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Abstract
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and equity volatility represent. We focus on the investment channel. Using
firm-level data, we find that the sensitivity of investment to equity volatility
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1 Introduction

Economists and practicioners alike have long argued that there is a tight connec-

tion between bond markets and the macroeconomy. Friedman and Kuttner (1992)

show that the spread between commercial paper and Treasury bills forecasts reces-

sions. Gilchrist and Zakraǰsek (2012) use firm-level data to construct a credit spread

measure with substantial predictive power for consumption, inventories, and output.

Philippon (2009) constructs Tobin’s q from bond market data and shows that it

outperforms equity-market q in predicting firm-level investment.1

An open question, however, is why bond market data appears to have better

forecasting power for real outcomes (in particular during recessions) than equity

market data. Is it because bond markets have more “smart money” and better

reflect changes in financial market distortions? Or because bonds capture downside

risk better, while equity prices are more affected by growth options? Our empirical

evidence and model of investment with debt overhang support the latter explanation.

We focus on an investment channel. Bloom (2009) shows that shocks to uncertainty

measured using implied equity volatility forecast lower investment. However, recent

work by Gilchrist, Sim, and Zakraǰsek (2014) shows that controlling for credit spreads

substantially reduces the impact of equity volatility on investment. The structural

connection between credit spreads and equity volatility has been underappreciated

1See also the important contributions by Friedman and Kuttner (1998), Bernanke (1990),
Gertler and Lown (1999), and Gilchrist, Yankov, and Zakraǰsek (2009), Giesecke, Longstaff, Schae-
fer, and Strebulaev (2014), Krishnamurthy and Muir (2017).
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in the literature using financial market data to forecast economic activity.2 As em-

phasized in the seminal works of Merton (1974) and Leland (1994), bond spreads

and equity volatility are tightly related due to the fact that they both reflect a com-

bination of firms’ asset volatilities and leverage. Relatedly, Atkeson, Eisfeldt, and

Weill (2017) show that (the inverse of) equity volatility and credit spreads contain

very similar information about firms’ financial soundness.

We establish four main facts. First, credit spreads drive out equity volatility in

an empirical model of the sensitivity of firm-level investment to equity volatility

and credit spreads. Second, this result is due to the heterogeneity of the sensitivity

of investment to equity volatility in the cross section of firms. The sensitivity of

investment to equity volatility is positive for firms far enough away from default,

and otherwise it is negative. These different signs in the cross section drive the

overall effect to be less significant than credit spreads. Third, the levels of both

equity volatility and credit spreads are in large part driven by asset volatility and

leverage, as predicted by structural models of credit risk.3 However, credit spreads

have higher loadings on leverage, while equity volatility loads more on asset volatility.

This is intuitive given the priority of debt versus equity in firms’ capital structures.

Fourth, the sensitivity of investment to asset volatility is positive for all firms. Our

results indicate that the closer relation between bond markets and the macroeconomy

2See Stock and Watson (2003) for a comprehensive survey on research using financial markets
data to forecast macroeconomic outcomes.

3Collin-Dufresn, Goldstein, and Martin (2001) show that changes in credit spreads also have
a common component that appears unrelated to structural determinants, however we show the
majority of variation in credit spread levels, and about one third of credit spread changes, can be
explained by asset volatility and financial leverage.

2



is not due to differences in the investor base or the presence of financial frictions,

but instead is due to the precise transformation of asset volatility and leverage that

equity volatility and credit spreads represent. We confirm this finding using credit

spreads constructed from equity data alone.

[Figures 4, 6 and 5 about here.]

We present VAR evidence which aggregates these findings to the economy-wide

level. The aggregate evidence confirms our micro-level results and documents the im-

portance of our findings for understanding the role of uncertainty and credit spreads

on aggregate activity. The aggregate investment response to a positive shock to as-

set volatility is positive while the response to a positive shock to credit spreads (a

market proxy for distance-to-default or leverage) is negative. Figure 4 also provides

an intuitive visual representation of what is driving our results. This figure plots

the time series and cross section of firms’ elasticity of investment with respect to

equity volatility. As shown in the picture, firms with lower credit spreads which are

further away from default display a positive elasticity of investment, while firms with

higher credit spreads display a negative elasticity. Aggregate effects are driven by the

movement of the entire cross section of firms away from and closer to their respective

default boundaries. In contrast, Figure 6 shows that the elasticity of investment to

credit spreads is negative for all firm quarters.

The starting point for our empirical work is a simple replication of the finding in

Gilchrist, Sim, and Zakraǰsek (2014) showing that (i) individually, the sensitivity

of investment to both equity volatility and credit spreads is negative, but that (ii)
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if both are included the sensitivity of investment to credit spreads is essentially

unchanged but the sensitivity of investment to equity volatility is reduced by 70%.

We then show that this is because the sensitivity of investment to equity volatility

varies systematically in the cross section of firms with high and low credit spreads.

Firms in the lowest tercile of credit spreads have a statistically and economically

significant positive elasticity of investment to equity volatility, while firms in the

highest tercile have a statistically and economically significant negative elasticity.

By contrast, the elasticity of investment to credit spreads is always negative. As

a result, the elasticity of investment to equity volatility controlling for both credit

spreads and the interaction between credit spreads and equity volatility is highly

significant and positive. That is, controlling for high-credit-spread firms’ negative

elasticity of investment with respect to equity volatility, the relation between equity

volatility and investment becomes robustly positive.

Using “fair value spreads” constructed using equity market data alone, we repeat

the above analysis and show that the results are virtually identical. These fair

value spreads are constructed using the results from structural models of credit risk

which derive credit spreads from asset volatility and leverage.4 Thus, the different

information in equity and bond data for investment is not due to a difference in

investor base or market segmentation.

According to structural models of credit risk, both credit spreads and equity

volatility are driven by asset volatility and leverage. We document this using our

panel data. We extract asset volatility by deleveraging equity volatility. The frac-

4See Arora, Bohn, and Zhu (2005) and Nazeran and Dwyer (2015).
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tions of variation in equity volatility and credit spreads explained by asset volatility

and leverage (including firm and time fixed effects) are 87% and 57%, respectively.

In changes, the fractions of variation are 79% (equity volatility) and 35% (credit

spreads). In terms of loadings, these regressions show that equity volatility is driven

by both asset volatility and leverage. By contrast, the loading for credit spreads on

leverage is three times as large as the loading on asset volatility in levels and fifteen

times larger in changes. Thus, an increase in equity volatility could either signal an

increase in asset volatility or in leverage. As credit spreads are mostly driven by

leverage, an increase in credit spread always signals an increase in leverage.

We use this decomposition to show that the reason that equity and bond market

data fare differently in explaining investment is due to the fact that asset volatility

and leverage have opposite effects on investment. The elasticity of investment to

asset volatility is significantly positive for all firms, indicating that the marginal rev-

enue product of capital is a convex function of asset volatility shocks (see Leahy and

Whited, 1996).5 A one standard deviation increase in asset volatility is associated

with a 9% standard deviation increase in firms’ investment rate. Interestingly, the

positive impact of asset volatility on investment gets stronger for firms with lower

credit spreads. Thus, when credit spreads are low, the asset volatility effect domi-

nates, and investment increases following a positive shock to equity volatility, while

the reverse is true when credit spreads are high. As credit spreads are mostly driven

by leverage, the leverage effect always dominates and the sensitivity of investment

5See Abel, Eberly, et al. (1994) and Dixit and Pindyck (2012) for models with convex and
non-convex costs of adjustment.
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to credit spreads is always negative.

We provide a model to illustrate the structural decomposition and the heterogene-

ity in the cross section of the relationship between equity volatility and investment.

In our model, two forces drive the investment decision: debt overhang and the option

value of equity. We find that an increase in asset volatility has a positive effect on

investment unless the distance-to-default decreases sufficiently for the debt overhang

problem to dominate. Importantly, equity volatility is a poor signal of uncertainty.

Indeed, if the option value of equity increases sufficiently following a positive shock

to asset volatility, equity volatility might decrease. As a result, the best signals of

debt overhang and option value of equity are credit spreads and asset volatility.6

2 Empirical Evidence

2.1 Data and Definition

Data Collection We use S&P’s Compustat quarterly database from 1984:Q1 to

2018:Q4. We exclude firms in the financial sector (SIC code 6000 to 6999) and utility

sector (SIC code 4900 to 4949) and observations with negative sales. We use daily

returns from the Center for Research in Security Prices (CRSP) database. Bond

prices come from the Lehman/Warga (1984-2005) and ICE databases (1997-2018).

6We note that even in real-option models with fixed costs and inaction regions, the ultimate
impact of an increase in asset volatility is to increase the frequency of non-zero investment rates
(see Bloom, 2009). See also DeMarzo, Fishman, He, and Wang (2012) and Sundaresan, Wang, and
Yang (2015)
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We require non-missing data for variables we use to construct investment rate, equity

volatility, market leverage, and credit spreads and impose a restriction that a firm

need to be in the panel for at least 3 years. This selection criterion yields 1,161

unique firms with 54,033 firm-quarter observations. To ensure that our results are

not driven by extreme values, we trim the sample by replacing the top and bottom

0.5% of regression variables as missing values. Below, we describe how we construct

our key variables.

Investment and Equity Volatility We define investment rate as capital expen-

ditures in quarter t scaled by net property, plant, and equipment in quarter t − 1.

Idiosyncratic equity volatility is constructed in two steps. For each firm-fiscal quar-

ter, we extract daily excess returns using the Carhart four-factor model. Then for

each regression we calculate the standard deviation of residuals over one quarter,

and obtain quarterly firm-specific idiosyncratic equity volatility. We only keep ob-

servations for quarters with more than 30 trading days.

Credit Spreads We follow Gilchrist and Zakraǰsek (2012) to compute bond-level

credit spreads. First, we construct a theoretical risk-free bond that replicates exactly

the promised cash flows. The price of this risk-free bond is calculated by discounting

the promised cash flows using continuously-compounded zero-coupon Treasury yields

from Gürkaynak, Sack, and Wright (2007). The credit spread of an individual bond is

the difference between the yield of the actual bond and the yield of the corresponding

risk-free bond. We then define the credit spread of a firm as the quarterly average
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of the month-end credit spreads of all bonds issued by that firm.

