742 0.771 -0.043
(0.052) (0.090) (0.043) (0.341)

u 1.485 0.701 0.991 -0.194
(0.016) (0.078) (0.002) (0.322)

q 0.686 0.812 0.885 0.011
(0.038) (0.045) (0.031) (0.334)

q̃ 0.689 0.710 0.972 -0.189
(0.013) (0.078) (0.006) (0.337)

Notes. Sample is 1958 Q2 to 2009 Q2. Values reported in parentheses are stan-
dard deviations. The model is simulated 500 times over 255 periods. The first 50
periods are discarded. Second moments are calculated from HP filtered series.
Skewness is calculated from (log) first-differenced series. Variables included:
Output (y), investment (i), hours worked (h), consumption (c), capital utilisa-
tion (u), productivity (q) and the forecast for productivity (q̃).
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rors of all sizes (small and large). These periods account on average for 85% of the simulation.
Table 3 reports the growth rate of variables under both positive and negative forecast errors. The
columns ”Absolute distance” reports the absolute difference between the two economies. The
main conclusion from inspecting these numbers is that forecast errors amplify the fluctuations
observed in the perfect information economy, although this amplification is relatively modest
(with the exception of investment). In periods with negative forecast errors agents underpre-
dict productivity compared to the truth; variables decline more in the learning compared to
the no learning economy. Similarly in periods with positive forecast errors agents overpredict
productivity and variables rise more in the learning compared to the no learning economy.

Table 3 reports the behavior of the model when all forecast errors are considered (small and
large). However, there are periods in the simulation when agents make big forecast errors. We
also want to examine this special case where forecast errors can potentially have a large impact
on the allocations of the model.

We examine the distribution of forecast errors obtained from the simulation and choose to
examine forecast errors that exceed one standard deviation above or below the average forecast
error. We label those errors as ”large”. This threshold generates forecast errors that occur in
approximately 19% of the simulation. We observe large negative forecast errors in 10% of the
simulation and large positive forecast errors in 9% of the simulation.17 We calculate the mean
growth in variables from the two economies. These results are summarized in Table 4.

We draw attention to the following facts from Table 4. First, agents are pessimistic when the
true growth rate of productivity is negative and optimistic when the true growth rate of produc-
tivity is positive. The presence of noise makes it difficult for agents to accurately predict true
productivity when the latter is changing and agents make substantial forecast errors when trying
to predict the true process. Second, agents in the no learning economy always forecast capital
productivity perfectly, thus no forecast errors occur in this economy. Changing fundamentals
cause fluctuations in macroeconomic aggregates in both economies but errors in forecasting
productivity amplify those fluctuations. The magnitude of amplification is quite substantial. In
order to demonstrate this we look at the absolute distance, for each variable, between the learn-
ing and no-learning economies. This distance quantifies by how much equilibrium allocations
differ due to forecast errors.

The distance in investment growth rates is larger among all variables followed by utiliza-
tion, output and hours. The distance in investment growth is equal to 4.0% for negative forecast
errors and 8.9% for positive forecast errors. In the learning version, pessimistic agents cut in-
vestment on average by 6.2% relative to a modest 2.2% when they possess perfect information.
When agents are optimistic they raise investment by 25.4% compared to 16.5% in the perfect

17Using the forecast errors for GDP (one through four quarters ahead) from the SPF we compute that forecast
errors exceeding the average by one standard deviation occur in approximately the same range as in the simulation,
from 20% to 25% of the sample period.
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information economy. In this case agents over-invest. This is an interesting finding because it
has a parallel with the boom in investment rates observed during the IT boom-bust cycle in the
1990s. When agents are pessimistic, output in the learning economy declines by 3.5% com-
pared to 1.6% in the no learning economy, while in periods of optimism output in the learning
economy rises by 6.0% compared to 4.0% in the no learning economy. Similar differences
occur in utilization rates and hours worked, while the difference in consumption allocations is
relatively small.

4.3 Characteristics of recessions

We also want to examine the nature of recessions in the model economy. We define recessions
in the model as periods with at least two quarters of negative output growth. Table 5 reports
characteristics of recessions from the model and compares them with recessions from the data.
Several findings are worth highlighting. First, the average length of the recession in the model
is four quarters, very similar to that in the data (4.25 quarters). Second, recessions in the model
cannot only be driven by un-favorable fundamentals but also by noise (with no change in
fundamentals). The share of recessions that occur purely due to noise equals 15%. The remain-
ing 85% of recessions are caused by unfavorable fundamentals. The noise triggered episodes
coincide with agents mistakenly forecast productivity to be declining when true productivity is
actually rising at the onset of the recession.

