

CENTRE FOR FINANCE, CREDIT AND MACROECONOMICS

Working Paper 19/05

Sectoral heterogeneities in price rigidity and returns to scale

Mohamed Diaby and Atsuyoshi Morozumi

Produced By:

Centre for Finance, Credit and Macroeconomics School of Economics Sir Clive Granger Building University of Nottingham University Park Nottingham NG7 2RD

hilary.hughes@nottingham.ac.uk

Sectoral Heterogeneities in Price Rigidity and Returns to Scale

Mohamed Diaby

Atsuyoshi Morozumi

University of Nottingham *

University of Nottingham †

April 3, 2019

Abstract

Previous research on price-setting has shown that the degree of nominal price rigidity differs substantially across sectors. This paper proposes returns to scale as a key determinant of this sectoral heterogeneity in price rigidity. We develop a multisector menu cost model with heterogeneity in returns to scale and sectoral idiosyncratic shocks, and show analytically that a sector with higher returns to scale is associated with larger price rigidity. Numerical experiments using estimated returns to scale for US manufacturing sectors suggest that the effect of returns to scale is quantitatively large. We also provide empirical evidence consistent with the theoretical prediction.

Keywords: Menu costs, Sectoral heterogeneity, Price rigidity, Returns to scale

JEL classification: E30

^{*}School of Economics, University of Nottingham (mohamed.diaby@nottingham.ac.uk).

[†]School of Economics, University of Nottingham, (atsuyoshi.Morozumi@nottingham.ac.uk).

1 Introduction

What explains the significant amount of heterogeneity in nominal price rigidity across sectors?¹ This paper considers this question using a multi-sector menu cost model where the degree of price rigidity is endogenized. Our main conclusion is that cross-sectoral differences in returns to scale are a key factor which shapes heterogeneity in price rigidity.

Our investigation on returns to scale as a possible determinant of sectoral heterogeneity in price rigidity is motivated by the following two observations. First, theory suggests that in the presence of menu costs (generic costs associated with nominal price adjustments), returns to scale affect the degree of price rigidity. To explain, Ball et al. (1988) highlight that when a firm's profit function is more concave and thus profits are more sensitive to the deviation of its price from the optimum, a firm has a larger incentive to pay menu costs and reset its price. Then, given that decreasing returns to scale make a profit function more concave than constant returns (Burstein and Hellwig (2007)), the degree of returns in general is expected to affect its incentive to adjust a price and thus the frequency of price changes.

Second, previous empirical evidence indicates that returns to scale are different across sectors. For example, Burnside (1996) shows that for the US manufacturing sector, the equality in returns to scale across its 20 sub-sectors is strongly rejected.² In line with this finding, Diewert et al. (2011) show that in Japan over 1964-88, the electrical machinery industry shows increasing returns to scale for most of the sample period, while the textiles industry tends to show decreasing returns to scale.³ Thus, the above two observations, taken together, suggest that in the presence of menu costs, sectoral heterogeneity in returns to scale may contribute to the observed heterogeneity in price rigidity.

¹Sectoral heterogeneity in price stickiness is an established fact, both for consumer and producer prices. See, for example, Carlton (1986), Bils and Klenow (2004), Klenow and Kryvtsov (2008), Nakamura and Steinsson (2008), Klenow and Malin (2011), and Vermeulen et al. (2012).

²Also, Basu and Fernald (1997), based on 34 US industries for the 1959-89 period, show that within manufacturing, durables show higher returns to scale than non-durables.

³In the Japanese context, Nakamura (1992) and Beason and Weinstein (1996) also find the heterogeneity in returns to scale across sectors.

To explore this possibility formally, we first develop a multi-sector menu cost model where sectors differ in returns to scale. Each sector consists of a large number of monopolistic firms. Firms in each sector are subject to an *ongoing* sector-specific productivity shock, and every period, after the shock is realized, a firm has an opportunity to adjust its price. When menu costs are absent, a firm *always* adjusts its price to the profit-maximizing price, which varies according to the realized value of the productivity shock. The price is fully flexible in this case. However, with menu costs present, a firm chooses *when* it pays menu costs and *what* new price to set, to maximize the present value of future profits net of menu costs. This means that not adjusting a price, i.e., inaction, can be an optimal decision. Our aim is to characterize how returns to scale, which differ across sectors, affect the optimal frequency of price changes.

To solve a monopolistic firm's problem with menu costs and ongoing shocks, we follow the approach of Alvarez and Lippi (2014), and map our optimisation problem onto an *impulse control* problem analyzed by Dixit (1991a). The solution of this problem consists of a *range* of the deviation of an actual price from the optimal price set in a flexible-price equilibrium (which follows a stochastic process): within this range a firm keeps its price, but when it deviates from the optimal price beyond the range, a firm pays menu costs and resets its price to the flexible-price optimum. Thus, the larger the range is, the less frequently the price adjustment occurs. The main analytical insight of our model is that the length of this range of inaction is *increasing* in returns to scale, implying that a firm in a sector with *higher* returns to scale changes its price *less* often. The intuition is that consistent with Burstein and Hellwig (2007), the profit function of a firm with higher returns to scale is less concave, making the firm less sensitive to mispricing. This way, theory predicts that there is a *positive* association between price rigidity and returns to scale across sectors.

Once we obtain the analytical result, we conduct numerical experiments to shed light on the quantitative importance of returns to scale as a determinant of sectoral heterogeneity in price rigidity. For this purpose, using the NBER-CES manufacturing industry database (Bartelsman and Gray (1996)), and the multifactor productivity data from US Bureau of Labor Statistics (BLS), we first estimate returns to scale for each of the 447 6-digit US manufacturing sectors (according to North American Industry Classification System, NAICS) over the period of 1987-2011. Our reference estimate indicates that the average of returns to scale is 1.12 with the standard deviation of 0.25, suggesting that returns to scale are indeed heterogeneous across sectors. Then, using the calibrated theoretical model, we show that the contribution of cross-sectoral differences in returns to scale to sectoral heterogeneity in price rigidity is sizable. To illustrate, for the reference case considered, an increase in sectoral returns to scale from 0.87 (the estimated mean minus one standard deviation) to 1.12 (the mean) leads to a rise in the price rigidity measure (100 minus the monthly frequency of price changes, in percent) by 7 percentage points from 73% to 80%.

Last, we provide empirical evidence consistent with the theoretical prediction that there is a positive correlation between returns to scale and price rigidity across sectors. To do this, we first match the estimated returns to scale at the 6-digit manufacturing sector level with the frequency of changes in producer prices at the product category level estimated by Nakamura and Steinsson (2008). To highlight the association between returns to scale and price rigidity, we control for various factors which are known to contribute to the sectoral difference in price rigidity. Specifically, following the comprehensive study of Vermeulen et al. (2012) on the determinants of producer price rigidity at a sector level in the Euro area, we take account of sectoral differences in 1) labor and intermediate cost shares in production, 2) industry concentration ratio, and 3) sector-level average inflation rates. Using data on 200 6-digit manufacturing sectors matched with 275 product categories, we show that even after controlling for these factors, price rigidity and returns to scale are positively associated.

A number of papers have explored the question of what shapes the sectoral heterogeneity in nominal rigidities. For example, Peneva (2011) shows that labor cost share in production is positively related to price rigidity across sectors, possibly due to the predetermined nature of nominal wages. Also, earlier works of Carlton (1986) and Caucutt et al. (1999) show

that the degree of industry concentration is positively associated with price rigidity, though Eckard (1982) finds that the association has the opposite sign. Vermeulen et al. (2012) show that in addition to factors such as the input cost structure and industry concentration, the level of sectoral inflation is also relevant.⁴ This paper adds to this strand of the literature on nominal rigidities by proposing a new determinant of their sectoral heterogeneity in the shape of returns to scale.

This paper is also related to works which examine the macroeconomic outcomes of sectoral heterogeneity in nominal rigidities. For instance, Carvalho (2006), extending the time-dependent model of Calvo (1983), shows theoretically that the presence of sectoral heterogeneity in nominal price stickiness makes the size and persistence of the real effects of monetary shocks larger. Nakamura and Steinsson (2010) and Dixon and Kara (2011) also highlight the relevance of the sectoral heterogeneity in the investigation of monetary non-neutrality, by generalizing the state-dependent model of Golosov and Lucas (2007) and the time-dependent model of Taylor (1980), respectively.⁵ The general message is thus that sectoral heterogeneity in nominal rigidities has an important implication on the non-neutrality of money. This paper complements these works by investigating the source of heterogeneity in price rigidity, rather than its outcome.

The rest of this paper is organized as follows. Section 2 presents the theoretical model, and Section 3 derives an analytical solution. Section 4 estimates returns to scale for US manufacturing sub-sectors, and conducts a calibration exercise. Section 5 offers an empirical evidence in support of theory. Section 6 gives concluding remarks.

⁴Regarding other possible determinants, Caucutt et al. (1999) show that goods durability is positively related to rigidity,. Further, Bils and Klenow (2004) and Klenow and Malin (2011) highlight that raw goods exhibit higher price flexibility since they are more prone to volatile cost shocks.

⁵Further, Bouakez et al. (2009) show that the interaction between sectoral heterogeneities in price stickiness and input-output structure plays an important role in the monetary transmission mechanism. They model nominal rigidity using the price adjustment costs of Rotemberg (1982).

2 The model

2.1 Households

The preference of the representative household is given as

$$\int_0^\infty e^{-\rho t} \left[\log C_t + \kappa \log \frac{M_t}{P_t} - \alpha \int_0^1 f(k) \int_0^1 \frac{L_{kj,t}^{\gamma}}{\gamma} dj dk \right] dt. \tag{1}$$

The economy is divided into numerous sectors, and each sector is populated with a large number of firms. Sectors are indexed by $k \in [0; 1]$, with a density function f(k) summarizing the distribution of sectors, and within sector k, firms are indexed by $j \in [0; 1]$. The representative household consumes the composite of differentiated goods produced by all the firms in the economy. Within the instantaneous utility function, C_t is the composite consumption at time t. Money enters the model through the money-in-utility approach: utility increases in transaction services brought by real money balances, M_t/P_t . The household supplies labor to all the firms, reducing utility due to the loss of leisure time: $L_{kj,t}$ is labor supply to firm j in sector k, and γ equals $1 + \frac{1}{\nu}$, where ν is the Frisch elasticity of labor supply. ρ is the discount rate. This utility function is similar to Carvalho (2006), who studies the role of sectoral heterogeneity in price rigidity in the output effects of money supply. 6

Assuming a constant elasticity of substitution, ε , C_t is given as

$$C_t = \left[\int_0^1 f(k)^{1/\varepsilon} A_{k,t}^{1/\varepsilon} C_{k,t}^{(\varepsilon-1)/\varepsilon} dk \right]^{\varepsilon/(\varepsilon-1)}, \tag{2}$$

where $C_{k,t} = f(k) \left[\int_0^1 C_{kj,t}^{(\varepsilon-1)/\varepsilon} dj \right]^{\varepsilon/(\varepsilon-1)}$. $C_{k,t}$ is the sector-level composite consumption, and $C_{kj,t}$ is the consumption of a differentiated good produced by firm j in sector k (firm kj in short). $A_{k,t}$ is a sector-specific preference shock. At each (infinitesimally short) period t, households solve an intra-temporal problem where they maximize C_t for a given level of

⁶The differences from Carvalho (2006) are that in our model, 1) the time is continuous (instead of discrete), 2) the consumption component takes a log (instead of constant-relative-risk-aversion) form, and 3) real money balances enter the utility function (instead of assuming a cashless economy).

income. The solution yields the downward-sloping demand curve for a good produced by firm kj:

$$C_{kj,t} = A_{k,t} \left(\frac{P_{kj,t}}{P_t}\right)^{-\varepsilon} C_t.^7 \tag{3}$$

 $P_{kj,t}$ is the price of good j in sector k, and aggregate price index, P_t is defined as

$$P_t = \left[\int_0^1 A_{k,t} f(k) P_{k,t}^{1-\varepsilon} dk \right]^{\frac{1}{1-\varepsilon}}, \tag{4}$$

where $P_{k,t} = \left[\int_0^1 P_{kj,t}^{1-\varepsilon} dj \right]^{\frac{1}{1-\varepsilon}}$. $P_t\left(P_{k,t}\right)$ is interpretable as the minimum expenditure necessary to obtain one unit of composite consumption, C_t (sectoral composite consumption, $C_{k,t}$).