Asset Volatility We use data on realized equity volatility, debt, and market cap-

italization to derive a measure of firm-level idiosyncratic asset volatility implied by

the Merton model. Realized equity volatility is computed as the standard deviation

of historical daily stock returns over a quarter. The firm’s debt is assumed to be

equal to the sum of its current liabilities and one-half of its long-term liabilities. We

implement the iterative procedure proposed by Bharath and Shumway (2008), and

then use the resulting asset values to generate times series of daily asset returns.

With time series of daily asset returns, we calculate the idiosyncratic asset volatility

using the same methodology used for idiosyncratic equity volatility. In addition to

this realized asset volatility measure, we also use an implied asset volatility measure

based on the option-implied equity volatility from OptionMetrics. Our implied eq-

uity volatility data corresponds to at-the-money 30-day forward put options. The

asset volatility is constructed as the unlevered equity volatility, that is, implied equity

volatility times market value of equity divided by market value of assets.

Market Leverage Market leverage is defined as the ratio of market value of assets

to market value of equity. The market value of assets is built as the book value of

assets plus the market value of equity minus the book value of equity. Following

Davies, Fama, and French (2000), the book value of equity is defined as the book

value of stockholders’ equity, plus balance sheet deferred taxes and investment tax

credit, minus the book value of preferred stock. Depending on availability, we use the
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redemption, liquidation, or par value (in that order) for the book value of preferred

stock. If this procedure generates missing values, we measure stockholders’ equity as

the book value of common equity plus the par value of preferred stock, or the book

value of assets minus total liabilities.

Fair Value Spreads We also use a proprietary data set from Moody’s on its Public

Firm Expected Default Frequency (EDF) Metric, which is an equity-based measure

of firm’s probability of default. The core model used to generate the EDF metric

belongs to the class of option-pricing based, structural credit risk models pioneered

by Black and Scholes (1973) and Merton (1974). The Vasicek-Kealhofer (VK) model

summarizes information on asset volatility, market value of assets, and the default

point into one metric, distance-to-default (DD), and then maps the DD to obtain

the EDF metric. The DD-to-EDF mapping step utilizes the empirical distribution of

DD and frequency of realized defaults. Nazeran and Dwyer (2015) provide a detailed

description of their methodology. Most importantly for our purpose, the EDF credit

risk measure relies only on equity market inputs and does not contain bond market

information.

Using the EDF credit risk measure, we construct a cumulative EDF (CEDF) over T

years by assuming a flat term structure, that is, CEDFT = 1−(1−EDF )T . Then, we

convert our physical measure of default probabilities (CEDF) to risk-neutral default

probabilities (CQDF) using the following equation:

CQDFT = N
[
N−1 (CEDFT ) + λρ

√
T
]
,
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where N is the cumulative distribution function for the standard normal distribution,

λ is the market Sharpe ratio and ρ is the correlation between the underlying asset

returns and market returns. Given this risk-neutral default probability measure, the

spread of a zero-coupon bond with duration T can be computed as:

ŝ = − 1

T
log(1− CQDFT · LGD),

where LGD stands for the risk-neutral expected loss given default. We follow

Moody’s convention and set T = 5, LGD = 60%, λ = 0.546, and ρ =
√

0.3 to

build our “fair value spread” measure ŝ. We successfully match 39, 925 fair value

spreads with our firm-quarter observations.

Covenant Tightness To measure the strength of creditor control rights, which is

useful for providing empirical support for the debt overhang channel in our model, we

use a covenant tightness measure based on a firm’s outstanding loans in a firm-year

panel.7 Data on covenant specifications and thresholds for loans is from DealScan.

There are 18 types of covenants in the data. We first compute the distance between

the actual financial ratio and the covenant threshold for each type of covenant,

normalized by the year-specific standard deviation of the actual financial ratios at

loan issuance. We then use the minimum of the normalized distances to measure the

overall covenant tightness for the firm.

7We thank Yueran Ma and Amir Kermani for sharing their data with us. See Kermani and Ma
(2020) for more details on the covenant tightness measure.
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2.2 Firm-level Panel Regressions

In this section, we present a set of firm-level panel regressions of investment rate on

volatility and spreads:

log[I/K]i,t = β1 logXσ
i,t + β2 logXs

i,t + ηi + λt + εi,t, (1)

where log[I/K]i,t is the log of investment rate of firm i in period t, Xσ
i,t denotes

either the idiosyncratic equity volatility σei,t or the idiosyncratic asset volaility σi,t,

and Xs
i,t denotes the credit spread si,t, the fair value spread ŝi,t, or market leverage

[MA/ME]i,t. We control for the firm fixed effects and time fixed effects by including

ηi and λt. We run these regressions using both the full sample and subsamples based

on firms’ credit spread. We also consider specifications that add an interaction term

logXσ
i,t × logXs

i,t to the right-hand side of Equation (1).

Table 1 and Table 2 use equity volatility and credit spread/fair value spread as

right-hand-side variables and establish that credit spreads drive out equity volatility

in predicting investment is not due to different investor base or market segmentation,

but due to the heterogeneity of sensitivity of investment to equity volatility in the

cross-section. Tables 3-5 use asset volatility and credit spread/market leverage on the

right-hand-side of eq. (1) and show that asset volatility and credit spread are jointly

unambiguous signals for investment, which we rationalize in the model section.

Equity Volatility and Credit Spread We first replicate the results in Gilchrist,

Sim, and Zakraǰsek (2014) that the adverse effect of idiosyncratic equity volatility on
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investment rate is dampened when controlling for credit spreads. Table 1 presents

estimation results of Equation (1) using equity volatility and credit spread on the

right-hand side.

[Table 1 about here.]

As shown in columns 1-3 of Table 1, the coefficient on idiosyncratic equity volatility

and credit spread are statistically significant and economically important on their

own (columns 1-2). However, when both measures are included in the regression, the

coefficient on equity volatility is substantially reduced both in terms of magnitude

and statistical significance while the coefficient on credit spread is unaffected (column

3).

To see why bond spreads can drive out equity volatility, we sort firms into tercile

groups based on credit spread each quarter and run the same regression for these

subsamples (columns 4-6).8 We find that the coefficient on equity volatility changes

sign in the cross section: it is significantly positive among firms with low credit

spread and significantly negative among firms with high credit spread. The last

column shows results from the regression with an interaction term, and confirms our

findings from columns 4-6. A simple back-of-the-envelope calculation suggests that

the sign flip happens at a credit spread level of 194 basis points. In Appendix C, we

show that regressions using lags of the independent variables generate similar results,

which highlights the predictive power of these measures on investment.

8This method of splitting uses quarter-specific cutoffs. Using fixed cutoffs to sort all firm-quarter
observations leads to similar results.
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[Table 2 about here.]

In Table 2, we replace credit spreads with fair value spreads. The results are

qualitatively identical to Table 1. The coefficient on equity volatility goes from sig-

nificantly positive to significantly negative as firm’s credit spread goes up, while the

coefficient on the fair value spread remains significantly negative across the sub-

groups. In Appendix C, we run additional robustness checks to address concerns

over sample selection bias. As the fair value spreads are constructed with only eq-

uity market information and does not contain bond market information, the results

from Table 1 cannot be driven by differences in the investor base or information

about financial frictions only reflected in credit spreads.

Asset Volatility and Credit Spread Equity volatility can be decomposed into

asset volatility (derived from Merton’s model) and market leverage. In Table 3,

we run the same regression but we replace idiosyncratic equity volatility σei,t with

idiosyncratic asset volatility σi,t. The coefficient on asset volatility is always positive

and statistically significant in the full sample and in all subgroups.9 Interestingly,

the positive impact of asset volatility on investment is statistically stronger for firms

with lower credit spreads, while the reverse is true for credit spreads.

[Table 3 and Table 4 about here.]

9Column 6 of Table 3 suggests that the coefficient on asset volatility might flip sign when
credit spread are higher than 592 basis points. However, this is due to the limitation of the linear
interaction model. Estimating the coefficients on a sample of high credit spread firms or using a
quadratic model implies a positive coefficient for all firms.
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In the model, equity holders make investment decisions given uncertainty about

future returns. In Table 4, we replicate the same exercise but with implied asset

volatility from equity options (and with lags in Appendix C). The results are as strong

as with volatility derived from past equity return observations, lending support to

the idea that it is the expectation of future asset volatility that drives changes in

investment, not past uncertainty.

[Table 5 about here.]

Given the decomposition of equity volatility, a natural question is whether the

coefficient on asset volatility is also positive when asset volatility and market leverage

are used together as explanatory variables for investment. We present the results

in table 5. The results are inconclusive as the coefficient on asset volatility is not

statistically different from zero. In the model section, we rationalize this finding by

showing that, together, leverage and asset volatility are not unambiguous signals of

debt overhang and option value.

Loadings Asset volatility and leverage are also important drivers for bond spreads.

To understand why there is no such sign flip for credit spreads, we consider the

loadings of credit spreads and equity volatility on asset volatility and leverage and

estimate the following equation:

log yi,t = β1 log σi,t + β2 log[MA/ME]i,t + ηi + λt + εi,t,
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where yi,t is either the equity volatility (σei,t) or the credit spread (si,t), andMA/MEi,t

is market leverage. We estimate the equation both in levels and in first differences.

[Table 6 about here.]

Table 6 summarizes the results. Columns 1-2 show how the levels of equity volatil-

ity and credit spread load on levels of asset volatility and leverage, and columns 3-4

show how the changes load on corresponding changes. Both specifications imply

that changes in bond spreads are mainly driven by leverage, while changes in eq-

uity volatility are driven by both asset volatility and leverage. Since shocks to asset

volatility and leverage impact investment differently, bond spreads and equity volatil-

ity contain different information for investment. In Appendix C, instead of using the

firm’s asset volatility and market leverage directly, we use the industry-level regres-

sors, constructed as a simple average of all firms in the same industry excluding the

firm itself. This exercise shows similar patterns that equity volatility loads more on

asset volatility while credit spread loads more on leverage.

Thus, an increase in equity volatility could either signal an increase in asset volatil-

ity (positive for investment) or in leverage (negative for investment). Whether one

force dominates the other changes in the cross-section. As seen in Table 3, the

asset volatility effect weakens as firms’ credit spreads increase, while the leverage

effect strengthens.10 Thus, the sensitivity of investment to equity volatility becomes

negative when the leverage effect dominates for firms with higher credit spreads.