Table 5 reports two measures: the average growth of variables and the peak to trough
changes for both types of recessions. There are two interesting findings. First, both noise
and fundamental triggered recessions generate declines that are very similar in magnitude. For
example, output declines on average by 1.7% in the noise triggered compared to 1.8% in the
fundamentals triggered recession. Investment declines on average by 4.9% in the noise trig-
gered compared to 5.2% in the fundamentals triggered recession. Second, the model’s average
growth declines match reasonably well the average growth declines in macro-aggregates ob-
served during U.S. recessionary episodes.18 For example, the model generates very similar
average growth declines in hours worked, consumption and investment although overpredicts
to some extent the output growth decline. We view these findings as a success of the model
given it is driven by a single disturbance.

The declines from peak to trough are also similar for the two types of recessions in the
model. For example, the decline in output is 3.7% in the noise triggered compared to 3.8%
in the fundamentals triggered episode, whereas the peak to trough decline in investment is
10% and 10.3% in the noise and fundamental triggered episodes respectively. Interestingly,

18We have identified 8 recessions from the U.S. data, based on the NBER procedure (sample 1958 Q2 to 2009
Q2): 1960 Q2 to 1961 Q1, 1969 Q4 to 1970 Q4, 1973 Q4 to 1975 Q1, 1980 Q1 to 1980 Q3, 1981 Q3 to 1982 Q4,
1990 Q3 to 1991 Q1, 2001 Q1 to 2001 Q4, 2007 Q4 to 2009 Q2.
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the noise driven recession can explain a large fraction of the peak to trough change in macroe-
conomic aggregates computed from the data. The last column of Table 5 reports the share of
peak to trough decline in the data that can be accounted for by noise in the model. A noise
triggered recession can account for all of the decline in output and consumption (arithmeti-
cally it accounts for over 100% of the decline in those aggregates) and 57% of the decline in
investment and hours worked. This is a remarkable finding given that the model’s exogenous
processes were calibrated to match the time series behavior of forecast errors for GDP and
not calibrated to match any statistic from Table 5 or statistics from aggregate macroeconomic
variables (e.g. volatility and persistence of GDP) that could potentially overweight the model’s
ability to match recessions observed the data.

Table 3: The impact of all forecast errors

Negative FE Positive FE

Absolute Absolute
No-Learning Learning distance No-Learning Learning distance

∆y/y -0.006 -0.010 0.004 0.011 0.017 0.007
∆i/i 0.004 0.002 0.002 0.060 0.083 0.023
∆h/h -0.005 -0.008 0.003 0.008 0.012 0.004
∆c/c -0.002 -0.004 0.002 0.003 0.005 0.002
∆u/u -0.008 -0.013 0.005 0.019 0.028 0.009
∆q/q -0.005 -0.005 0.000 0.008 0.008 0.000

Forecast error 0.000 -0.038 0.038 0.000 0.037 0.037

Notes. Variables included: Output (y), investment (i), hours worked (h), consumption (c), capital utilisation (u),
productivity (q) and forecast error for productivity, computed as Et−1qt − qt. The model is simulated 500 times
over 255 periods each. The first 50 periods are discarded and the mean growth rate in variables of the economy
with and without learning is calculated over the remaining periods.

5 Conclusions

Barro and King (1994) (BK) pointed out that changes in beliefs about the future cannot gener-
ate empirically recognizable business cycles within the standard real business cycle model. The
BK challenge has been difficult to address. Specifically, it has been difficult to develop simple
one sector models that can give rise to expectations driven fluctuations without a compromise
on other dimensions. In this paper we propose a simple generalization of the Greenwood et al.
(1988) framework and show it can generate fluctuations that arise as a result of agents difficulty
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Table 4: The impact of large forecast errors

Large negative FE Large positive FE
Pessimism Optimism

Absolute Absolute
No-Learning Learning distance No-Learning Learning distance

∆y/y -0.016 -0.035 0.019 0.040 0.060 0.020
∆i/i -0.022 -0.062 0.040 0.165 0.254 0.089
∆h/h -0.012 -0.027 0.015 0.029 0.043 0.014
∆c/c -0.006 -0.012 0.006 0.010 0.016 0.006
∆u/u -0.023 -0.049 0.026 0.060 0.093 0.033
∆q/q -0.013 -0.013 0.000 0.028 0.028 0.000