Turning to the inter-temporal problem, the household maximizes the utility subject to the following budget constraint:

$$P_t C_t + \dot{M}_t + \dot{B}_t = i_t B_t + \int_0^1 f(k) \int_0^1 W_{kj,t} L_{kj,t} dj dk + \Pi_t,$$
 (5)

which says that the sum of nominal consumption, P_tC_t , a rise in money holding, \dot{M}_t , and a rise in nominal bond holdings, \dot{B}_t is financed by the sum of nominal net earning from holding bond, i_tB_t (i_t is the nominal net interest rate), the integral of nominal wage, $W_{kj,t}$ paid by firm kj, and nominal profit, Π_t from being a shareholder of monopolistic firms. The first order conditions yield the Euler equation of allocation of consumption over time (Eq.6), money demand function representing the equality between nominal interest rate and the marginal rate of substitution (MRS) between consumption and real money balances. (Eq.7), and the labor supply function (Eq.8) indicating the equality between the real wage and the MRS between consumption and leisure:

$$\frac{\dot{C}_t}{C_t} = i_t - \frac{\dot{P}_t}{P_t} - \rho \tag{6}$$

⁷This can be obtained by dividing the intra-temporal problem into the two stages: one is to maximize $C_{k,t}$ by allocating given income among $C_{k,t}$, and another is to maximize C_t by allocating given income among $C_{k,t}$. Solving the former yields $C_{kj,t} = f(k)^{-1} (P_{kj,t}/P_{k,t})^{-\varepsilon} C_{k,t}$, and solving the latter gives $C_{k,t} = f(k)A_{k,t}(P_{k,t}/P_t)^{-\varepsilon} C_t$. Combining these leads to Eq.3.

$$\frac{M_t}{P_t} = \kappa \frac{C_t}{i_t} \tag{7}$$

$$\frac{W_{kj,t}}{P_t} = \alpha C_t L_{kj,t}^{\gamma - 1} \tag{8}$$

2.2 Firms

Each firm is a monopolistic competitor, facing the downward sloping demand curve (Eq. 3). To produce a differentiated good, firm kj (firm j in sector k) uses labor as a sole input. Returns to scale differ across sectors, with the distribution characterized by the density function f(k). Firms in each sector k are subject to sector-specific productivity shocks, $Z_{k,t}$ which follow the exponential of independent Brownian motions. This way of modeling idiosyncratic shocks is similar to Alvarez and Lippi (2014).8 Formally, the production function of firm kj is given as:

$$Y_{kj,t} = Z_{k,t} L_{kj,t}^{\psi_k}, \tag{9}$$

where ψ_k is the degree of returns to scale in sector k, and $Z_{k,t}$ is modeled as:

$$Z_{k,t} = e^{\sigma x_{k,t}},\tag{10}$$

where $x_{k,t} (k \in [0,1])$ follows standard Brownian motion, so that σ reflects the size of volatility of the sector-specific shock.⁹

Every period, after sector-specific shocks are realized, a firm chooses whether or not to change its nominal price. However, changing the price requires the firm to pay menu costs,

⁸The difference is that they model idiosyncratic shocks across firms and products (they model a multi-product firm), whereas we model idiosyncratic shocks across sectors (firms within the same sector are subject to the same shocks).

⁹Standard Brownian motion is a stochastic process $W = (W_t, t \in [0, \infty))$ characterized by the following conditions (Mikosch (1998)): (1) It starts at zero: $W_0 = 0$; (2) It has stationary, independent increments. (Stationary increments means that $W_t - W_s$ and $W_{t+h} - W_{s+h}$ have the same distribution; Independent increments means that for every choice of t_i with $t_1 < ... < t_n$ and $n \ge 1$, $W_{t_2} - W_{t_1}$, ..., $W_{t_n} - W_{t_{n-1}}$ are independent random variables.); (3) For every t > 0, W_t has a normal N(0, t) distribution; (4) It has continuous sample paths: no jumps.

generic costs associated with nominal price adjustments.¹⁰ In what follows, we consider two alternative ways of modeling menu costs paid by firm kj in period t, $F_{kj,t}$. The first is to assume that $F_{kj,t}$ equals the fixed fraction, φ of the firm's real revenue in the flexible-price equilibrium (i.e., equilibrium in the absence of menu costs), $r_{kj,t}^*$:

$$F_{ki,t} = \varphi \, r_{ki,t}^*. \tag{11}$$

The second is to assume that menu costs are a fixed fraction ζ of real profits in the flexible-price equilibrium: $F_{kj,t} = \zeta \, \pi_{kj,t}^*$. While both approaches are used in the literature, because a number of empirical studies on menu costs (e.g., Levy et al. (1997), Zbaracki et al. (2004) and Stella (2014)) estimate the magnitude of menu cost as a fraction of the revenue, we prefer the first approach in the light of subsequent calibration of the model.¹¹

3 Analysis

3.1 Pricing decisions without menu costs

We first examine a firm's pricing behavior when menu costs are zero ($\varphi = 0$). In this case, every period, after sector-specific shocks are realized, firm kj resets its price to maximize its real profits in period t, $\pi_{kj,t}$:

$$\pi_{kj,t} = \frac{P_{kj,t}}{P_t} Y_{kj,t} - \frac{W_{kj,t}}{P_t} L_{kj,t}.$$
 (12)

¹⁰As often indicated, the term "menu costs" may be misleading, in that the material costs of printing menus and catalogs do not appear to be the most important barrier to price flexibility. What could be more important include, for example, wages to hire employees to change the price tags (Levy et al. (1997)) and the cost of computing the nominal price changes corresponding to desired, ideal real price changes (Ball et al. (1988)).

¹¹For instance, Midrigan (2011) models menu costs as a fraction of (steady-state) revenue, while Alvarez and Lippi (2014) models as a fraction of profit.

Incorporating resource constraint, $Y_{kj,t} = C_{kj,t}$, demand function (Eq.3), labor supply function (Eq.8) and production function (Eq.9), we rewrite $\pi_{kj,t}$ as a function of $P_{kj,t}$:

$$\pi_{kj,t} = A_{k,t} \left(\frac{P_{kj,t}}{P_t}\right)^{1-\varepsilon} C_t - \alpha \left(A_{k,t} Z_{k,t}^{-1}\right)^{\frac{\gamma}{\psi_k}} \left(\frac{P_{kj,t}}{P_t}\right)^{-\frac{\varepsilon\gamma}{\psi_k}} C_t^{1+\frac{\gamma}{\psi_k}},\tag{13}$$

where $A_{k,t}$ and $Z_{k,t}$ are sectoral shocks, and a firm takes the aggregate variables, P_t and C_t as given. To ensure that this profit function remains concave, we introduce the following upper bound to the degree of return to scale (see Appendix A for derivation):

$$\psi^{max} = \frac{\varepsilon \gamma}{\varepsilon - 1}.^{12} \tag{14}$$

Note also that setting this upper bound ensures that profit is positive: $\pi_{kj,t} > 0.13$

Following Alvarez and Lippi (2014), we assume that the sectoral preference shock, $A_{k,t}$ and productivity shock, $Z_{k,t}$ are negatively related: $A_{k,t}Z_{k,t}^{\varepsilon-1} = 1$. This assumption is necessary to solve the model analytically in the presence of menu costs.¹⁴ Differentiating Eq.13 with respect to $P_{kj,t}$ then yields the following optimal relative price:

$$\frac{P_{kj,t}^*}{P_t} = \frac{1}{Z_{k,t}} \left[\frac{\alpha \gamma}{\psi_k} \frac{\varepsilon}{\varepsilon - 1} C_t^{\frac{\gamma}{\psi_k}} \right]^{\frac{1}{1 - \varepsilon + \frac{\varepsilon \gamma}{\psi_k}}}.$$
 (15)

¹²This theoretical upper bound is not so restrictive in the light of an empirical estimate of returns to scale. For example, when $\varepsilon = 4$ and $\nu = 3$ (reasonable values for the elasticity of substitution and Frisch elasticity of labor supply), $\psi^{max} = 1.78$, which is above the value of returns to scale estimated below (Table 1).

¹³This is seen as follows. First, it can be shown that (average cost)/(marginal cost) = ψ_k/γ . Next, positive profit requires price being larger than average cost, which means that $(\varepsilon/(\varepsilon-1))^*$ (marginal cost)>(average cost). Combining the two observations, we know that profits are positive when $\psi_k < \psi^{max}$.

 $^{^{14}}$ As explained below, this assumption ensures that the stock variable of price gap, defined as the deviation of current price from the optimal price in the flexible price equilibrium, follows Brownian motion. Although this assumption is for simplification, it can still be justified as follows. Suppose that there is a *rise* in preference term, $A_{k,t}$. What this does is to shift the demand curve to the right (see Eq.3) for sector k, which, in turn, tends to push up the optimal price for a given level of production in this sector. Meanwhile, a *fall* in productivity term, $Z_{k,t}$ makes production in sector k less efficient for a given input (Eq.9), which in turn tends to push up marginal costs and thus the optimal price for this sector. Thus, in essence, a rise in $A_{k,t}$ and a fall of $Z_{k,t}$ have a similar effect on firm's pricing behavior, justifying the negative association between these two sector-specific shocks.

Firm kj sets its real price as the markup, $\varepsilon/(\varepsilon-1)$ over real marginal costs.¹⁵ Notice that the optimal price depends not only on aggregate consumption, C_t , but also on the sector-specific shock, $Z_{k,t}$, which follows a stochastic process in the form of the exponential of Brownian motion (Eq.10).

In Eq.15, aggregate consumption, C_t can be tied down by using the price index, P_t (Eq.4):

$$\int_{0}^{1} f(k) \left[\frac{\alpha \gamma}{\psi_{k}} \frac{\varepsilon}{\varepsilon - 1} (C_{t}^{*})^{\frac{\gamma}{\psi_{k}}} \right]^{\frac{1 - \varepsilon}{1 - \varepsilon + \frac{\varepsilon \gamma}{\psi_{k}}}} dk = 1, \tag{16}$$

where C_t^* denotes aggregate consumption in the flexible-price equilibrium. Notice that this is time-invariant: $C_t^* = \bar{C}$, where \bar{C} indicates the steady-state value. In general, there is no closed-form solution for \bar{C} . However, to illustrate, when sectoral heterogeneity in returns to scale is absent (i.e., $\psi_k = \psi$), Eq.16 yields:

$$\bar{C} = \left[\frac{\psi}{\alpha \gamma} \frac{\varepsilon - 1}{\varepsilon} \right]^{\frac{\psi}{\gamma}}.17 \tag{17}$$

For later reference, we show that in the flexible-price equilibrium, firm kj's real revenue, $r_{kj,t}^* (= P_{kj,t}^* Y_{kj,t}^* / P_t^*)$ is time-invariant: $r_{kj,t}^* = \bar{r}_{kj}$. This, in turn, means that when menu costs are modeled as a fraction of real revenue (Eq.11), menu costs paid by the firm, $F_{kj,t}$ are also time-invariant:

$$F_{kj,t} = \varphi \,\bar{r}_{kj},\tag{18}$$

where

$$\bar{r}_{kj} = \left[\frac{\alpha\varepsilon\gamma}{\psi_k(\varepsilon-1)}\right]^{\frac{\psi_k(1-\varepsilon)}{\psi_k(1-\varepsilon)+\varepsilon\gamma}} \bar{C}^{\frac{(1-\varepsilon)\psi_k+\gamma}{\psi_k(1-\varepsilon)+\varepsilon\gamma}}.$$

¹⁵For example, in the case where production exhibits constant returns to scale in sector k ($\psi_k = 1$), and labor supply affects utility linearly ($\gamma = 1$), Eq.15 reduces to $P_{kj,t}^*/P_t = (\varepsilon/(\varepsilon-1))(\alpha C_t/Z_{k,t})$, where $\alpha C_t/Z_{k,t}$ is real marginal cost, given as real wage divided by sectoral productivity.

¹⁶The resource constraint $(Y_t = C_t)$ indicates that flexible-price equilibrium aggregate output is also constant: $Y_t^* = \bar{Y}$.

¹⁷This says that aggregate consumption (and output) increases in returns to scale, ψ , the elasticity of substitution, ε , and labor supply elasticity, ν ($\gamma = 1 + 1/\nu$), and decreases in the weight on leisure in the utility function, α .

Likewise, real profits are time-invariant in the flexible-price equilibrium, so that even when menu costs are modeled as a fraction of real profits, they are constant: $F_{kj,t} = \zeta \,\bar{\pi}_{kj}$.

3.2 Introducing menu costs

When menu costs are present, inaction (not adjusting a price) can be optimal. Specifically, to maximize the present value of future profits net of menu costs, a firm chooses when it pays menu costs and what new price to set, rather than adjusting its price every period.

To formalize this optimization problem, we follow the approach of Alvarez and Lippi (2014), who develop a menu cost model to examine the pricing decision of a multi-product firm. The approach constitutes the two main steps: 1) expressing firm's profits as a function of the deviation of actual price from the optimal price set under flexible-price equilibrium, called a price gap, and 2) applying a second-order Taylor approximation to a profit function to simplify it to a symmetric, quadratic function. The key advantage of taking this approach is that once acknowledging that a price gap follows Brownian motion, the problem maps onto a type of impulse control problem which is solved analytically by Dixit (1991a). This analytical solution gives us a clear understanding of the role of returns to scale as a determinant of of price rigidity.

The first step is to obtain firm kj's real profits, $\pi_{kj,t}$ as a function of a price gap, $\hat{p}_{kj,t}$, defined as the log deviation of its current price, $P_{kj,t}$ from the optimal price, $P_{kj,t}^*$:

$$\hat{p}_{kj,t} = log(P_{kj,t}) - log(P_{kj,t}^*).$$

¹⁸Unlike Alvarez and Lippi (2014), our focus is the pricing decision of a single-product firm, with the innovation of heterogeneity in returns to scale across sectors.

¹⁹As explained by Dixit (1991b), an impulse control problem is characterized by 1) the state variable following a Brownian motion, and 2) a lump-sum payment needed to move the state variable. In our context, the state variable is a price gap, and menu costs are the lump-sum payment. In general, solving this problem corresponds to finding the optimal range of (s, r) and interior points of S and R, whereby once the state variable hits the boundaries of s and r, it is moved to S and R with costs, respectively. However, as seen below, once the above approach is taken, solving the problem for a firm in sector k reduces to finding the optimal range of $(h_k, -h_k)$, with the interior point of zero: there is only one value, h_k to tie down.