10The statistical significance of the credit spreads coefficient in Table 3 but also the leverage
coefficient in Table 5 strengthens when credit spreads are higher.
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Although credit spreads are also a combination of asset volatility and leverage, the

loading of credit spreads on asset volatility is not large enough to ever drive a positive

relation between credit spreads and investment.

Covenant As we are attributing the main force driving our results to debt over-

hang, we expect this coefficient to be stronger when debt holders have tighter control

over cash flows resulting from investment. To test this hypothesis, we split the sam-

ple into two groups according to its covenant tightness. The observations with the

overall measure of distance between actual financial ratios and covenant thresholds

below median are placed in the “Tight Covenant” group, and the remaining are

assigned to the “Slack Covenant” group. We estimate Equation (1) with the inter-

action term using the two subsamples. The results are summarized in Table 7. For

the subsample with tight covenant, all the coefficients are larger in absolute value,

and are statistically more significant. In particular, the positive coefficient for eq-

uity volatility is twice as large for firms with tight covenant. This exercise provides

empirical support for our model with debt overhang as a key distorting force.

[Table 7 about here.]

2.3 Aggregates

Time Series To understand the implications of our findings for time series, we plot

the elasticity of investment rate with respect to equity volatility, asset volatility, and

credit spread across time and across firms using the estimates from the regressions
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with interaction terms. In Figure 4, we compute the overall coefficient on equity

volatility at each credit spread level using estimates on equity volatility (log σei,t) and

the interaction term (log σei,t × log si,t) reported in the last column of table 1. We

repeat the procedure for asset volatility and credit spreads in Figure 5 and Figure 6.

Figure 4 shows that the cross section of elasticities of investment with respect to

equity volatility varies a lot over time. In particular, this coefficient is negative for

the whole cross-section of firms during the Great Recession, while it is mainly positive

in the late 1980s. By contrast, in Figures 5 and 6, the elasticity of investment to

asset volatility remains positive and the elasticity to credit spread remains negative,

both in the cross-section and over time.

VAR Analysis Using an identified vector autoregression (VAR) framework, we

confirm that our micro-level results—asset volatility has positive impact on investment—

still holds at the macro-level. We aggregate the variables in our sample and estimate

a simple VAR consisting of the three endogeneous variables: the log of idiosyncratic

asset volatility (log σt), the log of credit spread (log st), and the log of investment

rate (log[I/K]t).
11 We employ a standard recursive ordering technique and consider

two identification schemes, one in which credit spread has an immediate impact on

asset volatility and the other where asset volatility has immediate impact on credit

spread.

[Figure 7 about here.]

11We use the value-weighted average of σi,t, si,t and [I/K]i,t to generate the corresponding
aggregate time series. We seasonally adjust the investment rate time series by using its four-quarter
moving average. All variables are detrended using the HP filter with weight 1600.
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Figure 7 reports the impulse responses of investment rate to credit spread and

asset volatility using the two specifications. Credit spread has a negative impact on

investment while asset volatility has a positive impact. As shown in panel (a) and (c)

of Figure 7, the positive impact of asset volatility on investment is economically and

statistically larger in the first specification, highlighting the importance of controlling

for credit spread for asset volatility to be a strong positive signal for investment in

the aggregate.

Market Volatility Eisdorfer (2008) also explores the different impacts of uncer-

tainty on firm investment in the cross-section and finds that uncertainty has a positive

effect on distressed firms’ investment, seemingly opposite to our results. He uses ex-

pected market volatility which is generated by applying a GARCH (1,1) model to

monthly returns of the NYSE market index. This poses the question whether our

results would be different using aggregate volatility instead of firm-level idiosyncratic

volatility.

[Table 8 and Table 9 about here.]

To address this question, we first replicate Eisdorfer’s (2008) results in Table 8.

Columns 1-2 presents the results under Eisdorfer’s (2008) specification, where we

split the sample into financially healthy and distressed firms12 and regress investment

12We select the 20th percentile of distance-to-default as the cutoff for distressed firms. Eisdorfer
(2008) classifies firms with Z-score below 1.81 at the beginning of each year as distressed, which
generates a subsample of distressed firms including 18.6% of total observations.
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rate on aggregate equity volatility, along with the same control variables.13 The

coefficient on aggregate equity volatility is significantly negative for healthy firms

and is positive but insignificant for firms closer to default. Column 3-5 presents

the result under our specification, where we sort firms into tercile groups based on

credit spread each quarter and regress investment rate on aggregate equity volatility

in addition to idiosyncratic equity volatility and credit spread. The coefficient on

idiosyncratic equity volatility still goes from significantly positive to significantly

negative as firm’s credit spread goes up, while the coefficient on aggregate equity

volatility goes in the opposite direction. We emphasize that equity volatility is an

ambiguous signal for investment, driven by asset volatility and leverage, so we run

the regressions using asset volatility. As shown in Table 9, both the coefficients

on aggregate asset volatility and firm-level idiosyncratic asset volatility are positive

across all subgroups when controlling for firm-level credit spread, or aggregate credit

spread, or both.

3 Investment Decisions with Debt Overhang

In this section, we develop a simple but general credit risk model to analyze the

investment choices of a firm with outstanding debt already in place. Two forces

drive the investment decision: debt overhang and the option value of equity. We

13The control variables are: firm size, estimated by the log the market value of the firm’s total
assets; market-to-book ratio; leverage, estimated by the ratio of the book value of total debt to
the book value of total assets; cash flow, estimated by the ratio of operating cash flow to PP&E at
the beginning of the year; the NBER recession dummy variable; the BAA-AAA yield spread; the
interest rate, estimated by the nominal return on 1-month Treasury bills.

19



demonstrate that credit spreads and asset volatility are jointly unambiguous signals

of these two forces. However, the signals provided by leverage and asset volatility

or credit spreads and equity volatility are ambiguous and can change in the cross-

section. All proofs are relegated to Appendix D. For ease of notation, we sometimes

write fx(x) ≡ ∂f(x)
∂x

.

Consider a firm that has risky assets in place and has funded itself partly with

debt. In the first period, shareholders choose how much to invest. At the beginning

of the second period, a random productivity shock is realized, and, after observing

the payoff of their investment, shareholders decide whether to file for bankruptcy or

not. For our basic argument, we make the following assumptions regarding the firm

and its investments.

Assumption 1 (Assets in Place). The firm has existing real assets in place with a

final value of Y (ι, z), which is a function of investment ι and a random productivity

shock z realized in the future. The assets are normalized to have an initial value of

one. That is, E [Y (0, z)] = 1.

Assumption 2 (Firm Liabilities). The firm is funded by equity, together with a debt

claim with total face value b that is due in the second period when the asset returns

are realized. In the second period, shareholders decide whether to default. Upon

bankruptcy, the entirety of the firm’s value is lost. Furthermore, shareholders cannot

liquidate the firm (ι ≥ 0).

We show that our results are robust to a relaxation of Assumption 2 featuring

partial recovery in Section D.
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Assumption 3 (Pricing). All securities are traded in perfect Walrasian markets.

We normalize the risk-free interest rate to zero and set prices of securities equal to

their expected payoff with respect to a risk-neutral distribution F (z) of firm’s asset

productivity z, and Y (ι, z) with full support on [0,∞).

Given our assumptions about payouts and pricing, it follows that the value of

equity E and debt D are given by:

E(b, ι, z, σ) =

∫ ∞
z

(Y (ι, z)− b)dF (z;σ)− ι,

D(b, z, σ) = (1− F (z;σ))b.

The first order conditions for investment ι and the default threshold z imply that,

at an optimum, ι and z satisfy:

∫ ∞
z

Yι(ι, z)dF (z;σ) = 1,

Y (ι, z) = b.

Credit spreads are given by: cs(z, σ) = F (z;σ). To streamline our analysis, we also

make assumptions on the risk distribution.

Assumption 4 (Investment Returns). The investment return function Y (ι, z) is

continuous in both ι and z, positive, homogeneous of degree 1 in z, strictly increasing
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in ι, strictly concave in ι, and normalized to z when ι = 0. That is,

Y (ι, z) = k(ι)z ≥ 0, k(0) = 1, kι(ι) > 0, kιι(ι) < 0.

Furthermore, the standard deviation σ of z is a finite moment of the distribution F .

Assumption 4 imposes restrictions common in models with investment. The ho-

mogeneity of degree 1 in z allows us to disentangle the effect of investment i and

risk z on the investment returns Y (ι, z) and simplifies the analytics. Assumption 5

provides the only assumptions we make on the distribution of productivity shocks,

F (z). These assumptions are always satisfied with the Black–Scholes–Merton model

and most risk distributions usually considered in finance.

Assumption 5 (Vega). The distribution of the productivity shock F (z;σ) is such

that vega is always positive:

ν(z, σ) =
∂

∂σ
E [(z − z)+] > 0.

The model has two free parameters, leverage and asset volatility. Given the nor-

malization E [Y (0, z)] = 1, at the beginning of the first period leverage is simply the

face value of debt b with zero investment. The model has two endogenous decision

variables, investment ι and the default threshold z. We use this simple model to

study the behavior of investment following changes in the key observable variables

from our empirical section: asset volatility σ, leverage b, credit spreads cs, and equity

volatility σe.
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Proposition 1 (Credit Spread and Asset Volatility). Holding asset volatility con-

stant, the partial derivative of investment with respect to credit spread is given by:

∂ι

∂cs
=
kι(ι)

kιι(ι)

z

µ(z, σ)
< 0, (2)

where µ(z, σ) = E [z|z ≥ z]P[z ≥ z]. Holding credit spread constant, the partial

derivative of investment with respect to volatility is given by:

∂ι

∂σ
= − kι(ι)

kιι(ι)

ν(z, σ)

µ(z, σ)
> 0. (3)

In Proposition 1, we provide the elasticities of investment when observing asset

volatility and credit spread. Given Assumptions 1-5, the sign of these partial deriva-

tives match our empirical results. The first term on the right-hand side of equation

(2) is negative due to the concavity of k(ι) in the denominator. All other terms are

positive and thus the sign of the elasticity of investment to credit spreads is always

negative.