Forecast error 0.000 -0.091 0.091 0.000 0.092 0.092

Notes. Variables included: Output (y), investment (i), hours worked (h), consumption (c), capital utilisation (u),
productivity (q) and the forecast error for productivity, computed as Et−1qt−qt. The model is simulated 500 times
over 255 periods each. The first 50 periods are discarded and the mean growth in variables of the economy with
and without learning is calculated over the remaining periods. Forecast errors are defined to be large when their
absolute value exceeds one standard deviation of the average forecast error.

Table 5: Recession statistics

Average share of recessions

Model recessions due to Model recessions due to U.S. data Share explained
noise (0.15) fundamentals (0.85) average recession† by noise

average growth peak to trough average growth peak to trough average growth peak to trough
change change change

y -0.017 -0.037 -0.018 -0.038 -0.007 -0.034 1∗

i -0.049 -0.100 -0.052 -0.103 -0.048 -0.176 0.57

h -0.012 -0.028 -0.013 -0.029 -0.011 -0.049 0.57

c -0.007 -0.016 -0.007 -0.016 -0.003 -0.011 1∗

u -0.020 -0.041 -0.021 -0.042 n.a. n.a.

q -0.003 0.003 -0.003 0.003 n.a. n.a.

q̃ -0.007 -0.014 -0.007 -0.014 n.a. n.a.

Notes. Variables included: Output (y), investment (i), hours worked (h), consumption (c), capital utilisation (u), productivity (q) and the
forecast for productivity (q̃). Share explained by noise is defined as peak to trough change (due to noise) over peak to trough change in U.S.
data. †: growth and peak to trough declines computed as the average from all U.S. recessions. ∗ Shares that exceed one in the Table above are
set equal to one.
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to forecast capital embodied productivity. The two key assumptions in the model are: (1) the
vintage view of capital productivity, whereby each successive vintage has (potentially) differ-
ent productivity and (2) agents’ imperfect information and learning about this productivity. The
main findings from simulations of the model are as follows. First, noise amplifies fundamentals
in both directions, upward and downward. Fluctuations in the model are larger when agents
make forecast errors compared to the perfect information case. Second, recessions can arise
purely due to noise, i.e. even without a change in fundamentals. Third, pure noise can trigger
recessions that mimic in magnitude, duration and depth the typical post WW II U.S. recession.

6 Appendix

Appendix 1: Determination of the Parameters ϕ and µ

The steady state value for hours worked is unity. This choice is based on the fact that the total
amount of time per period is normalised to 3, and that agents use about 1/3 of their amount of
time to work. Under the assumption that h = 1, the steady state capital stock can be derived
from the steady state Euler equation (18):

1 =[β(αuαkα−1q + (1− d(u))]

⇔ k =

{[
1

β
− (1− (δ + µ(uω − 1))

]
1

αuαq

} 1
α−1

.

We want to calibrate the model in a way that u = 1 when h = 1. Considering the steady state
expression for capital utilisation — which can be derived from the first order condition (17)
— and using the equation above, one can derive a formulation of steady state utilisation solely
depending on parameters:
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⇔ u =

{(
1

β
− (1− δ)− µ

)
1

µ(ω − 1)

} 1
ω

. (.1)
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From this equation one can derive an expression for µ as the steady state utilisation is chosen
to equal unity:

1 =

[
1

µ(ω − 1)

(
1

β
− (1− δ)− µ

)] 1
ω

⇔ µ =
1

ω

(
1

β
− (1− δ)

)
.

Note that the choice of u to equal unity allows to calibrate capital utilisation and depreciation
in the steady state independently form each other, as d(u) = δ + µ(uω − 1) = δ.

A steady state capital utilisation of unity and a steady state productivity of q = 1 implies
that the steady state capital stock can be expressed as:

k =

{
1

βα
− (1− δ)

α

} 1
α−1

. (.2)

Given u = 1, q = 1 and the steady state capital stock, one can numerically solve the steady
state versions of equations (13) – (15) for ϕ, λ and ψ so that h = 1. Note that steady state
capital utilisation and steady state employment are independent of the value of steady state
productivity q. For capital utilisation this is shown in the derivation of equation (.1). The fact
that steady state employment is unaffected by the value of q follows from the properties of the
chosen utility function which guarantee stationary employment.