Substituting Eq.15 into Eq.13 (and using $P_{kj,t}/P_t = (P_{kj,t}/P_{kj,t})(P_{kj,t}^*/P_t)$) yields $\pi_{kj,t} = \pi(\hat{p}_{kj,t}, C_t)$. Then, the time 0 problem of firm kj that starts with a price gap, $\hat{p}_{kj,0} = \hat{p}_{kj}$ is to choose $\{\boldsymbol{\tau}, \Delta \hat{p}_{kj}\} \equiv \{\tau_i, \Delta \hat{p}_{kj}(\tau_i)\}_{i=1}^{\infty}$, where $(\tau_i)_{i\in 1,2,...}$ is a set of periods when the firm incurs menu costs, and $\Delta \hat{p}_{kj}(\tau_i)$ is a change made to the price gap at time τ_i . Formally, the firm's problem is written as:

$$V(\hat{p}_{kj}) = \max_{\tau, \triangle \hat{p}_{kj}} E \left[\int_0^\infty e^{-\rho t} \pi(\hat{p}_{kj,t}, C_t) dt - \sum_{i=1}^\infty e^{-\rho \tau_i} F_{kj,\tau_i} \mid \hat{p}_{kj,0} = \hat{p}_{kj} \right],$$
(19)

where the first term in the objective function is the present value of real profits, and the second term is the present value of menu costs in real terms. Notice that considering the case where menu costs are a fraction of flexible-price equilibrium revenue, and realizing that menu costs are time-invariant (Eq.18), \bar{r}_{kj} can be factored out from the objective function of Eq.19, yielding:

$$V(\hat{p}_{kj}) = \bar{r}_{kj} \max_{\boldsymbol{\tau}, \triangle \hat{\boldsymbol{p}}_{kj}} \boldsymbol{E} \left[\int_0^\infty e^{-\rho t} g(\hat{p}_{kj,t}, C_t) dt - \sum_{i=1}^\infty \varphi e^{-\rho \tau_i} \mid \hat{p}_{kj,0} = \hat{p}_{kj} \right], \tag{20}$$

where $g(\hat{p}_{kj,t}, C_t) (= \pi(\hat{p}_{kj,t}, C_t)/\bar{r}_{kj})$ is firm kj's profits scaled by the flexible-price equilibrium revenue.

The second step is to apply a second-order Taylor approximation to the scaled profit function, $g(\hat{p}_{kj,t}, C_t)$. Approximating it around the flexible-price equilibrium of $g(0, \bar{C})$ gives the following *minimization* problem (Appendix B for derivation):

$$V(\hat{p}_{kj}) = \min_{\boldsymbol{\tau}, \triangle \hat{p}_{kj}} \mathbf{E} \left[\int_0^\infty S_k \, \hat{p}_{kj,t}^2 \, e^{-\rho t} dt + \sum_{i=1}^\infty \varphi \, e^{-\rho \tau_i} \, | \, \hat{p}_{kj,0} = \hat{p}_{kj} \right], \tag{21}$$

where

$$S_k = \frac{1}{2}(\varepsilon - 1)(1 - \varepsilon + \frac{\varepsilon \gamma}{\psi_k}) > 0.$$
 (22)

The exact expression of $\pi(\hat{p}_{kj,t}, C_t)$ is shown in Appendix B.

The coefficient on the price gap squared, S_k is always positive (due to the existence of the upper-bound threshold ψ^{max} , Eq.14), and captures how firm kj's profit loss is sensitive to the deviation of an actual price from the optimal price. The key insight here is that S_k is decreasing in return to scale, ψ_k :

$$\frac{\partial S_k}{\partial \psi_k} < 0. {23}$$

This indicates that in a sector with *higher* returns to scale, firm's profits are *less sensitive* to a price misalignment, measured by the gap between its current and optimal prices. In other words, a profit function is less concave at the top when returns to scale are higher. To report, even when menu costs are modeled as a fraction of flexible-price equilibrium profits (instead of revenue), the insight remains the same.²¹

To solve Eq.21, observe that under the assumption that money supply is constant ($M_t = \overline{M}$), a price gap follows Brownian motion: $d\hat{p}_{kj,t} = \sigma \, dx_{k,t}$, where $x_{k,t}$ is standard Brownian motion (Appendix C for the proof).²² Intuitively, a price gap inherits Brownian motion from the idiosyncratic productivity shock, $Z_{k,t}$, through its effect on the optimal price, $P_{kj,t}^*$ (Eq.15). It is thus the case that Eq.21 is an impulse control problem, characterized by 1) a price gap (state variable) following Brownian motion, 2) a time-invariant cost needed to move a price gap, and 3) the quadratic loss function being symmetric. This problem directly maps onto a type of impulse control problem solved analytically by Dixit (1991a) in the context of a menu costs model.²³ The key difference, however, is that since our model is micro-founded (unlike his model), the curvature of the profit function is affected by a composite of micro parameters, including returns to scale.²⁴

When $F_{kj,t} = \zeta \, \bar{\pi}_{kj}$, the only difference made to Eq.21 is that S_k equals $(1/2)(\varepsilon - 1)(\varepsilon \gamma/\psi_k)$, and ζ replaces φ .

²²This is where the negative association between the preference shock and productivity shock, $A_{k,t}Z_{k,t}^{\varepsilon-1}=1$ plays a key role. Without this assumption, a price gap does *not* follow Brownian motion, which in turn indicates that a firm's optimization problem is not solvable analytically.

²³Compare Eq.21 with Eq.3 on page 142 of his paper.

²⁴Dixit (1991a) directly postulates a loss function without modeling a firm's problem explicitly.

3.3 Analytical results

As explained by Dixit (1991a), solving this problem corresponds to determining the range of a price gap in which no action, i.e., keeping the current price, is optimal. In particular, because in Eq.21 the loss function is symmetric with the central value of zero (corresponding to the price gap of zero), the solution to the problem consists of a range of price gap $(h_k, -h_k)$ within which a firm in sector k does not to change its price: only when the stochastic process of a price gap hits the boundaries of either h_k and $-h_k$, a firm kj pays menu costs and reset its price gap to zero. Acknowledging this, the value of this threshold value, h_k can be tied town analytically, by taking account of the following two conditions: the Value Matching Condition $(V(h_k) - V(0) = \varphi)$ and the Smooth Pasting Condition $(V'(h_k) = 0)$.²⁵ These conditions lead to the following proposition regarding the determinants of the threshold value h_k .

Proposition 1. A firm in sector k chooses to adjust its price to the optimal, frictionless price $P_{kj,t}^*$ whenever the absolute value of the price gap, $|\hat{p}_{kj,t}|$ reaches h_k :

$$h_k = \left(\frac{6\sigma^2\varphi}{S_k}\right)^{1/4}.^{26} \tag{24}$$

With menu costs present ($\varphi > 0$), the range of inaction exists (i.e., $h_k > 0$). This implies that a firm may not reset its price every period, because a price gap (which follows Brownian motion) may not hit the boundaries of h_k or $-h_k$ for some periods. Importantly, the range of inaction is an *increasing* function of the returns to scale, i.e., $\partial h_k/\partial \psi_k > 0$ (due to Eq.23: $\partial S_k/\partial \psi_k < 0$). This means that a firm belonging to a sector characterized by higher returns

²⁵Details of the solution of this impulse control problem is found in Dixit (1991a).

 $^{^{26}}$ To be exact, the analytical expression of h_k is based on an approximation. Following Eq.9 and Eq.12 in Dixit (1991a), this approximation is valid if $\delta_k = (2\rho/\sigma^2)^{1/2}h_k$ is sufficiently small so that $\delta_k^5/120~(\delta_k^6/720)$ is negligible compared to $\delta_k^3/6~(\delta_k^4/24)$. Using the estimated and calibrated values considered in the subsequent numerical experiments, we report that these conditions are satisfied. Specifically, the highest value of δ_k is 0.44, corresponding to the highest estimated value of returns to scale below, $\psi_k = 1.76$, combined with the following set of parameters: $\sigma = 0.03$, $\varepsilon = 4$, $\gamma = 4/3$, and $\rho = 0.0025$. In this case, $\delta_k^5/120 = 0.00014$ $(\delta_k^6/720 = 0.00001)$ being negligible compared to $\delta^3/6 = 0.0143~(\delta_k^4/24 = 0.00157)$.

to scale chooses to reset its current price only when it deviates from the optimal price by a larger margin.

The next proposition highlights the role of returns to scale in the expected duration of inaction, i.e., the duration for which a firm chooses to keep the current price (see Appendix D for proof).

Proposition 2. The expected duration of inaction of a firm in sector k, D_k is given as:

$$D_k = \frac{h_k^2}{\sigma^2} = \left(\frac{6\varphi}{\sigma^2 S_k}\right)^{1/2},\tag{25}$$

so that D_k is an increasing function of sectoral returns to scale ψ_k : $\partial D_k/\partial \psi_k > 0$.

This result is explained by the observation that higher returns to scale make a profit function less concave. Intuitively, when firms characterized by higher returns to scale are less sensitive to price misalignments, they reset prices less frequently. Also, it is worth noting that as the menu cost parameter, φ rises or the volatility of sector-specific shocks, σ falls, the expected duration of inaction becomes longer.

For completeness, the next corollary gives the conversion of the expected duration of inaction, D_k into the per-period probability of a firm in sector k keeping the same price, i.e., a direct measure of price stickiness.

Corollary 1. The per-period probability of a firm in sector k keeping the same price, the measure of price rigidity, χ_k is given as:

$$\chi_k = e^{-\frac{1}{D_k}},\tag{26}$$

so that χ_k is an increasing function of ψ_k : $\partial \chi_k / \partial \psi_k > 0$.

Thus, the key prediction of the model is that returns to scale and price rigidity are positively correlated across sectors. As pointed out, this is primarily because higher returns to

scale make firms less sensitive to price misalignments. Incidentally, larger price stickiness is associated with higher menu costs and lower volatility of sectoral shocks.

4 Numerical Experiments

4.1 Estimation of returns to scale

Having formalized how sectoral heterogeneity in returns to scale may contribute to the heterogeneity in nominal price rigidity, we now aim to shed light on its quantitative relevance. For this purpose, this section first estimates returns to scale across US manufacturing sectors. However, at the outset, we admit that it is not our intention to claim that our estimates are without issues. This is because as noted by Diewert et al. (2011), there are in general different possible sources of erroneous estimates of returns to scale, and it is difficult to address them. For example, Basu and Fernald (1997) show that the estimates of returns to scale are likely to be upward biased when data is aggregated over firms²⁷. Although we use data on highly disaggregated (6-digit) sectors, this issue is likely to remain. Further, as previous papers indicate (e.g., Basu and Fernald (1997) and Diewert and Fox (2008)), instruments commonly used in the estimation of returns to scale, such as government defense spending and world oil prices, tend to be weak, which we confirm in the context of our estimations.²⁸

With the above caveats, our estimation methodology follows the one initiated by Hall (1990) and extended by Basu and Fernald (1997), who propose to estimate returns to scale following a cost minimization problem in the presence of non-constant returns to scale and imperfect competition. The methodology involves regressing sector by sector the output growth on the cost share-weighted average of inputs growth. Formally, the regression equation

²⁷This is what they called the aggregation bias, namely the fact that the higher is the aggregation level, the more upward biased the estimates are likely to be. A natural way to dampen this bias is therefore to use the lowest aggregation level possible (in our case the 6-digit manufacturing level).

²⁸Ideally, to solve the endogeneity issue, we would want to have instrument sets with sector-specific components, but when considering highly disaggregated sectors, finding such instruments appears to be particularly difficult.

is given as:

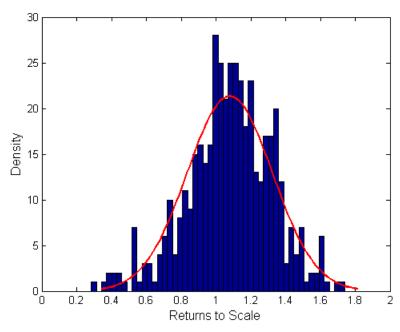
$$\Delta Y_{k,t} = \alpha_k + \psi_k \Delta X_{k,t} + \varepsilon_{k,t},\tag{27}$$

where k and t denote sector and time. The dependent variable, $\Delta Y_{k,t}$ is the growth rate of real gross output, and the independent variable, $\Delta X_{k,t}$ is the average of growth rates of different inputs, weighted by the shares of those input costs in the total cost, and $\varepsilon_{k,t}$ is the error term. The coefficient, ψ_k represents the returns to scale of sector k.

As for data, we use the NBER-CES manufacturing industry database (Bartelsman and Gray (1996)), which gathers information on output and various inputs for 473 manufacturing sectors defined at the 6-digit level of North American Industry Classification System (NAICS) codes, at annual frequency over the 1958-2011 period. ^{29,30} The database covers capital, labor and intermediate inputs in real terms for each of the 473 sectors. ³¹ Because it does not provide data on the cost share of each input in the total cost, we merge it with the data on multifactor productivity provided by US Bureau of Labor Statistics (BLS). ³² Subsequently, the weighted average of input growth, $\Delta X_{k,t}$ in Eq.27 becomes:

$$\Delta X_{k,t} = c_{k,t}^K \Delta K_{k,t} + c_{k,t}^L \Delta L_{i,t} + c_{k,t}^M \Delta M_{i,t} \quad \text{with} \quad c_{k,t}^K + c_{k,t}^L + c_{k,t}^M = 1,$$
 (28)

where $\Delta K_{k,t}$ ($\Delta L_{k,t}$, $\Delta M_{k,t}$) and $c_{k,t}^K$ ($c_{k,t}^L$, $c_{k,t}^M$) are the growth rates and cost share of capital (labor and intermediate inputs) in sector k in year t. After the two databases are merged, the sample period becomes 1987-2011, still covering 473 sectors.


²⁹The dataset is available at http://www.nber.org/nberces/. Most of the variables covered by this dataset are taken from the ASM (Annual Survey of Manufacturing), which in turn gathers more than 50,000 firms selected from the 350,000 firms from the CMF (Census of Manufacturing). This database follows the 1997 NAICS. (The classification system has been updated every five years since the introduction in NAICS in 1997. For more details, visit https://www.census.gov/eos/www/naics/.)

³⁰Many of the previous empirical works on returns to scale (including Basu and Fernald (1997) and Diewert and Fox (2008)) use less disaggregated, two-digit level of Standard Industrial Classification (SIC) codes. (NAICS was established in 1997 to replace the SIC system which has not been updated since 1987.)

³¹Intermediate input is a composite of materials, energy and purchases services.

³²Specifically, the data on the multifactor productivity (which contains data on the cost structure) are assembled by the Division of Industry Productivity Studies (DIPS) in the office of Productivity and Technology at BLS. The data is available at https://www.bls.gov/mfp/#data. When data on the cost structure for 6-digit sectors are not available, we use data at the corresponding 5-, or 4-digit level (with the preference given to the former).