In terms of the magnitude of the negative effect of higher credit spreads on in-

vestment, consider the denominator of the second term on the right-hand side of

equation (2), µ(z, σ). This term represents the expected return on one unit of in-

vestment given the option to default. As the default boundary z (which is also

the marginal product lost from increasing the default threshold) increases, expected

returns µ(z, σ) decrease and shareholders have less incentives to invest. Thus, the

debt-overhang problem intensifies when the firm gets closer to default. We also note
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the role of the concavity of the investment return function. If effective capital is

more concave in investment, the first term will be smaller because firms won’t have

to adjust investment as much since kι(ι) increases faster for a given reduction in

investment.

By contrast, investment reacts positively to an increase in volatility as the payout

to shareholders is non-linear with limited downside and unlimited upside, that is,

vega ν(z, σ) is positive. In equation (3), the first term is the same, except for the

negative sign in front of it, while the numerator of the second term reflects the option

value of higher investment as volatility increases. How strong the option-value effect

is depends on the distribution of productivity shocks, F (z;σ). Again, the ratio of the

marginal investment return kι(ι) to investment return concavity kιι(ι) determines the

strength of the investment response. If the marginal investment return kι(ι) is large

or the marginal productivity does not fall too fast (low |kιι(ι)|), then the investment

response to a change in volatility is stronger.

Thus, in this simple model with fairly general as well as fairly standard assump-

tions, the signs of the effects of credit spreads and asset volatility on investment

are unambiguous. Changes in credit spreads cs signal changes in the debt-overhang

burden and changes in asset volatility σ signal changes in the option value of eq-

uity. In Figure 1, we illustrate the optimal investment function with a log-normal

distribution of risk.

We now compare the straightforward roles of credit spreads and asset volatility in

determining investment with the more intricate relation between leverage and asset
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Figure 1: Optimal investment with log-normal distribution. The left picture shows the level of
investment ι as a function of credit spreads cs for different levels of asset volatility σ, while the
right figure shows the level of investment ι as a function of asset volatility σ for different levels of
credit spreads cs. The production function is given by: Y (ι, z) = z(1 + ια) where α = 0.5.

volatility in investment decisions. This analysis exemplifies why credit spreads and

asset volatility are clean empirical measures of the effects of financial soundness and

option value on investment decisions.

Proposition 2 (Leverage and Asset Volatility). Holding asset volatility constant,

the partial derivative of investment with respect to leverage is given by:

∂ι

∂b
=
kι(ι)

kιι(ι)

z

µ(z, σ)
ξb|σ(ι, z, σ) < 0, (4)

where

ξb|σ(ι, z, σ) ≡ f(z;σ)

k(ι)
ϕ(z, σ) > 0, ϕ(ι, z, σ) ≡

(
1 +

kι(ι)
2z2f(z;σ)

k(ι)kιι(ι)µ(z;σ)

)−1

> 0.

Holding leverage constant, the partial derivative of investment with respect to volatil-
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ity is given by:

∂ι

∂σ
= − kι(ι)

kιι(ι)

ν(z, σ)

µ(z;σ)
ξσ|b(ι, z, σ), (5)

where

ξσ|b(ι, z, σ) ≡
(

1− zFσ(z;σ)

ν(z, σ)

)
ϕ(ι, z, σ).

Proposition 2 shows that if, instead of controlling for credit spreads cs, we ob-

serve leverage b, the elasticities of investment become more intricate. Starting with

equation (4), note that the first two terms on the right-hand side are equivalent to

those in Proposition 1. The wedge ξb|σ captures the additional effects of changing

leverage. Note that ϕ is always positive at a maxima as imposed by the second-order

conditions. Thus, this wedge is always positive, and the sign of the effect of lever-

age on investment holding asset volatility constant is always negative. The ϕ term

captures the feedback loop between investment and default decisions. Following a

decrease in investment, shareholders default more often as output decreases and thus

incentives to pay back the debt also decrease. That additional force was not present

in Proposition 1, since changing credit spreads F (z;σ) controls for the default deci-

sion z directly. Holding leverage constant instead controls for b = Y (ι, z), which is a

function of both ι and z.

Turning to the effect of asset volatility on investment holding leverage constant,

the sign now becomes ambiguous. Relative to the effect holding credit spreads con-
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Figure 2: Optimal investment with log-normal distribution. The left picture shows the level of
investment ι as a function of leverage b for different levels of asset volatility σ, while the right figure
shows the level of investment ι as a function of asset volatility σ for different levels of leverage b.
The production function is given by: Y (ι, z) = z(1 + ια) where α = 0.5.

stant characterized in Proposition 1, there is again a wedge, which we denote ξσ|b.

Intuitively, there are two effects to increasing asset volatility holding leverage con-

stant. The first is that the option value of investment increases. The second is that

the debt overhang problem also increases. To hold leverage b = Y (ι, z) constant as

asset volatility increases, the default threshold z must change and the distance to

default could shrink faster than the increase in the option value. The wedge ξσ|b

captures this horserace between option value and what is lost in default as asset

volatility increases. If the option value effect is strong, this term will be positive.

However, if the increase in asset volatility moves a large probability mass into the

default region (thus zFσ(z;σ) is positive), the term can be negative. In other words,

when the marginal increase in investment returns lost to default zFσ(z;σ) dominates

the marginal increase in the option value ν(z, σ), shareholders reduce investment

following an increase in volatility.

Which effect dominates is highly dependent on the shape of the distribution
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F (z;σ). In Figure 2, we plot the optimal investment decision as a function of asset

volatility σ when holding leverage b constant assuming a log-normal distributions for

z. The monotonic relation between leverage and investment holding asset volatil-

ity constant is clear. However, the relation between investment and asset volatility

holding leverage constant is non-monotonic. When leverage is high, the option-value

effect dominates while the debt-overhang effect dominates when leverage is low.

Next, we consider the changes in investment when observing credit spreads and

equity volatility, and illustrate the intuition our model suggests for the empirical

finding that the sign of the elasticity of investment with respect to equity volatility

changes sign in the cross section of more and less distressed firms. First, we define

equity volatility as measured in the data as:14

σe(z, σ) =
σ

sµ(z, σ)
,

where sµ(z, σ) = E [(z − z)+] is the unconditional left-truncated expectation of the

payoff above the default threshold. Thus, equity is levered asset volatility, where the

denominator sµ(z, σ) represents the impact of leverage on equity volatility. If the debt

burden from leverage b increases, then the default threshold z increases as well and

14Defining equity volatility as:

σe(z, σ) =

√
Var [(Y (ι, z)− b)1{z ≥ z} − ι]

E(b, ι, z, σ)
=

sσ(z, σ)

sµ(z, σ)− ι/k(ι)
,

where sσ(z, σ) =
√
Var [(z − z)+] makes the analysis untractable and is further away from how equity

volatility is measured as (i) the truncation of the volatility is not reflected in the measurement of
equity volatility unless default occurred and (ii) investment, as measured in Compustat, does not
varies over a quarter.
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equity’s expected payoff sµ(z, σ) decreases. Conversely, if the firm is funded entirely

by equity (b = 0), then z is equal to zero—the lower bound of the support. In that

case, equity volatility is equal to asset volatility (σe(z, σ) = σ) since sµ(0, σ) = 1.

Proposition 3 (Credit Spread and Equity Volatility). Holding equity volatility con-

stant, the partial derivative of investment with respect to credit spreads is given by:

∂ι

∂cs
=
kι(ι)

kιι(ι)

z

µ(z, σ)
ξcs|σe(z, σ), (6)

where

ξcs|σe(z, σ) ≡ 1 + σez(z, σ)
ν(z, σ)

zf(z)
ξσe|cs(z, σ).

Holding credit spreads constant, the partial derivative of investment with respect to

equity volatility is given by:

∂ι

∂σe
= − kι(ι)

kιι(ι)

ν(z)

µ(z, σ)
ξσe|cs(z, σ), (7)

where

ξσe|cs(z, σ) ≡
(
σeσ(z, σ)− Fσ(z;σ)

f(z;σ)
σez(z, σ)

)−1

.

We again use wedges to make the distinction between Propositions 3 and 1 clear.

It is easiest to start with the relation between investment and equity volatility hold-

ing credit spreads constant. To understand the additional complication when using
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equity volatility as a signal of uncertainty, it is useful to look at the partial derivative

of equity volatility with respect to asset volatility σ and the default threshold z:

σeσ(z, σ) =
1

sµ(z, σ)
− σν(z, σ)

sµ(z, σ)2
and σez(z, σ) =

σ (1− F (z;σ))

sµ(z, σ)2
≥ 0.

Thus, when the option value impact of asset volatility ν(z, σ) is large, equity volatil-

ity decreases following a positive shock to asset volatility. Indeed, the increase in the

payoff to equity holders (denominator of σe) gets larger than the relative increase in

asset volatility (numerator of σe). Add to that effect that to keep the credit spread

cs constant, the default threshold z needs to decrease, and it not surprising any-

more that following a positive asset volatility shock, equity volatility might decrease.

Corollary 1 makes that argument explicit.

Corollary 1 (Equity Volatility and Asset Volatility). If the total derivative of the

default threshold with respect to asset volatility is such that:

dz

dσ
<
σν(z, σ)− sµ(z, σ)

σ(1− F (z;σ))
,

then the total derivative of equity volatility with respect to asset volatility is negative:

dσe(z, σ)

dσ
< 0.

These additional forces are captured by the wedges ξσe|cs(z, σ) and ξσe|cs(z, σ) such

that the signs of the elasticities of Proposition 3 are highly dependent on the shape

of the risk distribution F (z;σ) and the level of leverage and volatility of the firm,
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contrarily to the robust signs of the elasticities of Proposition 1.

Lemma 2 (Existence of Credit Spread and Equity Volatility Pair). Given (cs, σe) ∈

[0, 1]× R+, there does not always exist a solution (z, σ) ∈ R+ × R+ to the following

system of two equations:

cs = F (z;σ),

σe =
σ

sµ(z, σ)
.

Furthermore, the solution might not be unique.