Appendix 2: Derivation of the Elements of the Bayesian Updating Formula

The Unconditional Probability of η to be in a Certain State:
The stochastic process for η is designed to be an ergodic two-state Markov process. By def-
inition, an ergodic Markov chain has exactly one eigenvalue which equals unity. All other
eigenvalues lie inside the unit circle. The eigenvector which is associated with the unit eigen-
value is therefore unique and can be interpreted as the vector of unconditional probabilities.
For the above described ergodic two-state Markov chain the eigenvector associated with the
unit eigenvalue turns out to be

P

{
ηt = ηH

ηt = ηL

}
=

(
1−pLL

2−pHH−pLL

1−pHH

2−pHH−pLL

)
. (.3)
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The assumptions of a symmetric transition matrix and an ergodic two-state Markov chain imply
that pHH = pLL. It follows from expression (eq:uncProb) that the unconditional probability of
η to be in a high (low) state is 0.5. Thus, the formula for Bayesian updating (8) depends solely
on the probability of qt conditional on ηt = ηH and ηt = ηL, respectively.

The Normal Probability Density Function:
There is always some uncertainty about the state of η. Therefore, all inference about η takes the
form of statements of probability. Uncertainty is described in terms of the normal probability
density function Ψ(·). Given the mean E(qt|ηt = ηH) and the variance V (qt|ηt = ηH) the
normal probability density for every outcome qt, given ηt being in a high (low) state, can be
calculated according to

Ψ(qt|ηt = ηH) =
1

V (qt|ηt = ηH)
√
2Π

exp

(
− (qt − E(qt|ηt = ηH))2

2(V (qt|ηt = ηH))2

)
. (.4)

As Etϵt = 0, the mean and the variance can be derived by using the formulation for productivity
(5):

E(qt|ηt = ηH) = Et[η
Hv

κt−1

t−1 + ϵt]

= ηHv
κt−1

t−1 .

V (qt|ηt = ηH) = Et[(η
Hv

κt−1

t−1 + ϵt)
2]− (Et[η

Hv
κt−1

t−1 + ϵt])
2

= Et[(η
Hv

κt−1

t−1 )2 + 2ηHv
κt−1

t−1 ϵt + ϵ2t ]− (ηHv
κt−1

t−1 )2

= σ2
ϵ .

Knowing the unconditional probability of η to be in a certain state as well as the normal prob-
ability density (.4), allows — by using the Bayesian updating formula (8) — to derive the
posteriori probability for ηt to be in a high (low) state.

Appendix 3: Expectations Driven Business Cycles

In this section we evaluate the model’s ability to generate cycles that exhibit co-movement. We
consider the model’s equilibrium as given in equations (13) – (18) abstracting learning. For
this exercise we solve the model in DYNARE using a local perturbation method. In this case
we assume productivity qt to follow an AR(1) process with persistence 0.64 and error term
standard deviation of 0.035 as estimated by Greenwood et al. (2000). Figure 2 shows the case
in which agents receive a signal in period 2 that the newly installed vintage of capital in period
3 will be more productive. There is no change in the productivity of capital in period 2. In
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response to this shift in expectations, output, consumption, investment, hours work and capital
utilization all increase in period 2.

The mechanism that enables the co-movement of these variables works as follows. The
expected increase in the productivity of tomorrow’s capital, agents want to increase investment
to benefit from the high productive vintage of capital. Simultaneously they want to increase
consumption due to the wealth effect. The first order condition for capital utilization (17) in
combination with (16) indicate that a rise in Etqt+1 triggers an increase in capital utilization.
Agents intensify the use of today’s capital stock to increase investment as depreciation today is
relatively cheaper than depreciation tomorrow. Higher capital utilization leads to an increase in
output which allows for a simultaneous increase in investment and consumption. It also raises
the marginal product of labor leading to an increase in hours worked.

Figure 2. The economy’s response to news in period 2 that the new vintage of capital in period
3 will be more productive
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Notes. Notes. Variables included: Output (y), investment (i), hours worked (h), consumption
(c), capital utilisation (u), productivity (q) and the forecast for productivity (Eq)).
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