Figure 1: Distribution of Returns to scale across 6-digits sectors

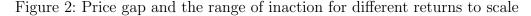
Note: Histogram of returns to scale across 6-digit US manufacturing sub-sectors (2 outliers are excluded). A normal distribution is fitted to the histogram. Source: Authors' calculation using NBER-CES Manufacturing Industry and BLS Multifactor Productivity databases

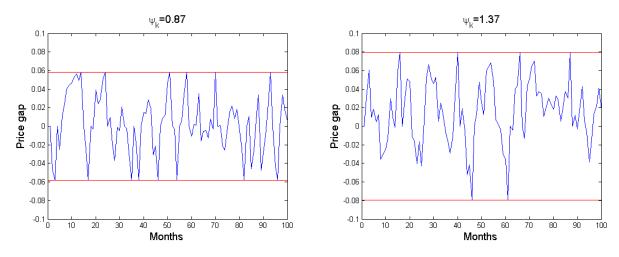
We estimate Eq.27 sector by sector, using Ordinary Least Squares (OLS). Figure 1 presents the distribution of returns to scale across 447 out of the 473 sectors, for which ψ_k is positive and significant at the 5 percent level.³³ The average is 1.12 and the standard deviation is 0.25, with the maximum (minimum) of 1.76 (0.27).³⁴ The distribution is approximately bell-shaped, as indicated by the a normal distribution fitted to the histogram. Out of the 447 sectors, 112 (20) sectors exhibit increasing (decreasing) returns to scale, with ψ_k significantly larger (smaller) than 1 at the 5 percent level: the remaining 315 sectors show constant returns to scale.

 $^{^{33}}$ The figure excludes 2 clear outliers, which are $\psi_k=2.83$ and $\psi_k=5.26.$

³⁴The maximum point estimate of 1.76 is observed for "electronic coil, transformer, and other inductor manufacturing (NAICS code, 334416)", while the minimum estimate of 0.27 is observed for "flour milling (311211)".

To report, in the view of possible endogeneity issues, we also estimated using instrumental variables (IV) estimator. In particular, following works such as Hall (1990) and Basu and Fernald (1997), we used military spending (relative to GDP), world oil prices, and the political party of the president as possible instruments. However, we found that for the majority of the sectors, these instruments are weak, not having a strong correlation with the regressor. Therefore, because the use of a weak instrumental variable can lead to substantial bias, the following analysis uses the OLS estimates. Basu and Fernald (1997) and Diewert and Fox (2008) also prefer OLS estimates of returns to scale to IV estimates, on the basis of weak instruments.

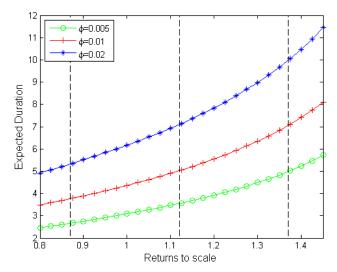

4.2 Numerical results


Having estimated returns to scale at the sectoral level, we present numerical results using the theoretical model. As for the proportion of menu costs in firm's revenue (Eq.11), we use $\varphi = 0.01$ as a reference parameter value. This choice is based on the estimates of menu costs in previous empirical studies, which range from 0.22% to 1.22% of firm's revenue (cf. Levy et al. (1997), Zbaracki et al. (2004) and Stella (2014)).³⁵ Regarding the volatility parameter of firm's productivity shock, σ (Eq.10), we follow Dixit (1991b) and Alvarez and Lippi (2014), whose models also entail stock variables which follow Brownian motion. They use the volatility parameter of $\sigma = 0.1$ assuming that the unit of time is a year. Reassuringly, we estimate this parameter (Appendix E), and obtain a very similar value of $\sigma = 0.105$. Since in what follows we assume that the time unit is a month (to be in line with the subsequent empirical analysis where we use the monthly frequency of price change estimated by Nakamura and Steinsson (2008)), we use the monthly equivalent of $\sigma = 0.03$ (instead of $\sigma = 0.1$).³⁶ The remaining parameters of the model follow values commonly used in the

 $^{^{35}}$ In this numerical experiment, we focus on the case where menu costs are modeled as a proportion of firm's revenue (rather than profits).

³⁶To explain, in case time is measured in months, the variance of the exponential of Brownian motion (with no drift term as in the theory model) after one year (12 months) is equal to $e^{\sigma_m^2*12}(e^{\sigma_m^2*12}-1)$, where

literature: elasticity of demand, $\varepsilon = 4$ (e.g., Nakamura and Steinsson (2010)); Frisch elasticity of labor supply, $\nu = 3$ (e.g., Peterman (2016)), corresponding to $\gamma = 1.33$.


Note: Sample paths of price gap following a Brownian motion with $\sigma = 0.03$ for $\psi_k = 0.87$ and $\psi_k = 1.37$. The former (latter) value of ψ_k is the mean minus (plus) one standard deviation. Horizontal lines are the boundaries of h_k and $-h_k$ (see Eq.24). Parameter values are as explained in the text. Source: Authors' calculation

Evolution of price gaps Figure 2 shows a sample path of firm's price gap for two different values of returns to scale, $\psi_k = 0.87$ and $\psi_k = 1.37$, which correspond to the mean of returns to scale estimated above (1.12) plus and minus one standard deviation (0.25). The other parameter values are as explained above. With these values, sectoral price gap threshold h_k is 0.058 for $\psi_k = 0.87$, while 0.080 for $\psi_k = 1.37$ (see Eq.24). That is, whenever its current price deviates from the optimal flexible equilibrium price by 5.8% (8.0%) in the absolute value, a profit-optimizing firm in a sector with the returns to scale of 0.87 (1.37) pays menu costs and adjusts its price to the optimal price, corresponding to the price gap of zero. Under the low returns to scale (the left sub-figure), price gap hits boundaries 14 times over the course of 100 months, while under the high returns to scale (right sub-figure), it hits

 $[\]sigma_m$ is the variance parameter relevant for a month after the start of the shock. This variance should be equal to $e^{\sigma_y^2*1}(e^{\sigma_y^2*1}-1)$, where σ_y is a yearly counterpart. Thus, when $\sigma_y=0.1$, we have $\sigma_m=0.03$.

the boundaries only 6 times, implying that higher returns to scale match a longer expected duration of inaction.

Figure 3: Expected duration and Returns to scale for different menu costs

Note: Expected durations are defined in months. The left (middle, right) vertical dashed lines correspond to the sample mean of returns to scale (1.12) minus one standard deviation (0.25) (the mean, the mean plus one standard deviation). Source: Authors' calculation

Figure 4: Price rigidity and Returns to scale for different menu costs

Note: Price rigidity is defined as the probability (in percent) of keeping the current price fixed in a given month, calculated as "100-100*(1/expected duration of inaction in months)", where the expected duration is as calculated in Figure 3. The three dashed lines are as defined in Figure 3. Source: Authors' calculation

Expected duration of inaction and price rigidity Next, Figure 3 shows the expected duration of inaction, D_k as a function of returns to scale ψ_k (Eq.25). The duration of inaction is defined in months. The left (middle; right) vertical dashed lines correspond to the sample mean of returns to scale (1.12) minus one standard deviation (0.25), 0.87 (the mean; the mean plus one standard deviation, 1.37). The relation between D_k and ψ_k are plotted for different values of menu costs around the reference value of $\varphi = 0.01$: 0.005 and 0.02. Figure 4 presents corresponding figures, showing instead the measure of price rigidity defined as "100–100*(1/expected duration of inaction in months)".³⁷ For the reference case of $\varphi = 0.01$, for example, returns to scale of 0.87, 1.12, and 1.37 are associated with the price rigidity of 73%, 80%, and 85%. Judging from the fact that empirical estimates of price rigidity used below (Table 1) yield the standard deviation of 22% with the mean of 85%, the effect of returns to scale on price rigidity appears quantitatively sizable. Incidentally, for a given value of returns to scale (1.12), a rise in the menu cost parameter from 0.01 to 0.02, for example, correspond to a rise in price rigidity from 80% to 86%, which also appears non-trivial.

5 Empirical evidence

5.1 Matching with data on price rigidity

To see if the theoretical prediction is supported empirically, this section examines the correlation between returns to scale and price rigidity across US manufacturing sectors. For this purpose, we first match returns to scale estimated above for 6-digit manufacturing sectors with the monthly frequency of change in producer prices at the product level estimated by Nakamura and Steinsson (2008).^{38,39} Using the survey of firms conducted by BLS, they

³⁷This way of converting from expected duration to price rigidity is different from Eq.26. This is because we are now conducting numerical experiments in a discrete time framework.

³⁸The estimates are available in Table 23 of their online appendix.

³⁹The reason why we choose producer prices rather than consumer prices is twofold. First, in our view, using producer prices is more relevant to test our theoretical prediction, which is about producer's pricing behavior. Second, from a practical perspective, it has turned out that a large proportion of sectors for which we estimated returns to scale cannot be matched with the frequency of consumer prices at a product level

estimate the monthly frequency of producer price change of identical products (as well as the frequency of price change including changes associated with product substitutions) for 348 categories of product over the 1998-2005 period. To illustrate how matching is done, product categories such as "butter" and "natural and processed cheese" are matched with 6-digit sub-sectors of "creamery butter manufacturing (NAICS code: 311512)" and "cheese manufacturing (311513)", and product categories such as "cigarettes" and "cigars" with "cigarette manufacturing (312221)" and "other tobacco product manufacturing (312229)". ⁴⁰ Overall, we managed to match 277 (out of 348) categories of products with 202 NAICS 6-digit manufacturing sectors, for which returns to scale are estimated. ⁴¹ Appendix F lists product categories together with corresponding 6-digit NAICS manufacturing sectors.

Figure 5 plots returns to scale against the measure of price rigidity, calculated as 100 minus the monthly frequency of price changes of identical products in percent. Since the frequency at which price is kept unchanged is bounded in the 0 to 100 range by definition, the fitted line in Figure 5 is based on the regression line for the association between the logit transformation of price rigidity and returns to scale, which is positive and significant at the 1 percent level. The indication is thus that products made in sectors characterized by higher returns to scale exhibit larger price stickiness. This association holds even when we use the frequency including price changes associated with product substitutions. In what follows, we conduct a regression analysis, to examine if the positive correlation between returns to scale and price rigidity still holds even when other determinants of price rigidity highlighted in the previous empirical literature are controlled for.

estimated by Nakamura and Steinsson (2008), reducing the sample size dramatically. The same happened even when we used the frequency of consumer prices estimated by Klenow and Kryvtsov (2008) instead.

⁴⁰Regarding "creamery butter manufacturing (NAICS 311512)", for example, the NAICS manual says that "this U.S. industry comprises establishments primarily engaged in manufacturing creamery butter from milk and/or processed milk products".

⁴¹Some products are not possible to match. For example, products for which Nakamura and Steinsson (2008) estimate the frequency of price changes include agricultural products such as fresh foods, and these products are produced outside manufacturing sectors.

⁴²See Baum (2008) for the use of logit transformation to model proportions.

100 90 80 70 Price Rigidity 60 50 40 30 20 10 0.6 0.8 1.4 1.6 1.8

Figure 5: Returns to scale and price rigidity

Note: 277 product categories matched with 202 6-digit manufacturing sectors (according to NAICS) are considered. Price rigidity is calculated as "100 — the monthly frequency of producer price change of identical products (in percent, from Nakamura and Steinsson (2008))". Returns to scale are as estimated above (cf. Eq.27). The fitted line is based on the regression line for the relation between the logit transformation of price rigidity and returns to scale. Source: Authors' calculation.

Returns to Scale

5.2 Regression results

Based on Vermeulen et al. (2012)'s comprehensive study of sectoral heterogeneity in producer price setting in the Euro area, the following regression analysis takes account of 1) the cost structure of production, highlighting labor and intermediate cost shares, 2) the degree of market concentration, and 3) the inflation rate at the sector level, as possible determinants of the heterogeneity in producer price rigidity. We run a cross-sectional regression to examine the relation between returns to scale and producer price rigidity, controlling for an average of these determinants over the sample period of 1987-2011 at the sector level.

Table 1 describes the data used for the analysis. Focusing on the case where all the control variables are available, the statistics are based on 275 observations from 200 US 6-digit

Table 1: Summary statistics

Variable	Mean	Std. dev.	Min.	Max.
Price rigidity	84.82	21.93	0	99.60
Returns to scale	1.08	0.26	0.4	1.61
Labor cost share	22.93	7.93	3.56	42.47
Intermediate cost share	57.43	9.42	37.08	82.16
Concentration ratio	697.38	594.11	2.67	2707.2
Average inflation	2.14	3.28	-13.38	15.77

Note: Based on 275 product categories matched with 200 6-digit manufacturing sectors according to NAICS. Source: Authors' calculation using data from NBERCES Manufacturing Industry database, US Census Bureau, BLS databases, and Nakamura and Steinsson (2008).

manufacturing sectors. Regarding the determinants controlled for, labor cost and intermediate cost shares in production (from BLS) are calculated as the average over the 1987-2011 period. On average, labor and intermediate cost shares account for 22.9 % and 57.4 %, respectively. Labor share is expected to show a positively association with price rigidity, while intermediate share shows a negative association (Peneva (2011), Vermeulen et al. (2012)). Next, concentration ratio (from US Census Bureau) is the Herfindahl-Hirschman index (HHI) for 50 largest companies at each of the 6-digit NAICS sector, averaged over 1997, 2002, and 2007. In the most (least) concentrated sector, the index takes 2707.2 (2.67), with the average of 697.4. Since previous works reach different conclusions (e.g., Carlton (1986) and Eckard (1982)), there is no clear conjecture about the sign of the association with price rigidity. Last, inflation rates at the 6-digit sector level are obtained from BLS as an average of as much data as available over the 1987-2011 period. In line with Vermeulen et al. (2012), we expect that this variable is negatively related to price rigidity.

 $^{^{43}}$ As explained above, data on the cost structure for 6-digit sectors are not always available. When not available, corresponding data at the 5- or 4-digit level are used.