Following Lemma 2, these non-monotonicities also complicate the mapping of in-

vestment decisions in the (cs, σe)-space. Thus, in Figure 3, we show the sign of

the wedges in the (cs, σ)-space for two distributions: a log-normal distribution and

a log-normal mixture distribution. In the case of the log-normal distribution, the

wedges are either both positive (white area), such that the signs of the elasticities

are identical to Proposition 1, or both negative (light gray area), such that the signs

of the elasticities are opposite to Proposition 1.

The mixture distribution is a mixture of two log-normal distributions (see caption

of Figure 3) and therefore bimodal. This risk distribution could correspond to a

technology where the productivity shock is drawn from either a bad (low mean) or a

good (high mean) distribution. In this case, an increase in uncertainty could have a

large effect on the option value without substantially impacting default risk. Thus, a

third area (dark grey) appears, where the elasticities with respect to credit spread and
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Figure 3: Sign of Wedges for Log-Normal and Log-Normal Mixture. These pictures shows the
sign of the wedges of Proposition 3 in the (cs,σ)-space for the log-normal distribution (left) and a
log-normal mixture distribution (right). The mixture distribution is a mixture of two log-normal
distributions drawn with 50% probability with parameters (µ1, σ̂) and (µ2, σ̂) such that the uncon-
ditional mean of z is 1 and the standard deviation of z is σ. We set σ̂ = 0.2 in this example.

equity volatility are both negative. In the example of Figure 3, fixing asset volatility

to 0.3, the elasticity with respect to equity volatility is positive for low credit spread

level (cs ≤ 0.15) and gets negative for high level of leverage (0.15 ≤ cs ≤ 0.6). At

the same time, the elasticity with respect to credit spread is mostly negative (for

cs ≤ 0.14 and 0.21 ≤ cs ≤ 0.45). Thus, in that example, we observe the same

change of sign in the cross-section as in our empirical results.

In Appendix E, we show that our results hold in a setting with endogenous lever-

age dynamics. We extend the framework of DeMarzo and He (2020) to include an

investment function and show that Proposition 1 still holds.

32



4 Conclusion

In our empirical analysis and model, we establish that equity volatility is an ambigu-

ous signal of uncertainty for firm-level investment decisions. Intuitively, if a posi-

tive uncertainty shock causes a large increase in the option value of equity, equity

volatility might go down. Using asset volatility instead results in an unambiguous

relationship with investment: an increase in asset volatility generates an increase in

the investment rate.

Overall, our model and evidence provide support for the idea that the close connec-

tion between bond markets and the macroeconomy is due to the unique non-linear

transformation of asset volatility and leverage that credit spreads represent.
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Gilchrist, Simon, Sim, Jae W, and Zakraǰsek, Egon. Uncertainty, financial frictions,

and investment dynamics. Technical report, National Bureau of Economic Research,

2014.

Gürkaynak, Refet S, Sack, Brian, and Wright, Jonathan H. The us treasury yield

curve: 1961 to the present. Journal of monetary Economics, 54(8):2291–2304, 2007.

Kermani, Amir and Ma, Yueran. Two tales of debt. Technical report, National

Bureau of Economic Research, 2020.

Krishnamurthy, Arvind and Muir, Tyler. How credit cycles across a financial crisis.

Technical report, National Bureau of Economic Research, 2017.

Leahy, John V and Whited, Toni M. The effect of uncertainty on investment: Some

stylized facts. Journal of Money, Credit and Banking, 28(1):64–83, 1996.

Leland, Hayne E. Corporate debt value, bond covenants, and optimal capital struc-

ture. The journal of finance, 49(4):1213–1252, 1994.

36



Merton, Robert C. On the pricing of corporate debt: The risk structure of interest

rates. The Journal of finance, 29(2):449–470, 1974.

Nazeran, Pooya and Dwyer, Douglas. Credit risk modeling of public firms: Edf9.

Moody’s Analytics White Paper, 2015.

Philippon, Thomas. The bond market’s q. The Quarterly Journal of Economics, 124

(3):1011–1056, 2009.

Stock, James H and Watson, Mark W. Forecasting output and inflation: The role

of asset prices. Journal of Economic Literature, 41(3):788–829, 2003.

Sundaresan, Suresh, Wang, Neng, and Yang, Jinqiang. Dynamic investment, capital

structure, and debt overhang. The Review of Corporate Finance Studies, 4(1):1–42,

2015.

37



Appendices

A Figures

Figure 4: This figure presents the elasticity of investment with respect to equity volatility across
time and across firms using the estimates from the regressions with interaction terms. In each
quarter we generate five cutoffs in the cross-section of log credit spread: {p10, p30, p50, p70, p90}.
Using the estimates in column 7 of Table 1 on

log[I/K]i,t = β1 log σei,t + β2 log si,t + γ log σei,t × log si,t + ηi + λt + εi,t,

the elasticity at each cutoff point is computed as β1 + γpn, n = 10, 30, 50, 70, 90.
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Figure 5: This figure presents the elasticity of investment with respect to asset volatility across
time and across firms using the estimates from the regressions with interaction terms. In each
quarter we generate five cutoffs in the cross-section of log credit spread: {p10, p30, p50, p70, p90}.
Using the estimates in column 5 of Table 3 on

log[I/K]i,t = β1 log σi,t + β2 log si,t + γ log σi,t × log si,t + ηi + λt + εi,t,

the elasticity at each cutoff point is computed as β1 + γpn, n = 10, 30, 50, 70, 90.

1985 1990 1995 2000 2005 2010 2015
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
10th pctile of cs
30th pctile of cs
50th pctile of cs
70th pctile of cs
90th pctile of cs

39



Figure 6: This figure presents the elasticity of investment with respect to credit spread across time
and across firms using the estimates from the regressions with interaction terms. In each quarter
we generate five cutoffs in the cross-section of log equity volatility: {p10, p30, p50, p70, p90}. Using
the estimates in column 7 of Table 1 on

log[I/K]i,t = β1 log σei,t + β2 log si,t + γ log σei,t × log si,t + ηi + λt + εi,t,

the elasticity at each cutoff point is computed as β2 + γpn, n = 10, 30, 50, 70, 90.
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Figure 7: This figure plots the impulse responses of investment to an orthogonalized 1 standard
deviation shock to asset volatility and credit spread. The VAR is estimated using four lags of
each endogenous variable. Subfigures (a) and (b) correspond to the recursive ordering: (s, σ,
I/K). Subfigures (c) and (d) correspond to the recursive ordering: (σ, s, I/K). The shaded bands
represent the 95% confidence interval.
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B Tables

Table 1: This table documents the relationship between equity volatility, credit spread and in-
vestment. Investment rate is regressed on all the regressors on the right-hand side in column 7,
on equity volatility and credit spread spread in columns 3-6, on credit spread in column 2 and on
equity volatility in column 1. Columns 4-6 use subsamples sorted by terciles on credit spread. Each
observation is a firm-quarter. Coefficients are reported with t-statistics in parentheses. ***, **,
and * indicate significance at 1%, 5% and 10% levels and standard errors are clustered at the firm
level.

log[I/K]i,t = β1 log σei,t + β2 log si,t + γ log σei,t × log si,t + ηi + λt + εi,t

(1) (2) (3) (4) (5) (6) (7)
all all all low cs mid cs high cs all

log σei,t -0.167*** -0.051*** 0.070*** -0.015 -0.111*** 0.801***

(-8.99) (-3.37) (3.86) (-0.73) (-4.55) (9.79)
log si,t -0.285*** -0.268*** -0.104*** -0.251*** -0.431*** -0.462***

(-13.33) (-12.84) (-3.03) (-5.68) (-11.67) (-16.61)
log σei,t × log si,t -0.152***

(-10.21)
Firm FE X X X X X X X
Time FE X X X X X X X

Observations 52897 52900 52414 17614 17595 17205 52414
R-squared 0.101 0.125 0.126 0.144 0.122 0.116 0.134

42



Table 2: This table documents the relationship between equity volatility, fair value spread and
investment. Investment rate is regressed on all the regressors on the right-hand side in column 7,
on equity volatility and fair value spread in columns 3-6, on fair value spread in column 2 and on
equity volatility in column 1. Columns 4-6 use subsamples sorted by terciles on credit spread. Each
observation is a firm-quarter. Coefficients are reported with t-statistics in parentheses. ***, **,
and * indicate significance at 1%, 5% and 10% levels and standard errors are clustered at the firm
level.

log[I/K]i,t = β1 log σei,t + β2 log ŝi,t + γ log σei,t × log ŝi,t + ηi + λt + εi,t

(1) (2) (3) (4) (5) (6) (7)
all all all low cs mid cs high cs all

log σei,t -0.154*** -0.008 0.079*** 0.029 -0.079*** 0.298***

(-7.91) (-0.54) (4.31) (1.34) (-2.92) (7.01)
log ŝi,t -0.152*** -0.148*** -0.072*** -0.119*** -0.152*** -0.232***

(-13.96) (-13.88) (-4.33) (-8.37) (-9.15) (-14.43)
log σei,t × log ŝi,t -0.069***

(-7.19)
Firm FE X X X X X X X
Time FE X X X X X X X

Observations 39925 40331 39925 13272 13296 13027 39925
R-squared 0.108 0.140 0.139 0.169 0.145 0.126 0.144

Notes: Each observation is a firm-quarter. Coefficients are reported with t-statistics in parenthese. ***, **, and *
indicate significance at 1%, 5% and 10% levels and standard errors are clustered at the firm level.

Table 3: This table documents the relationship between asset volatility and investment, controlling
for credit spread. The regression in column 5 includes all the regressors in the estimation equation,
and the regressions in columns 1-4 drop the interaction term. Columns 2-4 use subsamples sorted
by terciles on credit spread. Each observation is a firm-quarter. Coefficients are reported with t-
statistics in parentheses. ***, **, and * indicate significance at 1%, 5% and 10% levels and standard
errors are clustered at the firm level.

log[I/K]i,t = β1 log σi,t + β2 log si,t + γ log σi,t × log si,t + ηi + λt + εi,t

(1) (2) (3) (4) (5) (6)
all all low cs mid cs high cs all

log σi,t 0.050∗∗∗ 0.090∗∗∗ 0.113∗∗∗ 0.061∗∗∗ 0.066∗∗∗ 0.683∗∗∗

(3.30) (6.34) (6.60) (3.11) (3.00) (7.45)
log si,t -0.279∗∗∗ -0.101∗∗∗ -0.276∗∗∗ -0.485∗∗∗ -0.457∗∗∗

(-12.60) (-2.75) (-5.98) (-11.87) (-13.43)
log σi,t × log si,t -0.107∗∗∗

(-6.54)
Firm FE X X X X X X
Time FE X X X X X X

Observations 47752 47384 16237 15947 15200 47384
R-squared 0.093 0.125 0.149 0.122 0.114 0.128
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Table 4: This table documents the relationship between implied asset volatility and investment,
controlling for credit spreads. The regression in column 5 includes all the regressors in the estimation
equation, and the regressions in columns 1-4 drop the interaction term. Columns 2-4 use subsamples
sorted by terciles on market leverage. Each observation is a firm-quarter. Coefficients are reported
with t-statistics in parentheses. ***, **, and * indicate significance at 1%, 5% and 10% levels and
standard errors are clustered at the firm level.

log[I/K]i,t = β1 log σ̂i,t + β2 log si,t + γ log σ̂i,t × log si,t−1 + ηi + λt + εi,t

(1) (2) (3) (4) (5)
all low cs mid cs high cs all

log σ̂i,t 0.225∗∗∗ 0.223∗∗∗ 0.199∗∗∗ 0.185∗∗∗ 0.775∗∗∗

(7.61) (4.52) (3.94) (4.02) (4.45)
log si,t -0.334∗∗∗ -0.152∗∗∗ -0.371∗∗∗ -0.560∗∗∗ -0.513∗∗∗

(-10.66) (-3.68) (-5.67) (-8.22) (-8.16)
log σ̂i,t × log si,t -0.098∗∗∗

(-3.16)
Firm FE X X X X X
Time FE X X X X X

Observations 23162 7737 7748 7677 23162
R-squared 0.150 0.146 0.143 0.157 0.152

Table 5: This table documents the relationship between asset volatility and investment, controlling
for market leverage. The regression in column 6 includes all the regressors in the estimation equa-
tion, and the regressions in columns 1-5 drop the interaction term. Columns 3-5 use subsamples
sorted by terciles on market leverage. Each observation is a firm-quarter. Coefficients are reported
with t-statistics in parentheses. ***, **, and * indicate significance at 1%, 5% and 10% levels and
standard errors are clustered at the firm level.

log[I/K]i,t = β1 log σi,t + β2 log[MA/ME]i,t + γ log σi,t × log[MA/ME]i,t + ηi + λt + εi,t

(1) (2) (3) (4) (5)
all low lev mid lev high lev all

log σi,t 0.018 0.033 0.028 0.005 0.063∗∗∗

(1.23) (1.54) (1.39) (0.24) (2.98)
log[MA/ME]i,t -0.460∗∗∗ -0.990∗∗∗ -0.525∗∗∗ -0.351∗∗∗ -0.543∗∗∗

(-19.38) (-7.79) (-7.71) (-11.36) (-14.65)
log σi,t × log[MA/ME]i,t -0.053∗∗

(-2.57)
Firm FE X X X X X
Time FE X X X X X

Observations 47400 16061 15953 15386 47400
R-squared 0.149 0.141 0.114 0.126 0.149
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Table 6: This table presents the loadings of equity volatility and credit spread on asset volatility
and market leverage. The dependent variable log yi,t denotes either equity volatility log σei,t or credit
spread log si,t. We report results for estimations in levels in Panel A and results for estimations
in first differences in Panel B. Each observation is a firm-quarter. Coefficients are reported with
t-statistics in parentheses. ***, **, and * indicate significance at 1%, 5% and 10% levels and
standard errors are clustered at the firm level.

log yi,t = β1 log σi,t + β2 log[MA/ME]i,t + ηi + λt + εi,t

Panel A: Levels Panel B: Changes
(1) (2) (3) (4)

log σei,t log si,t ∆ log σei,t ∆ log si,t

log σi,t 0.783*** 0.180*** ∆ log σi,t 0.780*** 0.015***
(90.77) (15.91) (83.77) (5.00)

log[MA/ME]i,t 0.447*** 0.613*** ∆ log[MA/ME]i,t 0.244*** 0.248***
(56.20) (32.17) (25.66) (24.37)

Firm FE X X Firm FE X X
Time FE X X Time FE X X

Observations 47327 47250 Observations 44706 44640
R-squared 0.865 0.571 R-squared 0.794 0.345

Table 7: This table documents the relationship between equity volatility, credit spread and in-
vestment for firms with different covenant tightness. Column 1 reports estimation results for the
subsample with tight covenant (distance to threshold below median). Column 2 reports estimation
results for the subsample with slack covenant (distance to threshold above median). Each observa-
tion is a firm-year. Coefficients are reported with t-statistics in parentheses. ***, **, and * indicate
significance at 1%, 5% and 10% levels and standard errors are clustered at the firm level.

log[I/K]i,t = β1 log σei,t + β2 log si,t + γ log σei,t × log si,t + ηi + λt + εi,t

(1) (2)
Slack Covenant Tight Covenant

log σei,t 0.868∗∗∗ 1.599∗∗∗

(3.54) (6.58)
log si,t -0.589∗∗∗ -0.731∗∗∗

(-7.53) (-12.35)
log σei,t × log si,t -0.155∗∗∗ -0.282∗∗∗

(-3.40) (-6.71)
Firm FE X X
Time FE X X

Observations 4516 4516
R-squared 0.116 0.179
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Table 8: This table documents the relationship between aggregate equity volatility and firm-level
investment rate. Column 1 and column 2 report estimation of the regression model with aggregate
equity volatility log Σet and control variables Xi,t on the right-hand side for financially healthy and
distressed firms. The control variables are: firm size, estimated by the log the market value of
the firm’s total assets; market-to-book ratio; leverage, estimated by the ratio of the book value of
total debt to the book value of total assets; cash flow, estimated by the ratio of operating cash
flow to PP&E at the beginning of the year; the NBER recession dummy variable; the BAA-AAA
yield spread; the interest rate, estimated by the nominal return on 1-month Treasury bills. The
financially healthy (distressed) firms are observations above (below) the 20th percentile of distance-
to-default. Columns 3-5 report estimation of the regression model with aggregate equity volatility
log Σet , idiosyncratic firm-level equity volatility log σei,t, and credit spread log si,t on the right-hand
side use subsamples sorted by terciles based on credit spread. Each observation is a firm-quarter.
Coefficients are reported with t-statistics in parentheses. ***, **, and * indicate significance at 1%,
5% and 10% levels and standard errors are clustered at the firm level.

log[I/K]i,t = β1 log Σei,t + β2 log σei,t + β3 log si,t + γ′Xi,t + ηi + εi,t

(1) (2) (3) (4) (5)
Healthy Distressed low cs mid cs high cs

log Σet -0.047∗∗∗ 0.033 -0.033∗∗∗ 0.045∗∗∗ 0.103∗∗∗

(-4.91) (1.45) (-3.12) (3.47) (6.27)
log σei,t 0.145∗∗∗ 0.033 -0.096∗∗∗

(7.18) (1.60) (-4.14)
log si,t -0.084∗∗∗ -0.239∗∗∗ -0.364∗∗∗

(-3.38) (-8.64) (-12.70)
Controls X X
Firm FE X X X X X

Observations 37831 7774 17614 17595 17205
R-squared 0.042 0.058 0.016 0.023 0.054
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C Robustness Checks

In this appendix, we provide several robustness checks for the results discussed above.

In particular, in Table A1 - Table A4, we show that using lagged values of equity

volatility, asset volatility and credit spread generates similar results, which highlights

the predictive power of these measures on investment.

In table A5, we examine the loadings of credit spreads and equity volatility on

asset volatility and leverage. Instead of using the firm’s asset volatility and market

leverage directly as in the main text, we use the average of all firms in the same

industry (excluding itself) and generate similar results.

In Table A6 through Table A9, we present the regression results replicating those in

Table 1 to Table 6 in the main text. The coefficients can be interpreted as the move in

the dependent variable scaled by its standard deviation associated with one standard

deviation increase in the explanatory variable. These results help us interpret the

economic significance of the coefficients on equity volatility and credit spread. Also,

the split-sample results confirm that our cross-sectional findings are not sensitive to

different dispersion of the variables in different subgroups. In Table A10, we report

results for regressions that estimate the same specification as in Table 1 while using

the same sample as used to generate Table 2. Comparing Table A10 with Table 2

indicates that fair value spread behaves similarly to credit spread in our investment

regressions, and there are no concerns over the sample selection since we are using

exactly the same sample. In Figure A1, we show the elasticity of investment with

respect to credit spread using asset volatility as the moderator variable and find very
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similar results those in Figure 6 in the main text.