⁴⁴The data are available only at those three data points.

 $^{^{45}}$ HHI takes a maximum of 10,000 when one firm has a 100% market share, and it takes close to zero at a minimum when each of many firms has nearly 0% share.

Formally, regression equation is described as:

$$rigid_i = \alpha + \beta \, rts_i + \sum_{j=1}^n \delta_j \, \mathbf{z}_{i,j} + \epsilon_i, \tag{29}$$

where i denotes a product category. The dependent variable, $rigid_i$ is the logit transformation of the price rigidity measure, "100 minus the monthly frequency of price changes of identical products in percent". Our main independent variable, rts_i is the returns to scale estimate for product category i, matched with the 6-digit sector k (cf. Eq.27). Next, $\mathbf{z}_{i,j}$ is a vector of additional controls as explained above (i.e., labor cost share, the intermediate cost share, concentration ratio, and sectoral inflation rate) relevant for product category i. We estimate Eq.29 using OLS. Because different product categories sometimes belong to the same 6-digit sector, clustered standard errors are used to adjust for correlation of error terms within a sector.

Table 2: Returns to scale and price rigidity

Dependent variable: price rigidity (transformed using logit function)

Bependent tariables	price rigidity	(transitinea	asing logic ranc	,,,,,,	
Regressors	(1)	(2)	(3)	(4)	(5)
Returns to scale	2.936***	1.252***	2.954***	2.288***	0.976**
	(3.853)	(2.721)	(3.875)	(3.848)	(2.332)
Labor cost share		0.0748***			0.0567***
		(4.085)			(3.492)
Intermediate cost share		-0.0321**			-0.0345***
		(-2.212)			(-2.733)
Concentration ratio			-0.000419**		-0.000349**
			(-2.136)		(-2.038)
Inflation rate				-0.143***	-0.117***
				(-3.000)	(-3.465)
Constant	-0.937	1.011	-0.651	0.0688	2.366***
	(-1.027)	(0.955)	(-0.708)	(0.0980)	(2.626)
Observations	277	277	275	277	275
Adj R-squared	0.209	0.373	0.237	0.273	0.425

Note: OLS estimations. In Column (5), for example, 275 product categories are matched with 200 6-digit manufacturing sectors according to NAICS. t-statistics using robust standard errors that adjust for correlation within 6-digit NAICS are in parentheses.*** p < 0.01, ** p < 0.05, * p < 0.1.

Table 2 summarizes the results. Column (1) is without any additional controls, corresponding to the positive regression line in Figure 5. The positive and significant coefficient 2.936 can be interpreted using odds ratio⁴⁶. For example, an increase in returns to scale by 0.1 is associated with a rise in the odds ratio by 34% ($e^{0.1*2.936} - 1 = 0.34$). Thus, if the initial price rigidity is 84.82% (sample mean, see Table 1), a rise in returns to scale by 0.1 corresponds to the increase in price rigidity by 3.4 percentage points, which appears substantial.⁴⁷ While Columns (2) to (4) control for cost shares, concentration ratio, and inflation rate, respectively, the association between returns to scale and price rigidity remains positive and significant at the 1 percent level. As expected, the coefficients on labor and intermediate cost shares are significantly positive and negative. In line with Eckard (1982), concentration ratio is negatively associated with price rigidity. The negative and significant coefficient on inflation rate means that under high inflation, producer price changes more frequently.

Last, Column (5) shows that even when all the variables are controlled for simultaneously, the positive correlation between returns to scale and price rigidity still holds, albeit the coefficient on returns to scale is smaller (0.976). To interpret as above, a rise in returns to scale by 0.1 at the mean price rigidity of 84.82% is associated with a rise in the price rigidity by 1.22 percentage points. Given that one standard deviation change (= 0.26) corresponds to 3.17 percentage points change, the effect does appear to matter quantitatively. To report, the results are robust to the use of the frequency of price changes including changes associated with product substitutions. Interestingly, the quantitative effect is somewhat close to the result from the calibration exercise above: there, a one standard deviation increase in returns to scale at the reference point (where the price rigidity measure takes 80 percent) causes a rise in price rigidity by 5 percentage points.

⁴⁶The Odds ratio is the ratio between the probability that an event occurs and the probability that it does not. In our case, the event is defined as an inaction, i.e., *not* changing the current price.

 $^{^{47}}$ With the price rigidity of 84.82%, the adds ratio is 84.82/(100 - 84.82)(=5.588). When the odds ratio rises by 34%, the new ratio is 7.487. Then, the price rigidity corresponding to the new ratio is tied down as 88.22%, an increase by 3.4 percentage points from the initial rigidity.

5.3 Robustness

The above regressions are based on the point estimates of returns to scale. However, as mentioned, estimating returns to scale is inherently difficult due to different sources of erroneous estimates. Acknowledging this, instead of exploiting the variations of the point estimates of returns to scale as in Table 2, we here use the variations among the three categories: increasing, constant, and decreasing returns to scale.

Specifically, we consider the following model:

$$rigid_{i} = \alpha + \beta IRS_{i} + \gamma DRS_{i} + \sum_{j=1}^{n} \delta_{j} \mathbf{z}_{i,j} + \epsilon_{i},$$
(30)

where the only difference from Eq.29 is that instead of using rts_i , a point estimate of returns to scale of product category i, we use IRS_i , a dummy variable which takes the value of 1 if product category i is matched with a sector characterized by IRS technology, 0 otherwise (i.e., if it is matched with a sector with CRS or DRS technology). Likewise, DRS_i is a dummy which takes the value of 1 if product category i is associate with a sector characterized by DRS technology, 0 otherwise. When returns to scale are larger (smaller) than the value of 1 at the 5 percent level, a sector is considered to exhibit increasing (decreasing) returns to scale. A CRS dummy is omitted, to avoid perfect multicollinearity. Our interests in Eq.30 are the signs of coefficients, β and γ , which, to the extent that the above results in Table 2 prevails, should be positive and negative, respectively.

Table 3 summarizes the results. The structure is the same as Table 2, except that the dummy variables of returns to scale are used instead of the point estimates. Among 277 observations for Column (1), for example, 67 (195, 15) product categories are matched with industries which exhibit increasing (constant, decreasing) returns to scale. As expected, coefficients on IRS is always positive, and ones on DRS is always negative. While those coefficients are mostly significant, in Column (5) the coefficient on IRS is not significant. However, it can be confirmed that it is significantly different from the coefficient on DRS.

Table 3: Returns to scale and price rigidity: dummy variable approach

Dependent variable: price rigidity (transformed using logit function)

		`	0 0	,	
Regressors	(1)	(2)	(3)	(4)	(5)
IRS	0.592***	0.303**	0.572***	0.392**	0.199
	(3.231)	(2.005)	(3.232)	(2.345)	(1.292)
DRS	-3.155***	-1.571*	-3.173***	-2.691***	-1.494*
	(-2.809)	(-1.660)	(-2.813)	(-2.939)	(-1.784)
Labor cost share		0.0761***			0.0561***
		(4.097)			(3.734)
Intermediate cost share		-0.0280**			-0.0285**
		(-2.257)			(-2.461)
Concentration ratio		,	-0.000487*		-0.000378**
			(-1.931)		(-1.973)
Inflation rate			, ,	-0.156***	-0.122***
				(-4.065)	(-3.943)
Constant	2.287***	2.120**	2.640***	2.640***	3.164***
	(15.69)	(2.193)	(14.75)	(18.25)	(3.646)
Wald IRS_DRS, p-value	0.000971	0.0457	0.00103	0.000733	0.0407
Observations	277	277	275	277	275
Adj R-squared	0.220	0.385	0.249	0.303	0.442
-					

Note: OLS estimations. In Column (5), for example, 275 product categories are matched with 200 6-digit manufacturing sectors according to NAICS. IRS (DRS) is a dummy variable, taking the value of one if product category i belongs to a sector characterized by increasing (decreasing) returns to scale, and the value of zero otherwise. Wald IRS_DRS tests the equality of coefficients on IRS and DRS. t-statistics using robust standard errors that adjust for correlation within 6-digit NAICS are in parentheses.*** p < 0.01, *** p < 0.05, * p < 0.1.

This is based on the observation that the Wald test rejects the equality of coefficients on IRS and DRS for all the columns, including Column (5). It is thus the case that even when we do not exploit the variations of point estimates, the price of a product category from a sector characterized by IRS changes less frequently than the price of a product from a DRS sector. Coefficients on all the additional controls are in line with the ones in Table 2, both in terms of the sign and significance.

6 Concluding remarks

This paper proposes returns to scale as a possible explanatory factor behind sectoral heterogeneity in nominal price stickiness. We first built a dynamic multi-sector menu-cost model to show analytically that there is a positive association between returns to scale and price rigidity across sectors. This happens because higher returns to scale make firms less sensitive to price misalignment, prompting them to adjust prices less often in the presence of menu costs. We then estimated returns to scale using data on 6-digit US manufacturing sectors. A calibration exercise using the returns to scale estimates suggests that returns to scale are a quantitatively important factor behind sectoral heterogeneity in price stickiness. Last, we provided evidence in support of our main theoretical prediction. The positive correlation between returns to scale and producer price rigidity still stands even when controlling for some of the key determinants of price rigidity highlighted in the literature.

Regarding possible future research, one idea is to examine monetary non-neutrality using a theoretical framework with heterogeneities in both nominal price rigidity and returns to scale across sectors. Although the previous research emphasizes the relevance of heterogeneity in price rigidity by showing that it makes the real effects of money shocks stronger and more persistent, this result is not taking account of the positive correlation between price rigidity and returns to scale across sectors. Therefore, there is a scope of examining how the introduction of the two dimensions of sectoral heterogeneity may enrich the transmission mechanism of monetary shocks.

Acknowledgments

We thank Santiago Acosta-Ormaechea, Marta Aloi, Guido Ascari, Matteo Barigozzi, Fabrice Collard, Gianni De Fraja, Michael Ehrmann, Martin Ellison, Maria Garcia-Vega, Omar Licandro, Robert Margo, Anton Nakov, Margarita Rubio, Stephanie Schmitt-Grohe, and participants from the 2018 Royal Economic Society Conference, the 9^{th} Conference on Growth and Business Cycle, and the 33^{rd} European Economic Association Conference for their comments. Mohamed Diaby also thanks the Presidency of Côte d'Ivoire for their financial support. Any remaining errors are our own responsibility.

Appendix

A Upper-bound of returns to scale, ψ^{max}

Firm kj's real profit in time t is given as (Eq.13):

$$\pi_{kj,t} = A_{k,t} p_{kj,t}^{1-\varepsilon} C_t - \alpha (A_{k,t} Z_{k,t}^{-1})^{\frac{\gamma}{\psi_k}} p_{kj,t}^{-\frac{\varepsilon \gamma}{\psi_k}} C_t^{1+\frac{\gamma}{\psi_k}},$$

where $p_{kj,t} = \frac{P_{kj,t}}{P_t}$. Firm kj maximizes its profits by choosing an optimal relative price $p_{kj,t}^* = \frac{P_{kj,t}^*}{P_t}$. We first obtain the stationary point, $p_{kj,t}^s$ that satisfy $\frac{\partial \pi_{kj,t}}{\partial p_{kj,t}}(p_{kj,t}^s) = 0$, and then check if $\frac{\partial^2 \pi_{kj,t}}{\partial p_{kj,t}^2}(p_{kj,t}^s) < 0$ to ensure that the stationary point corresponds to a maximum.

The stationary point $p_{kj,t}^s$ is obtained as:

$$(p_{kj,t}^s)^{1-\varepsilon+\frac{\varepsilon\gamma}{\psi_k}} = \frac{\alpha\gamma}{\psi_k} \frac{\varepsilon}{\varepsilon - 1} A_{k,t}^{\frac{\gamma}{\psi_k} - 1} Z_{k,t}^{-\frac{\gamma}{\psi_k}} C_t^{\frac{\gamma}{\psi_k}}$$

Then, the second derivative at the stationary point is:

$$\frac{\partial^2 \pi_{kj,t}}{\partial p_{kj,t}^2} (p_{kj,t}^s) = (\varepsilon - 1) \left[\varepsilon - \left(\frac{\varepsilon \gamma}{\psi_k} + 1 \right) \right] A_{k,t} C_t (p_{kj,t}^s)^{-\varepsilon - 1}.$$

With $\varepsilon - 1 > 0$, $A_{k,t}$ and C_t being positive, and $p_{kj,t}^s > 0$, the second derivative of the profit function at the stationary point is negative if and only if:

$$\left[\varepsilon - \left(\frac{\varepsilon\gamma}{\psi_k} + 1\right)\right] < 0 \quad \Leftrightarrow \quad \psi_k < \frac{\varepsilon\gamma}{\varepsilon - 1} = \psi^{max}$$

As long as returns to scale are below ψ^{max} , the profit function remains concave.