Table A1: This table replicates Table 1 using lagged values. Investment rate is regressed on all
the regressors on the right-hand side in column 7, on equity volatility and credit spread spread
in columns 3-6, on credit spread in column 2 and on equity volatility in column 1. Columns 4-6
use subsamples sorted by terciles on lagged values of credit spreads log si,t−1. Each observation is
a firm-quarter. Coefficients are reported with t-statistics in parentheses. ***, **, and * indicate
significance at 1%, 5% and 10% levels and standard errors are clustered at the firm level.

log[I/K]i,t = β1 log σei,t−1 + β2 log si,t−1 + γ log σei,t−1 × log si,t−1 + ηi + λt + εi,t

(1) (2) (3) (4) (5) (6) (7)
all all all low cs mid cs high cs all

log σei,t−1 -0.182*** -0.065*** 0.038** -0.052*** -0.105*** 0.830***

(-9.89) (-4.44) (2.02) (-2.60) (-4.54) (9.85)
log si,t−1 -0.293*** -0.272*** -0.115*** -0.286*** -0.513*** -0.477***

(-13.44) (-12.80) (-3.70) (-8.04) (-12.46) (-16.56)
log σei,t−1 × log si,t−1 -0.160***

(-10.51)
Firm FE X X X X X X X
Time FE X X X X X X X

Observations 51228 51220 50820 16991 17007 16822 50820
R-squared 0.101 0.126 0.126 0.136 0.100 0.119 0.135

Table A2: This table replicate Table 2 using lagged values. Investment rate is regressed on all
the regressors on the right-hand side in column 7, on equity volatility and fair value spread in
columns 3-6, on fair value spread in column 2 and on equity volatility in column 1. Columns 4-6
use subsamples sorted by terciles on lagged values of credit spreads log si,t−1. Each observation is
a firm-quarter. Coefficients are reported with t-statistics in parentheses. ***, **, and * indicate
significance at 1%, 5% and 10% levels and standard errors are clustered at the firm level.

log[I/K]i,t = β1 log σei,t−1 + β2 log ŝi,t−1 + γ log σei,t−1 × log ŝi,t−1 + ηi + λt + εi,t

(1) (2) (3) (4) (5) (6) (7)
all all all low cs mid cs high cs all

log σei,t−1 -0.160*** -0.003 0.071*** 0.024 -0.071*** 0.334***

(-8.29) (-0.20) (4.04) (1.15) (-2.72) (7.52)
log ŝi,t−1 -0.161*** -0.159*** -0.086*** -0.130*** -0.165*** -0.254***

(-14.29) (-14.34) (-4.81) (-8.93) (-9.59) (-14.82)
log σei,t−1 × log ŝi,t−1 -0.077***

(-7.74)
Firm FE X X X X X X X
Time FE X X X X X X X

Observations 38740 37935 37600 12495 12534 12285 37600
R-squared 0.107 0.143 0.141 0.164 0.152 0.125 0.148
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Table A3: This table replicates Table 3 using lagged values. The regression in column 5 includes
all the regressors in the estimation equation, and the regressions in columns 1-4 drop the interaction
term. Columns 2-4 use subsamples sorted by terciles on lagged values of credit spreads log si,t−1.
Each observation is a firm-quarter. Coefficients are reported with t-statistics in parentheses. ***,
**, and * indicate significance at 1%, 5% and 10% levels and standard errors are clustered at the
firm level.

log[I/K]i,t = β1 log σi,t−1 + β2 log si,t−1 + γ log σi,t−1 × log si,t−1 + ηi + λt + εi,t

(1) (2) (3) (4) (5)
all low cs mid cs high cs all

log σi,t−1 0.084∗∗∗ 0.086∗∗∗ 0.053∗∗∗ 0.062∗∗∗ 0.691∗∗∗

(5.79) (5.14) (2.76) (2.78) (7.20)
log si,t−1 -0.284∗∗∗ -0.104∗∗∗ -0.305∗∗∗ -0.512∗∗∗ -0.466∗∗∗

(-12.61) (-2.83) (-6.56) (-12.25) (-13.14)
log σi,t−1 × log si,t−1 -0.110∗∗∗

(-6.37)
Firm FE X X X X X
Time FE X X X X X

Observations 46513 15869 15642 15002 46513
R-squared 0.126 0.147 0.124 0.117 0.130

Table A4: This table replicates Table 4 using lagged values. The regression in column 5 includes
all the regressors in the estimation equation, and the regressions in columns 1-4 drop the interaction
term. Columns 2-4 use subsamples sorted by terciles on lagged values of credit spreads log si,t−1.
Each observation is a firm-quarter. Coefficients are reported with t-statistics in parentheses. ***,
**, and * indicate significance at 1%, 5% and 10% levels and standard errors are clustered at the
firm level.

log[I/K]i,t = β1 log σ̂i,t−1 + β2 log si,t−1 + γ log σ̂i,t−1 × log si,t−1 + ηi + λt + εi,t

(1) (2) (3) (4) (5)
all low cs mid cs high cs all

log σ̂i,t−1 0.272∗∗∗ 0.251∗∗∗ 0.251∗∗∗ 0.243∗∗∗ 0.825∗∗∗

(8.58) (4.87) (4.90) (4.78) (4.60)
log si,t−1 -0.334∗∗∗ -0.141∗∗∗ -0.377∗∗∗ -0.597∗∗∗ -0.515∗∗∗

(-10.40) (-3.23) (-5.57) (-8.03) (-7.89)
log σ̂i,t−1 × log si,t−1 -0.098∗∗∗

(-3.09)
Firm FE X X X X X
Time FE X X X X X

Observations 22367 7526 7473 7316 22367
R-squared 0.154 0.149 0.139 0.166 0.156
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Table A5: This table presents the loadings of credit spread on the industry average of asset
volatility and market leverage. The dependent variable log yi,t denotes either equity volatility log σei,t
or credit spread log si,t. For a firm i in industry k at time t, we compute the industry average of log
asset volatility excluding itself as 1

Nk−1
∑
j 6=i log σj,t. We compute the industry average of market

leverage similarly. We report results for estimations in levels in Panel A and results for estimations
in first differences in Panel B. Each observation is a firm-quarter. Coefficients are reported with
t-statistics in parentheses. ***, **, and * indicate significance at 1%, 5% and 10% levels and
standard errors are clustered at the firm level.

log yi,t = β1
1

Nk−1

∑
j 6=i log σj,t + β2

1
Nk−1

∑
j 6=i log[MA/ME]j,t + ηi + λt + εi,t

Panel A: Levels Panel B: Changes
(1) (2) (3) (4)

log σei,t log si,t ∆ log σei,t ∆ log si,t

1
Nk−1

∑
j 6=i log σj,t 0.415*** 0.055 ∆ 1

Nk−1

∑
j 6=i log σj,t 0.292*** 0.074***

(11.21) (0.87) (11.71) (4.58)
1

Nk−1

∑
j 6=i log[MA/ME]j,t 0.216*** 0.353*** ∆ 1

Nk−1

∑
j 6=i log[MA/ME]j,t 0.135*** 0.074***

(5.38) (5.30) (3.70) (3.15)
Firm FE X X Firm FE X X
Time FE X X Time FE X X

Observations 47323 47246 Observations 44702 44636
R-squared 0.372 0.432 R-squared 0.163 0.329

Table A6: This table replicate Table 1 using standardized variables. All variables are standardized
with mean 0 and standard deviation 1. We use the original value of log si,t in the interaction term
so it has consistent interpretation as in our main results. Each observation is a firm-quarter.
Coefficients are reported with t-statistics in parentheses. ***, **, and * indicate significance at 1%,
5% and 10% levels and standard errors are clustered at the firm level.

log[I/K]i,t = β1 log σei,t + β2 log si,t + γ log σei,t × log si,t + ηi + λt + εi,t

(1) (2) (3) (4) (5) (6) (7)
all all all low cs mid cs high cs all

log σei,t -0.117*** -0.036*** 0.049*** -0.011 -0.078*** 0.563***

(-8.99) (-3.37) (3.86) (-0.73) (-4.55) (9.79)
log si,t -0.305*** -0.287*** -0.111*** -0.269*** -0.461*** -0.270***

(-13.33) (-12.84) (-3.03) (-5.68) (-11.67) (-12.40)
log σei,t × log si,t -0.107***

(-10.21)
Firm FE X X X X X X X
Time FE X X X X X X X

Observations 52897 52900 52414 17614 17595 17205 52414
R-squared 0.101 0.125 0.126 0.144 0.122 0.116 0.134
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Table A7: This table replicates Table 2 using standardized variables. All variables are standardized
with mean 0 and standard deviation 1. We use the original value of log ŝi,t in the interaction term
so it has consistent interpretation as in our main results. Each observation is a firm-quarter.
Coefficients are reported with t-statistics in parentheses. ***, **, and * indicate significance at 1%,
5% and 10% levels and standard errors are clustered at the firm level.

log[I/K]i,t = β1 log σei,t + β2 log ŝi,t + γ log σei,t × log ŝi,t + ηi + λt + εi,t

(1) (2) (3) (4) (5) (6) (7)
all all all low cs mid cs high cs all

log σei,t -0.108*** -0.006 0.056*** 0.020 -0.055*** 0.209***

(-7.91) (-0.54) (4.31) (1.34) (-2.92) (7.01)
log ŝi,t -0.282*** -0.275*** -0.135*** -0.222*** -0.283*** -0.255***

(-13.96) (-13.88) (-4.33) (-8.37) (-9.15) (-12.94)
log σei,t × log ŝi,t -0.048***

(-7.19)
Firm FE X X X X X X X
Time FE X X X X X X X

Observations 39925 40331 39925 13272 13296 13027 39925
R-squared 0.108 0.140 0.139 0.169 0.145 0.126 0.144

Table A8: This table replicates Table 3 using standardized variables. All variables are standardized
with mean 0 and standard deviation 1. We use the original value of log si,t in the interaction term
so it has consistent interpretation as in our main results. Coefficients are reported with t-statistics
in parentheses. ***, **, and * indicate significance at 1%, 5% and 10% levels and standard errors
are clustered at the firm level.

log[I/K]i,t = β1 log σi,t + β2 log si,t + γ log σi,t × log si,t + ηi + λt + εi,t

(1) (2) (3) (4) (5)
all low cs mid cs high cs all

log σi,t 0.058∗∗∗ 0.073∗∗∗ 0.039∗∗∗ 0.043∗∗∗ 0.444∗∗∗

(6.34) (6.60) (3.11) (3.00) (7.45)
log si,t -0.299∗∗∗ -0.108∗∗∗ -0.295∗∗∗ -0.519∗∗∗ -0.299∗∗∗

(-12.60) (-2.75) (-5.98) (-11.87) (-12.73)
log σi,t × log si,t -0.070∗∗∗

(-6.54)
Firm FE X X X X X
Time FE X X X X X

Observations 47384 16237 15947 15200 47384
R-squared 0.125 0.149 0.122 0.114 0.128
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Table A9: This table replicates Table 6 using standardized variables. All variables are standard-
ized with mean 0 and standard deviation 1. The dependent variable log yi,t denotes either equity
volatility log σei,t or credit spread log si,t. We report results for estimations in levels in Panel A and
results for estimations in first differences in Panel B.

log yi,t = β1 log σi,t + β2 log[MA/ME]i,t + ηi + λt + εi,t

Panel A: Levels Panel B: Changes
(1) (2) (3) (4)

log σei,t log si,t ∆ log σei,t ∆ log si,t

log σi,t 0.724*** 0.109*** log σi,t 0.721*** 0.009***
(90.77) (15.91) (83.77) (5.00)

log[MA/ME]i,t 0.452*** 0.407*** log[MA/ME]i,t 0.247*** 0.164***
(56.20) (32.17) (25.66) (24.37)