B Approximation of scaled profit, g

Substituting Eq.15 into Eq.13 (and using $P_{kj,t}/P_t = (P_{kj,t}/P_{kj,t}^*)(P_{kj,t}^*/P_t)$) yields

$$\pi(\hat{p}_{kj,t}, C_t) = \alpha \left[\frac{\alpha \varepsilon \gamma}{\psi_k(\varepsilon - 1)} \right]^{\frac{-\varepsilon \gamma}{\psi_k(1 - \varepsilon) + \varepsilon \gamma}} C_t^{\frac{(1 - \varepsilon)\psi_k + \gamma}{\psi_k(1 - \varepsilon) + \varepsilon \gamma}} e^{-\frac{\varepsilon \gamma}{\psi_k} \hat{p}_{kj,t}} \left[\frac{\varepsilon \gamma}{\psi_k(\varepsilon - 1)} e^{(1 - \varepsilon + \frac{\varepsilon \gamma}{\psi_k}) \hat{p}_{kj,t}} - 1 \right].$$

In turn, $g(\hat{p}_{kj,t}, C_t) (= \pi(\hat{p}_{kj,t}, C_t)/\bar{r}_{kj})$ is given as:

$$g(\hat{p}_{kj,t}, C_t) = \frac{\psi_k(\varepsilon - 1)}{\varepsilon \gamma} \left[\frac{C_t}{\bar{C}} \right]^{\frac{(1 - \varepsilon)\psi_k + \gamma}{\psi_k(1 - \varepsilon) + \varepsilon \gamma}} e^{-\frac{\varepsilon \gamma}{\psi_k} \hat{p}_{kj,t}} \left[\frac{\varepsilon \gamma}{\psi_k(\varepsilon - 1)} e^{(1 - \varepsilon + \frac{\varepsilon \gamma}{\psi_k}) \hat{p}_{kj,t}} - 1 \right].$$

We approximate the function g around the flexible-price equilibrium where $C_t = \bar{C}$ and $\hat{p}_{kj,t} = 0$. As in Alvarez and Lippi (2014), we use the second-order Taylor approximation:

$$g(\hat{p}_{kj,t}, C_t) = g(\bar{C}, 0) + \frac{\partial g}{\partial \hat{p}}(\bar{C}, 0)\hat{p}_{kj,t} + \frac{\partial g}{\partial C}(\bar{C}, 0)(C_t - \bar{C})$$

$$+ \frac{1}{2} \left[\frac{\partial^2 g}{\partial \hat{p} \partial \hat{p}}(\bar{C}, 0)\hat{p}_{kj,t}^2 + \frac{\partial^2 g}{\partial C \partial C}(\bar{C}, 0)(C_t - \bar{C})^2 \right]$$

$$+ \frac{\partial^2 g}{\partial \hat{p} \partial C}(C_t, 0)\hat{p}_{kj,t}(C_t - \bar{C}) + o(||\hat{p}_{kj,t}^2, C_t - \bar{C}||^2)$$

$$= 1 + \frac{(1 - \varepsilon)\psi_k + \gamma}{\varepsilon \gamma} \frac{C_t - \bar{C}}{\bar{C}} + \frac{1}{2}(1 - \varepsilon) \left[1 - \varepsilon + \frac{\varepsilon \gamma}{\psi_k} \right] \hat{p}_{kj,t}^2$$

$$+ \frac{1}{2} \frac{(1 - \varepsilon)\psi_k + \gamma}{\varepsilon \gamma} \left[\frac{(1 - \varepsilon)\psi_k + \gamma}{\psi_k(1 - \varepsilon) + \varepsilon \gamma} - 1 \right] \left[\frac{C_t - \bar{C}}{\bar{C}} \right]^2 + o(||\hat{p}_{kj,t}^2, C_t - \bar{C}||^2).$$

Denoting $\chi = \frac{\psi_k(1-\varepsilon)+\varepsilon\gamma}{\varepsilon\gamma}$ and $\delta = \frac{(1-\varepsilon)\psi_k+\gamma}{\psi_k(1-\varepsilon)+\varepsilon\gamma}$, and plugging the above into Eq.20, the firm's problem can be written as the following minimization problem:

$$\min_{\boldsymbol{\tau}, \triangle \hat{\boldsymbol{p}}_{kj}} \bar{r}_{kj} \mathbf{E} \left[\int_{0}^{\infty} \frac{1}{2} (\varepsilon - 1) (1 - \varepsilon + \frac{\varepsilon \gamma}{\psi_{k}}) \hat{p}_{kj,t}^{2} e^{-\rho t} dt + \sum_{i=1}^{\infty} e^{-\rho \tau_{i}} \varphi \right. \\
\left. - \int_{0}^{\infty} \left[\chi \frac{C_{t} - \bar{C}}{\bar{C}} + \frac{1}{2} \chi (\delta - 1) (\frac{C_{t} - \bar{C}}{\bar{C}})^{2} \right] e^{-\rho t} dt \right. \\
\left. + \int_{0}^{\infty} o(||\hat{p}_{kj,t}^{2}, C_{t} - \bar{C}||^{2}) e^{-\rho t} dt \mid \hat{p}_{kj,0} = \hat{p}_{kj} \right]. \tag{31}$$

In Eq.31, only the first line of the problem depends on firm kj's choice of the pricing policy $(\boldsymbol{\tau}, \Delta \hat{\boldsymbol{p}}_{kj})$ Thus, the firm's problem simply becomes:

$$\min_{\boldsymbol{\tau}, \triangle \hat{\boldsymbol{p}}_{kj}} \mathbf{E} \left[\int_0^\infty \frac{1}{2} (\varepsilon - 1) (1 - \varepsilon + \frac{\varepsilon \gamma}{\psi_k}) \hat{p}_{kj,t}^2 e^{-\rho t} dt + \sum_{i=1}^\infty e^{-\rho \tau_i} \varphi \mid \hat{p}_{kj,0} = \hat{p}_{kj} \right].$$
 (32)

C Price gap following Browning motion

Assuming that money supply is constant over time, i.e., $M_t = \bar{M}$, Eqs.6, 7, and 16 indicate that in the flexible price equilibrium, aggregate price is also constant at:

$$\bar{P} = \frac{\rho \bar{M}}{\kappa \bar{C}}.$$

Then, in the flexible-price equilibrium, a nominal price set by firm kj, $P_{kj,t}^*$ is given as (cf. Eq.15):

$$P_{kj,t}^* = \frac{1}{Z_{k,t}} \left[\frac{\alpha \gamma}{\psi_k} \frac{\varepsilon}{\varepsilon - 1} \bar{C}^{\frac{\gamma}{\psi_k}} \right]^{\frac{1}{1 - \varepsilon + \frac{\varepsilon \gamma}{\psi_k}}} \frac{\rho \bar{M}}{\kappa \bar{C}}.$$

Taking the log of this equation and differentiating it (with respect to time) yields $dlog P_{kj}^* = -dlog Z_k$. Further, taking the log of Eq.10 and differentiating it gives $dlog Z_k = \sigma dx_k$, where x_k follows standard Brownian motion. We thus have

$$dlog P_{kj}^* = -\sigma dx_k. (33)$$

Next, given that a price gap, $\hat{p}_{kj,t} = \log(\frac{P_{kj,t}}{P_{kj,t}^*})$, we have $d\hat{p}_{kj} = d\log P_{kj} - d\log P_{kj}^*$. Since price $P_{kj,t}$ is constant between two consecutive price changes by definition, $d\log P_{kj} = 0$ between those changes. This means that:

$$\mathrm{d}\hat{p}_{kj} = -\mathrm{dlog}P_{kj}^*. \tag{34}$$

Last, combining Eqs.33 and 34 yields:

$$\mathrm{d}\hat{p}_{kj} = \sigma \mathrm{d}x_k.$$

A price gap $\hat{p}_{kj,t}$ follows Brownian motion with the volatility parameter of σ .

D Derivation of the expected duration of inaction

Denote $q_t = \hat{p}_{kj,t}^2$, and $\bar{q} = h_k^2$. Proposition 1 shows that a firm changes its price whenever q_t reaches \bar{q} . For a starting price gap \hat{p}_{kj} , and $q = \hat{p}_{kj}^2$, we define T(q) as the expected time required for q_t to reach \bar{q} when starting from q. The function T satisfies the following Bellman equation:

$$T(q) = dt + \mathbf{E}[T(q + dq)] \Rightarrow 0 = dt + \mathbf{E}[dT(q)]$$
(35)

Given that a price gap $\hat{p}_{kj,t}$ follows Brownian motion (i.e. $d\hat{p}_{kj} = \sigma dx_k$ where x_k is standard Brownian motion), and using Ito's Lemma, it is straightforward to prove that $dq = \sigma^2 dt + 2\sigma \sqrt{q} dx_k$. Similarly, using Ito's lemma on function T(q), we have:

$$dT(q) = (T'(q)\sigma^2 + 2\sigma^2 q T''(q))dt + (2\sigma\sqrt{q}T'(q))dx_k$$
(36)

Plugging Eq.36 into Eq.35, and using the fact that $\mathbf{E}[dx_k] = 0$, we derive:

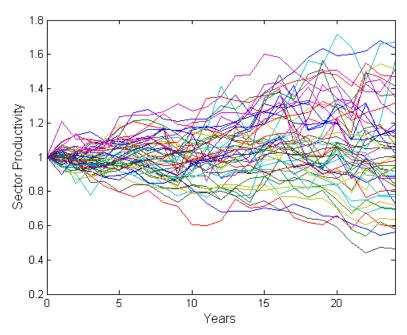
$$0 = dt + (T'(q)\sigma^{2} + 2\sigma^{2}qT''(q))dt$$

Dividing this by dt gives an Ordinary Differential Equation (ODE):

$$0 = 1 + T'(q)\sigma^2 + 2\sigma^2 q T''(q)$$
(37)

Using the boundary condition $T(\bar{q}) = 0$, the solution for the ODE in Eq.37 is $T(q) = \frac{\bar{q} - q}{\sigma^2}$. Thus, the expected duration of inaction of a firm in sector k, D_k is equal to:

$$D_k = T(0) = \frac{\bar{q}}{\sigma^2} = \frac{h_k^2}{\sigma^2}$$


E Estimation of the volatility parameter, σ

Here, we estimate the volatility parameter σ of sectoral productivity shocks, modeled as the exponential of Brownian motion, i.e., geometric Brownian motion. First, in line with the estimation of returns to scale (Eqs.27 and 28), we assume that the production function of firms in sector k is given as:

$$Y_{k,t} = Z_{k,t} (L_{k,t}^{cL_{k,t}} K_{k,t}^{cK_{k,t}} M_{k,t}^{cM_{k,t}})^{\psi_k},$$

where $Y_{k,t}$ is gross output (in sector k in year t); $Z_{k,t}$ is total factor productivity; $L_{k,t}$, $K_{k,t}$, and $M_{k,t}$ are labor, capital, and intermediate inputs; $cL_{k,t}$, $cK_{k,t}$, and $cM_{k,t}$ are the cost shares of respective inputs; ψ_k is returns to scale. Then, using the data from NBER-CES manufacturing industry and BLS multifactor productivity databases, and our estimates for returns to scale (see Figure 1), we compute $Z_{k,t}$ for each year from 1987 to 2011 for the 447 sectors. To normalize the initial value of geometric Brownian motion to its standard value of 1, we divide $Z_{k,t}$ by $Z_{k,1987}$. Figure 6 presents the realized path of $Z_{k,t}$ for 50 (of 447) sectors from t = 0 (1987) to t = 24 (2011).

Figure 6: Sector Productivity shocks $Z_{k,t}$

Note: Normalized paths of $Z_{k,t}$ for 50 6-digit US manufacturing sub-sectors. Year t=0 corresponds to year 1987. Sources: Authors' calculation using data from NBER-CES Manufacturing Industry and BLS Multifactor Productivity databases.

We regard these 447 normalized paths of $Z_{k,t}$ as a set of realizations of geometric Brownian motion, Z_t . To incorporate the possibility that there is a trend to sectoral total factor productivity in reality, we assume that Z_t is geometric Brownian motion with drift, characterized by a volatility parameter σ and a drift parameter μ . Thus, the mean and variance of this stochastic process at time t are given as:

$$E(Z_t) = e^{(\mu + (1/2)\sigma^2)t}$$
 and $Var(Z_t) = e^{(2\mu + \sigma^2)t}(e^{\sigma^2 t} - 1) = E(Z_t)^2(e^{\sigma^2 t} - 1),$

which, in turn, yields:

$$\frac{Var(Z_t)}{E(Z_t)^2} = e^{\sigma^2 t} - 1.$$

Then, using the 447 realizations of Z_t , we obtain the estimate of the volatility parameter σ for each year t (t = 1, ..., 24), and we find that the average of these 24 estimated values

is 0.105. This is our estimate for σ (Eq.10) for the case where the unit of time is a year. Interestingly, this estimated value of volatility parameter is quite close to the parameter of 0.1 used by Dixit (1991a) and Alvarez and Lippi (2014) who assume that the unit of time is a year.

F Matching product categories with NAICS 6-digit manufacturing sector

Code	Prod. description	6-digits NAICS description	NAICS
278	Shortening and cooking oil	Fats and Oils Refining and Blending	311225
641	Fats and oils, inedible	Fats and Oils Refining and Blending	311225
255	Confectionery end Prod.s	Confectionery	311330
254	Confectionery materials	Chocolate and Confectionery	311320
253	Refined sugar	Cane Sugar Refining	311312
242	Frozen fruits, juices and ades	Frozen Fruit, Juice, and Vegetable Mfg.	311411
282	Pickles and pickle Prod.s	Fruit and Vegetable Canning	311421
284	Canned specialties	Specialty Canning	311422
281	Jams, jellies, and preserves	Fruit and Vegetable Canning	311421
244	Canned vegetables and juices	Fruit and Vegetable Canning	311421
285	Frozen specialties	Frozen Specialty Food Mfg.	311412
241	Canned fruits and juices	Fruit and Vegetable Canning	311421
245	Frozen vegetables	Frozen Fruit, Juice, and Vegetable Mfg.	311411
235	Condensed and evaporated milk	Dry, Condensed, and Evaporated Dairy	311514
234	Ice cream and frozen desserts	Ice Cream and Frozen Dessert Mfg.	311520
232	Butter	Creamery Butter Mfg.	311512
233	Natural and processed cheese	Cheese Mfg.	311513
221	Meats	Animal (except Poultry) Slaughtering	311611
222	Processed poultry	Poultry Processing	311615
286	Meat sauces	Mayonnaise, Dressing, and Other Sauce	311941
283	Processed eggs	All Other Miscellaneous Food Mfg.	311999
262	Soft drinks	Soft Drink Mfg.	312111
391	Textile fibers, yarns and fabrics, n.e.c.	Yarn Spinning Mills	313111
326	Yarns	Yarn Spinning Mills	313111
327	Threads	Thread Mills	313113
345	Nonwovens and felt goods	Nonwoven Fabric Mills	313230
347	Embroideries and lace goods	Schiffli Machine Embroidery	313222
337	Broadwovens	Broadwoven Fabric Mills	313210
342	Broadwovens	Broadwoven Fabric Mills	313210
339	Other fabrics	Other Knit Fabric and Lace Mills	313249
344	Narrow fabrics	Narrow Fabric Mills	313221
348	Knit fabrics, finished in knitting mills	Weft Knit Fabric Mills	313241
338	Knits	Weft Knit Fabric Mills	313241
346	Coated fabrics, not rubberized	Fabric Coating Mills	313320
393	Other finishing of textiles	Textile and Fabric Finishing Mills	313312
382	Textile housefurnishings	Curtain and Drapery Mills	314121
1214	Bedding	Curtain and Drapery Mills	314121
442	Gloves	Glove and Mitten Mfg.	315992
427	Finished and unfinished leather	Leather and Hide Tanning and Finishing	316110
419	Hides and skins, incl. cattle	Leather and Hide Tanning and Finishing	316110
432	Women's footwear	Women's Footwear (except Athletic) Mfg.	316214
439	All other footwear	Other Footwear Mfg.	316219
431	Men's footwear	Men's Footwear (except Athletic) Mfg.	316213
437	Athletic footwear	Rubber and Plastics Footwear Mfg.	316211
441	Luggage and small leather goods	Women's Handbag and Purse Mfg.	316992
445	Leather/leather-like goods, n.e.c.	All Other Leather Good Mfg.	316999
871	Treated wood and contract wood preserving	Wood Preservation	321114
851	Logs, bolts, timber and pulpwood	Sawmills	321114
849	Other sawmill planing mill Prod.s	Sawmills	321113
832	Hardwood plywood and related Prod.s	Hardwood Veneer and Plywood Mfg.	321211
831	Softwood plywood Softwood plywood	Softwood Veneer and Plywood Mfg.	321211
922	Hardboard, particleboard fiberboard prods.	Reconstituted Wood Prod. Mfg.	321212 321219
834	Hardwood plywood veneer	Hardwood Veneer and Plywood Mfg.	321219 321211
	- *		
833	Softwood plywood veneer	Softwood Veneer and Plywood Mfg.	321212

923	Building board, const. paper felt stock	Reconstituted Wood Prod. Mfg.	321219
1553	Mobile homes, residential, double wide	Manufactured Home (Mobile Home) Mfg.	321991
823	Miscellaneous millwork Prod.s	Other Millwork (including Flooring)	321918
1552	Mobile homes, residential, single wide	Manufactured Home (Mobile Home) Mfg.	321991
842	Boxes	Wood Container and Pallet Mfg.	321920
822	Prefabricated structural members	Prefabricated Wood Building Mfg.	321992
861	Prefabricated wood buildings components	Prefabricated Wood Building Mfg.	321992
812	Hardwood lumber	Cut Stock, Resawing Lumber, and Planing	321912
841	Wood pallets and skids	Wood Container and Pallet Mfg.	321920
821	General millwork	Cut Stock, Resawing Lumber, and Planing	321912
811	Softwood lumber	Cut Stock, Resawing Lumber, and Planing	321912
1556	Mobile homes, nonresidential	Manufactured Home (Mobile Home) Mfg.	321991
911		Pulp Mills	321991 322110
	Woodpulp		
913	Paper	Paper (except Newsprint) Mills	322121
914	Paperboard	Paperboard Mills	322130
915	Converted paper and paperboard Prod.s	All Other Converted Paper Prod. Mfg.	322299
916	Pressure sensitive Prod.s	Coated and Laminated Paper Mfg.	322222
937	Commercial printing	Commercial Gravure Printing	323111
931	Newspapers	Commercial Gravure Printing	323111
935	Manifold business forms	Manifold Business Forms Printing	323116
934	Book printing	Books Printing	323117
932	Periodicals	Commercial Gravure Printing	323111
938	Blankbooks, binders, and bookbinding work	Tradebinding and Related Work	323121
1361	Prep. asphalt tar roofing siding prod.	Asphalt Shingle and Coating Materials Mfg.	324122
561	Crude petroleum (domestic Prod.ion)	Petroleum Refineries	324110
574	Residual fuels	Petroleum Refineries	324110
1394	Paving mixtures and blocks	Asphalt Paving Mixture and Block Mfg.	324121
571	Gasoline	Petroleum Refineries	324110
581	Petroleum and coal Prod.s, n.e.c.	All Other Petroleum and Coal Prod.s Mfg.	324199
1362	Other asphalt roofing	Asphalt Shingle and Coating Materials Mfg.	324122
573	Light fuel oils	Petroleum Refineries	324110
512	Bituminous coal and Lignite	All Other Petroleum and Coal Prod.s Mfg.	324110
		•	
614	Basic organic chemicals	Gum and Wood Chemical Mfg.	325191
551	Residential natural gas	Cyclic Crude and Intermediate Mfg.	325192
532	Liquefied petroleum gas	Industrial Gas Mfg.	325120
613	Basic inorganic chemicals	Alkalies and Chlorine Mfg.	325181
531	Natural gas	Cyclic Crude and Intermediate Mfg.	325192
552	Commercial natural gas	Cyclic Crude and Intermediate Mfg.	325192
553	Industrial natural gas	Cyclic Crude and Intermediate Mfg.	325192
662	Thermoplastic resins	Plastics Material and Resin Mfg.	325211
663	Thermosetting resins	Plastics Material and Resin Mfg.	325211
652	Fertilizer materials	Nitrogenous Fertilizer Mfg.	325311
653	Other agricultural chemicals	Pesticide and Other Agricultural Chemical Mfg.	325320
637	Biological Prod.s	Biological Prod. (except Diagnostic) Mfg.	325414
631	Medicinal and botanical chemicals	Medicinal and Botanical Mfg.	325411
638	Pharmaceutical preparations	Pharmaceutical Preparation Mfg.	325412
634	Preparations, veterinary	Pharmaceutical Preparation Mfg.	325412
622	Paint materials	Paint and Coating Mfg.	325510
623	Allied and miscellaneous paint Prod.s	Paint and Coating Mfg.	325510
621	Prepared paint	Paint and Coating Mfg.	325510
675	Cosmetics and other toilet preparations	Toilet Preparation Mfg.	325620
672	Specialty cleaning, polish. san. prods.	Toilet Preparation Mfg.	325620
679	Misc. chemical prod. and preparations	All Other Miscellaneous Chemical Prod.	325998
723	Laminated plastic sheets, rods, and tubes	Unsupported Plastics Packaging Film.	326112
725	Plastic packaging	Unsupported Plastics Packaging Film. Unsupported Plastics Packaging Film	326112 326112
$723 \\ 721$	Plastic construction Prod.s		326112 326199
		All Other Plastics Prod. Mfg.	
729 722	Other plastic Prod.s	All Other Plastics Prod. Mfg.	326199
722	Unsupp. plastic film/sheet/other shapes	Unsupported Plastics Packaging Film	326112
713	Miscellaneous rubber Prod.s	All Other Rubber Prod. Mfg.	326299
711	Crude rubber	Rubber and Plastics Hoses and Belting Mfg.	326220

712	Tires, tubes, tread, repair materials	Tire Mfg. (except Retreading)	326211
1052	Vitreous china fixtures	Vitreous China Plumbing Fixture	327111
1352	Clay refractories	Clay Refractory Mfg.	327124
1345	Structural clay Prod.s, n.e.c.	Other Structural Clay Prod. Mfg.	327123
1342	Brick and structural clay tile	Brick and Structural Clay Tile Mfg.	327121
1353	Refractories, non clay	Nonclay Refractory Mfg.	327125
1261	Tableware, kitchenware and other pottery	Vitreous China and Other Pottery	327112
1313	Other finished glassware	Other Glass and Glassware Mfg.	327212
1265	Mirrors	Glass Prod. Mfg.	327215
1262	Household glassware	Other Glass and Glassware Mfg.	327212
1311	Flat glass	Flat Glass Mfg.	327211
1335	Prestressed concrete Prod.s	Other Concrete Prod. Mfg.	327390
1332	Concrete pipe	Concrete Pipe Mfg.	327332
1333	Ready-mixed concrete	Ready-Mix Concrete Mfg.	327320
1322	Cement Conserts black and brief	Comparts Plack and Prick Mfg	327310
1331	Concrete block and brick	Concrete Block and Brick Mfg.	327331
$1334 \\ 1371$	Precast concrete Prod.s	Other Concrete Prod. Mfg. Gypsum Prod. Mfg.	327390
1371 1395	Gypsum Prod.s Cut stone and stone Prod.s	Cut Stone and Stone Prod. Mfg.	$327420 \\ 327991$
1393 1392	Insulation materials	Mineral Wool Mfg.	327991 327993
1136	Abrasive Prod.s	Abrasive Prod. Mfg.	327993 327910
1321	Construction sand, gravel, and crushed stone	All Other NonMt.lic Mineral Mfg.	327910 327999
1321 1399	NonMt.lic minerals and Prod.s, n.e.c.	All Other NonMt.lic Mineral Mfg.	327999
1016	Blast and electric furnace Prod.s	ElectroMt.lurgical Ferroalloy Prod. Mfg.	331112
1010	Iron and steel scrap	Iron and Steel Mills	331111
1017	Steel mill Prod.s	Iron and Steel Mills	331111
1011	Iron ore	Iron and Steel Mills	331111
1022	Primary nonferrous Mt.s	Smelting and Refining of Nonferrous Mt.	331419
1025	Nonferrous mill shapes	Smelting and Refining of Nonferrous Mt.	331419
1026	Nonferrous wire and cable	Smelting and Refining of Copper	331411
1028	Nonferrous foundry shop Prod.s	Smelting and Refining of Nonferrous Mt.	331419
1023	Nonferrous scrap	Smelting and Refining of Nonferrous Mt.	331419
1021	Nonferrous Mt. ores	Smelting and Refining of Nonferrous Mt.	331419
1027	Nonferrous forage shop Prod.s	Smelting and Refining of Nonferrous Mt.	331419
1024	Secondary nonferrous Mt.s	Smelting and Refining of Nonferrous Mt.	331419
1042	Hand and edge tools	Hand and Edge Tool Mfg.	332212
1267	Cutlery, razors and razor blades	Cutlery and Flatware (except Precious) Mfg.	332211
1076	Fabricated steel plate	Plate Work Mfg.	332313
1073	Sheet Mt. Prod.s	Sheet Mt. Work Mfg.	332322
1071	Mt. doors, sash, and trim	Mt. Window and Door Mfg.	332321
1079	Prefabricated Mt. buildings	Prefabricated Mt. Building and Component Mfg.	332311
1072	Mt. tanks	Mt. Tank (Heavy Gauge) Mfg.	332420
1077	Steel power boilers	Power Boiler and Heat Exchanger Mfg.	332410
1032	Barrels, drums, and pails	Other Mt. Container Mfg.	332439
1075	Heat exchanges and condensers	Power Boiler and Heat Exchanger Mfg.	332410
1041	Hardware, n.e.c.	Hardware Mfg.	332510
1088	Fabricated ferrous wire Prod.s	Other Fabricated Wire Prod. Mfg.	332618
1081	Bolts, nuts, screws, rivets, and washers	Bolt, Nut, Screw, Rivet, and Washer Mfg.	332722
1195	Machine shop Prod.s	Machine Shops	332710
1089	Other miscellaneous Mt. Prod.s	All Other Fabricated Mt. Prod. Mfg.	332999
1056	Mt. sanitary ware	All Other Fabricated Mt. Prod. Mfg.	332999
1054	Brass fittings Parts for construction Mah	Plumbing Fixture Fitting and Trim Mfg.	332913
112G 1192	Parts for construction Mch.	Construction Mch. Mfg. Mining Mch. and Eq. Mfg.	333120 333131
$\frac{1192}{1191}$	Mining Mch. and Eq. Oil field and gas field Mch.	Oil and Gas Field Mch. and Eq. Mfg.	333131
11114	Agricultural Mch. and Eq.	Farm Mch. and Eq. Mfg.	333111
1266	Lawn and garden equip., ex. garden tractors	Lawn and Garden Tractor and Eq. Mfg.	333112
1200 112D	Off-highway Eq., excluding parts	Construction Mch. Mfg.	333120
112D 112I	Construction Mch. and Eq. sold	Construction Mch. Mfg.	333120
1164	Paper industries Mch.	All Other Industrial Mch. Mfg.	333298
1101	- 5-p 52 111400001100 1110111	5 01101 111000 111011 11115.	333200

1166	Other special industry Mch.	All Other Industrial Mch. Mfg.	333298
1162	Textile Mch. and Eq.	Textile Mch. Mfg.	333292
1163	Woodworking Mch. and Eq.	All Other Industrial Mch. Mfg.	333298
1165	Printing trades Mch. and Eq.	Printing Mch. and Eq. Mfg.	333293
1161	Food Prod.s Mch.	Food Prod. Mch. Mfg.	333294
1541	Photographic Eq.	Photographic and Photocopying Eq. Mfg.	333315
1542	Photographic supplies	Photographic and Photocopying Eq. Mfg.	333315
1168	Service industry Mch. and parts	Other Commercial and Service Industry Mch. Mfg.	333319
1186	Optical instruments and lenses	Optical Instrument and Lens Mfg.	333314
1169	Commercial laundry dry cleaning equip.	Other Commercial and Service Industry Mch. Mfg.	333319
1193	Office and store machines and Eq.	Office Mch. Mfg.	333313
1066	Water heaters, domestic	Heating Eq. (except Warm Air Furnaces) Mfg.	333414
1062	Warm air furnaces	Air-Conditioning+Warm Air Heating Equip Mfg.	333415
1064	Domestic heating stoves	Heating Eq. (except Warm Air Furnaces) Mfg.	333414
1148	Air conditioning and refrigeration equip	Air-Conditioning+Industrial Refrigeration Equip Mfg.	333415
1147	Fans and blowers, except portable	Industrial and Commercial Fan and Blower Mfg.	333412
1061	Steam and hot water Eq. Conversion burners	Heating Eq. (except Warm Air Furnaces) Mfg.	333414
$1063 \\ 1135$	Cutting tools and accessories	Air-Conditioning+Warm Air Heating Equip Mfg. Cutting Tool and Machine Tool Accessory Mfg.	$333415 \\ 333515$
1135 113A	Mt.working Mch. n. e. c.	Other Mt.working Mch. Mfg.	333518
113A 1139	Tools, dies, jigs, fixtures ind. molds	Industrial Mold Mfg.	333513
1138	Mt. forming machine tools	Cutting Tool and Machine Tool Accessory Mfg.	333515
1137	Mt. cutting machine tools	Cutting Tool and Machine Tool Accessory Mfg.	333515
1194	Internal combustion engines	Turbine and Turbine Generator Set Units Mfg.	333611
1194	Steam, gas, hydraulic turbines parts	Turbine and Turbine Generator Set Units Mfg.	333611
1145	Mechanical power transmission Eq.	Mechanical Power Transmission Eq. Mfg.	333613
1197	Turbine generator sets and parts	Turbine and Turbine Generator Set Units Mfg.	333611
1141	Pumps, compressors, and Eq.	Pump and Pumping Eq. Mfg.	333911
1132	Power driven hand tools	Power-Driven Handtool Mfg.	333991
112A	Tractors and attachments, excluding parts	Industrial Truck, Tractor Mch. Mfg.	333924
1133	Welding machines and Eq.	Welding and Soldering Eq. Mfg.	333992
112B	Power cranes, excavators and Eq.	Overhead Traveling Crane, Hoist Mfg.	333923
1142	Elevators, escalators, and other lifts	Elevator and Moving Stairway Mfg.	333921
1144	Industrial material handling Eq.	Conveyor and Conveying Eq. Mfg.	333922
1149	Miscellaneous general purpose Eq.	All Other Miscellaneous General Purpose Mch. Mfg.	333999
1167	Packing and packaging Mch.	Packaging Mch. Mfg.	333993
1146	Scales and balances	Scale and Balance (except Laboratory) Mfg.	333997
1143	Fluid power Eq.	Fluid Power Cylinder and Actuator Mfg.	333995
1134	Industrial process furnaces and ovens	Industrial Process Furnace and Oven Mfg.	333994
1152	Computer storage devices	Computer Storage Device Mfg.	334112
1153	Computer terminals and parts	Computer Terminal Mfg.	334113
1154	Computer peripheral Eq. and parts	Other Computer Peripheral Eq. Mfg.	334119
1151	Electronic computers	Electronic Computer Mfg.	334111
1176	Communication and related Eq.	Other Communications Eq. Mfg.	334290
1252	Television receivers	Radio and Television Eq. Mfg.	334220
1257	Speakers and commercial sound Eq.	Audio and Video Eq. Mfg.	334310
1178	Electronic components and accessories	Other Electronic Component Mfg.	334419
1181	Environmental controls	Automatic Environmental Control Mfg.	334512
1172	Integrating and measuring instruments	Instruments+Related Measuring Mfg	334513
1184	Fluid meters and counting devices	Totalizing Fluid Meter and Counting Device Mfg.	334514
1182	Process control instruments	Instruments Controlling Industrial Process Variables	334513
1189	Measuring and controlling devices, n.e.c.	Other Measuring and Controlling Device Mfg.	334519
1185	Engineering and scientific instruments	Analytical Laboratory Instrument Mfg.	334516
159C	Precorded cd/tape/record producing	Prerecorded Compact Disc	334612
1245	Electric lamps	Electric Lamp Bulb and Part Mfg.	335110
1177	Electric lamps/bulbs and parts	Electric Lamp Bulb and Part Mfg.	335110
1083	Lighting fixtures	Residential Electric Lighting Fixture Mfg.	335121
1243	Household vacuum cleaners, parts, attach.	Household Vacuum Cleaner Mfg.	335212
$1258 \\ 1244$	Other home electronic Eq. Electric housewares and fans	Electric Housewares and Household Fan Mfg.	335211 335211
1244	Electric housewares and fans	Electric Housewares and Household Fan Mfg.	999711

1241	Major appliances	Household Cooking Appliance Mfg.	335221
1175	Major appliances Switchgear, switchboard, etc. Eq.	Switchgear and Switchboard Apparatus Mfg.	335313
1173 1174	Transformers and power regulators	Power, Distribution, and Specialty Transformer Mfg.	335311
1174 1173	Motors, generators, motor generator sets	Motor and Generator Mfg.	335311
1173 1171	Wiring devices	Current-Carrying Wiring Device Mfg.	335931
1416	Travel trailers and campers	Travel Trailer and Camper Mfg.	336214
1413	Truck and bus bodies	Motor Vehicle Body Mfg.	336211
1413 1414	Truck trailers	Truck Trailer Mfg.	336211
1411	Motor vehicles	Motor Vehicle Body Mfg.	336211
1412	Motor vehicle parts	All Other Motor Vehicle Parts Mfg.	336399
1421	Aircraft	Aircraft Mfg.	336411
1423	Aircraft engines and engine parts	Aircraft Engine and Engine Parts Mfg.	336412
1425	Aircraft parts and auxiliary Eq., nec	Other Aircraft Parts and Auxiliary Eq. Mfg.	336413
1442	Railroad cars and car parts	Railroad Rolling Stock Mfg.	336510
1441	Locomotives and parts	Railroad Rolling Stock Mfg.	336510
1431	Ships	Ship Building and Repairing	336611
1432	Boats	Boat Building	336612
1491	Transportation Eq., n.e.c.	All Other Transportation Eq. Mfg.	336999
1212	Wood household furniture	Nonupholstered Wood Household Furniture Mfg.	337122
1213	Upholstered household furniture	Upholstered Household Furniture Mfg.	337121
1216	Household furniture, n.e.c.	Household Furniture (except Wood and Mt.) Mfg.	337125
1211	Mt. household furniture	Mt. Household Furniture Mfg.	337124
1223	Public building furniture	Institutional Furniture Mfg.	337127
1215	Porch and lawn furniture	Upholstered Household Furniture Mfg.	337121
1222	Mt. office furniture and store fixtures	Office Furniture (except Wood) Mfg.	337214
1221	Wood office furniture and store fixtures	Wood Office Furniture Mfg.	337211
1564	Ophthalmic goods	Ophthalmic Goods Mfg.	339115
1571	Industrial safety Eq.	Surgical Appliance and Supplies Mfg.	339113
1565	Dental Eq. and supplies	Dental Eq. and Supplies Mfg.	339114
1563	Surgical appliances and supplies	Surgical Appliance and Supplies Mfg.	339113
1562	Medical instruments and Eq.	Surgical and Medical Instrument Mfg.	339112
1594	Jewelry and jewelry Prod.s	Jewelry (except Costume) Mfg.	339911
1264	Household flatware	Silverware and Hollowware Mfg.	339912
1593	Musical instruments	Musical Instrument Mfg.	339992
1398	Gaskets, packing, and sealing devices	Gasket, Packing, and Sealing Device Mfg.	339991
1512	Sporting and athletic goods	Sporting and Athletic Goods Mfg.	339920
1595	Pens, pencils, and marking devices	Marking Device Mfg.	339943
1532	Needles, pins, and fasteners	Fastener, Button, Needle, and Pin Mfg.	339993
1531	Buttons, button blanks, and parts	Fastener, Button, Needle, and Pin Mfg.	339993
1591	Caskets	Burial Casket Mfg.	339995
1597	Brooms and brushes	Broom, Brush, and Mop Mfg.	339994
1511	Toys, games, and children's vehicles	Game, Toy, and Children's Vehicle Mfg.	339932
1263	Hollowware	Silverware and Hollowware Mfg.	339912

 $Abbreviation: Mfg.=\!Manufacturing,\ Prod.=\!Product,\ Mch.=\!Machinery,\ Eq.=\!Equipment$

Notes: Matching of 277 Product code to 202 6-digits NAICS manufacturing. The description of some NAICS industries have been modified to fit into the table. For the full description of the 6-digits 1997 NAICS, visit http://www.nber.org/nberces/.

Sources: Authors' matching using NBER-CES Manufacturing Industry and Product code from Nakamura and Steinsson (2008).

References

- ALVAREZ, F. AND F. LIPPI (2014): "Price Setting with Menu Cost for Multiproduct Firms," *Econometrica*, 82, 89–135.
- Ball, L., N. G. Mankiw, and D. Romer (1988): "The New Keynesian Economics and the Output-Inflation Trade-off," *Brookings Papers on Economic Activity*, 1, 1–65.
- Bartelsman, E. J. and W. Gray (1996): "The NBER Manufacturing Productivity Database," NBER Technical Working Paper No. 205.
- Basu, S. and J. G. Fernald (1997): "Returns to scale in U.S. production: Estimates and implications," *Journal of Political Economy*, 105, 249–283.
- Baum, C. F. (2008): "Stata tip 63: Modeling proportions," The Stata Journal, 8, 299–303.
- BEASON, R. AND D. E. WEINSTEIN (1996): "Growth, Economies of Scale, and Targeting in Japan (1955-1990)," Review of Economics and Statistics, 78, 286–295.
- Bils, M. and P. J. Klenow (2004): "Some evidence on the importance of sticky prices," Journal of Political Economy, 112, 947–985.
- BOUAKEZ, H., E. CARDIA, AND F. J. RUGE-MURCIA (2009): "The transmission of monetary policy in a multisector economy," *International economic review*, 50, 1243–1266.
- Burnside, C. (1996): "Production function regressions, returns to scale, and externalities," Journal of Monetary Economics, 37, 177–201.
- BURSTEIN, A. AND C. HELLWIG (2007): "Prices and market shares in a menu cost model," NBER Working Paper 13455.
- Calvo, G. (1983): "Staggered prices in a utility-maximizing framework," *Journal of Monetary Economics*, 12, 383–398.

- Carlton, D. W. (1986): "The rigidity of prices," American Economic Review, 76, 637–658.
- Carvalho, C. (2006): "Heterogeneity in Price Stickiness and the Real Effects of Monetary Shocks," The B.E. Journal of Macroeconomics, 2, 1–56.
- CAUCUTT, E. M., M. GHOSH, AND C. M. KELTON (1999): "Durability versus concentration as an explanation for price inflexibility," *Review of industrial organization*, 14, 27–50.
- DIEWERT, W. E. AND K. J. Fox (2008): "On the estimation of returns to scale, technical progress and monopolistic markups," *Journal of Econometrics*, 145, 174–193.
- DIEWERT, W. E., T. NAKAJIMA, A. NAKAMURA, E. NAKAMURA, AND M. NAKAMURA (2011): "Returns to scale: concept, estimation and analysis of Japan's turbulent 1964-88 economy," *Canadian Journal of Economics*, 44, 451–485.
- DIXIT, A. (1991a): "Analytical Approximations in Models of Hysteresis," Review of Economic Studies, 58, 141–151.
- DIXON, H. AND E. KARA (2011): "Contract length heterogeneity and the persistence of monetary shocks in a dynamic generalized Taylor economy," *European Economic Review*, 55, 280–292.
- ECKARD, E. W. (1982): "Firm market share, price flexibility, and imperfect information," *Economic Inquiry*, 20, 388–392.
- Golosov, M. and R. E. Lucas (2007): "Menu costs and Phillips curves," *Journal of Political Economy*, 115, 171–199.
- Hall, R. E. (1990): Growth/Productivity/Unemployment:Essays to Celebrate Bob Solow's Birthday, Cambridge, Massachusetts: MIT Press, first ed.

- KLENOW, P. J. AND O. KRYVTSOV (2008): "State-dependent or time-dependent pricing: Does it matter for recent U.S. inflation?" *Quarterly Journal of Economics*, 123, 863–904.
- KLENOW, P. J. AND B. MALIN (2011): "Microeconomic Evidence on price setting," *Hand-book of Monetary Economics*, 1, 231–284.
- Levy, D., M. Bergen, S. Dutta, and R. Venable (1997): "The Magnitude of Menu Costs: Direct Evidence from Large U. S. Supermarket Chains," *The Quarterly Journal of Economics*, 112, 791–824.
- MIDRIGAN, V. (2011): "Menu Costs, Multiproduct Firms, and Aggregate Fluctuations," *Econometrica*, 79, 1139–1180.
- MIKOSCH, T. (1998): Elementary stochastic calculus with finance in view: Advance series on statistical science & applied probability Vol.6, Singapore: World Scientific.
- NAKAMURA, E. AND J. STEINSSON (2008): "Five facts about prices: a reevaluation of menu cost models," *Quarterly Journal of Economics*, 123, 1415–1464.
- NAKAMURA, S. (1992): "Explaining Japan and U.S. TFP difference," *The Economic Studies Quarterly*, 43, 326–336.
- PENEVA, E. (2011): "Some evidence on factor intensity and price rigidity," *Journal of Economic Dynamics & Control*, 35, 1652–1658.
- Peterman, W. B. (2016): "Reconciling micro and macro estimates of the Frisch labor supply elasticity," *Economic Inquiry*, 54, 100–120.
- ROTEMBERG, J. J. (1982): "Sticky prices in the United States," *Journal of Political Economy*, 90, 1187–1211.

- STELLA, A. (2014): "The Magnitude of Menu Costs: A Structural Estimation," 2014 Meeting Papers 436, Society for Economic Dynamics.
- Taylor, J. B. (1980): "Aggregate dynamics and staggered contracts," *Journal of Political Economy*, 88, 1–23.
- VERMEULEN, P., D. A. DIAS, M. DOSSCHE, E. GAUTIER, I. HERNANDO, R. SABBATINI, AND H. STAHL (2012): "Price setting in the Euro Area: Some stylized facts from individual producer price data," *Journal of money, credit and banking*, 44, 1631–1650.
- ZBARACKI, M., M. RITSON, D. LEVY, S. DUTTA, AND M. BERGEN (2004): "Managerial and Customer Costs of Price Adjusment: Direct Evidence from Industrial Markets," Review of Economics and Statistics, 86, 514–533.