Firm FE X X Firm FE X X
Time FE X X Time FE X X

Observations 47327 47250 Observations 44706 44640
R-squared 0.865 0.571 R-squared 0.794 0.345

Table A10: This table replicates regressions in Table 1 with the same sample used for generating
Table 2. Each observation is a firm-quarter. Coefficients are reported with t-statistics in parenthe-
ses. ***, **, and * indicate significance at 1%, 5% and 10% levels and standard errors are clustered
at the firm level.

log[I/K]i,t = β1 log σei,t + β2 log si,t + γ log σei,t × log si,t + ηi + λt + εi,t

(1) (2) (3) (4) (5) (6) (7)
all all all low cs mid cs high cs all

log σei,t -0.154*** -0.048*** 0.059*** -0.014 -0.118*** 0.796***

(-7.91) (-3.00) (3.03) (-0.64) (-4.35) (8.98)
log si,t -0.278*** -0.262*** -0.111*** -0.290*** -0.392*** -0.465***

(-11.30) (-10.81) (-2.92) (-5.63) (-8.68) (-14.57)
log σei,t × log si,t -0.151***

(-9.35)
Firm FE X X X X X X X
Time FE X X X X X X X

Observations 39925 39970 39595 13272 13296 13027 39595
R-squared 0.108 0.132 0.132 0.165 0.136 0.123 0.140
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Figure A1: This figure presents the elasticity of investment with respect to credit spread across
time and across firms using the estimates from the regressions with interaction terms. In each
quarter we generate five cutoffs in the cross-section of log asset volatility: {p10, p30, p50, p70, p90}.
Using the estimates in column 7 of Table 3 on

log[I/K]i,t = β1 log σi,t + β2 log si,t + γ log σi,t × log si,t + ηi + λt + εi,t,

the elasticity at each cutoff point is computed as β2 + γpn, n = 10, 30, 50, 70, 90.
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Notes: This figure is generated using the estimates on log si,t and log σi,t × log si,t in Column 5 of
Table 3.
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D Proofs

Shareholders maximize their expected cash flow and device when to default. Thus,

the value of equity is given by:

E = max
ι,z

{
E
[
(Y (ι, z)− b)1{z ≥ z}

]
− ι

}
.

We can write the first-order conditions for investment ι and the default boundary

z as:

∫ ∞
z

Yι(ι, z)dF (z;σ)− 1 = 0,

−f(z;σ)(Y (ι, z)− b) = 0,

and the second-order conditions for investment ι and the default boundary z as:

∫ ∞
z

Yιι(ι, z)dF (z;σ) < 0,

−f(z;σ)k(ι) < 0,

−
∫ ∞
z

Yιι(ι, z)dF (z;σ)f(z;σ)k(ι)− f(z;σ)2kι(ι)
2z2 > 0. (8)

Thus, Yι(ι, z)
2f(z;σ) + k(ι)kιι(ι)µ(z, σ) < 0.

In the following sections, we derive the partial derivatives of equity with respect

to (i) credit spreads and asset volatility, (ii) leverage and asset volatility, and (iii)
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credit spreads and equity volatility to rationalize our empirical results.

Investment ι, Credit Spreads cs, and Asset Volatility σ Assume we observe

θ and we want to derive the partial derivatives of x with respect to θ. Since x is the

solution to a system of nonlinear equations D(x,θ), we need to use the multivariate

implicit function theorem:

∂x(θ)

∂θi
= −

[
∂Di(x(θ),θ)

∂xj

]−1 [
∂D(x(θ),θ)

∂θi

]
,

where

D(x,θ) =

 ∫∞z Yι(ι, z)dF (z;σ)− 1

F (z;σ)− cs

 , x =

 ι

z

 , θ =

[
cs σ

]
.

We can derive the Jacobian matrix of D(x,θ) as:

[
∂Di(x(θ),θ)

∂xj

]
=

 ∫∞z Yιι(ι, z)dF (z;σ) −Yι(ι, z)f(z;σ)

0 f(z;σ)


and the partial derivatives as:

[
∂D(x(θ),θ)

∂cs

]
=

 0

−1

 , [
∂D(x(θ),θ)

∂σ

]
=

 ∫∞z Yι(ι, z)fσ(z)dz

Fσ(z)

 .

To derive the comparative statics of interest, we only need few elements of
[
∂Di(x(θ),θ)

∂xj

]−1

.
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Thus, we get:

∂ι

∂cs
=

[
∂Di(x(θ),θ)

∂xj

]−1

12

=
Yι(ι, z)∫∞

z
Yιι(ι, z)dF (z;σ)

=
kι(ι)

kιι(ι)

z

µ(z, σ)
< 0,

and

∂ι

∂σ
= −

[
∂Di(x(θ),θ)

∂xj

]−1

11

∫ ∞
z

Yι(ι, z)fσ(z)dz −
[
∂Di(x(θ),θ)

∂xj

]−1

12

Fσ(z)

= −
∫∞
z
Yι(ι, z)fσ(z)dz + Yι(ι, z)Fσ(z)∫∞

z
Yιι(ι, z)dF (z;σ)

= − kι(ι)
kιι(ι)

ν(z, σ)

µ(z, σ)
> 0.

The sign of both these partial derivatives comes directly from Assumptions 4 and

5.

Investment ι, Leverage b, and Asset Volatility σ Instead of observing credit

spreads cs and asset volatility, we observe leverage b and asset volatility σ. Thus, we

can write:

∂x(θ)

∂θi
= −

[
∂Di(x(θ),θ)

∂xj

]−1 [
∂D(x(θ),θ)

∂θi

]
,

where

D(x,θ) =

 ∫∞z Yι(ι, z)dF (z;σ)− 1

Y (ι, z)− b

 , x =

 ι

z

 , θ =

[
b σ

]
.
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We can derive the Jacobian matrix of D(x,θ) as:

[
∂Di(x(θ),θ)

∂xj

]
=

 ∫∞z Yιι(ι, z)dF (z;σ) −Yι(ι, z)f(z;σ)

Yι(ι, z) k(ι)


and the partial derivatives as:

[
∂D(x(θ),θ)

∂b

]
=

 0

−1

 , [
∂D(x(θ),θ)

∂σ

]
=

 ∫∞z Yι(ι, z)fσ(z)dz

0

 .

To derive the comparative statics of interest, we only need few elements of
[
∂Di(x(θ),θ)

∂xj

]−1

.

Thus, we can directly derive:

∂ι

∂b
=

[
∂Di(x(θ),θ)

∂xj

]−1

12

=
Yι(ι, z)f(z;σ)

Yι(ι, z)2f(z;σ) +
∫∞
z
Yιι(ι, z)dF (z;σ)k(ι)

< 0,

∂ι

∂σ
= −

[
∂Di(x(θ),θ)

∂xj

]−1

11

∫ ∞
z

Yι(ι, z)fσ(z)dz

= −
k(ι)

∫∞
z
Yι(ι, z)fσ(z)dz

Yι(ι, z)2f(z;σ) +
∫∞
z
Yιι(ι, z)dF (z;σ)k(ι)

,
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∂z

∂b
=

[
∂Di(x(θ),θ)

∂xj

]−1

22

= −
∫∞
z
Yιι(ι, z)dF (z;σ)

Yι(ι, z)2f(z;σ) +
∫∞
z
Yιι(ι, z)dF (z;σ)k(ι)

> 0,

∂z

∂σ
= −

[
∂Di(x(θ),θ)

∂xj

]−1

21

∫ ∞
z

Yι(ι, z)fσ(z)dz

=
Yι(ι, z)

∫∞
z
Yι(ι, z)fσ(z)dz

Yι(ι, z)2f(z;σ) +
∫∞
z
Yιι(ι, z)dF (z;σ)k(ι)

.

The sign of these partial derivatives comes directly from Assumptions 4 and 5 and

the second-order condition in equation (8). Furthermore, we can derive:

∂cs

∂σ
= f(z;σ)

∂z

∂σ
+ Fσ(z;σ).

Investment ι, Credit Spreads cs, and Equity Volatility σe Instead of ob-

serving credit spreads cs and asset volatility, we observe credit spreads cs and equity

volatility σe. Thus, we can write:

∂x(θ)

∂θi
= −

[
∂Di(x(θ),θ)

∂xj

]−1 [
∂D(x(θ),θ)

∂θi

]
,
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where

D(x,θ) =


∫∞
z
Yι(ι, z)dF (z;σ)− 1

F (z;σ)− cs
σ

µ(z,σ)
− σe

 , x =


ι

z

σ

 , θ =

[
cs σe

]
.

We can derive the Jacobian matrix of D(x,θ) as:

[
∂Di(x(θ),θ)

∂xj

]
=


∫∞
z
Yιι(ι, z)dF (z;σ) −Yι(ι, z)f(z;σ)

∫∞
z
Yι(ι, z)fσ(z)dz

0 f(z;σ) Fσ(z)

0 σez σeσ

 ,

where

σez = −
σsµz(z, σ)

sµ(z, σ)2
=
σ (1− F (z;σ))

sµ(z, σ)2
,

σeσ =
sµ(z, σ)− σν(z, σ)

sµ(z, σ)2
,

and the partial derivatives as:

[
∂D(x(θ),θ)

∂cs

]
=


0

−1

0

 ,
[
∂D(x(θ),θ)

∂σe

]
=


0

0

−1

 .

To derive the comparative statics of interest, we only need two elements of
[
∂Di(x(θ),θ)

∂xj

]−1

.
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Thus, we can directly derive:

∂ι

∂cs
=

[
∂Di(x(θ),θ)

∂xj

]−1

12

=
kι(ι)

kιι(ι)µ(z, σ)

σez(z, σ)
∫∞
z
zfσ(z;σ)dz + σeσ(z, σ)zf(z;σ)

f(z;σ)σeσ(z, σ)− Fσ(z;σ)σez(z, σ)

=
kι(ι)

kιι(ι)

z

µ(z, σ)

σez(z, σ)
∫∞
z

z
z
fσ(z;σ)
f(z;σ)

dz + σeσ(z, σ)

σeσ(z, σ)− Fσ(z)
f(z;σ)

σez(z, σ)

=
kι(ι)

kιι(ι)

z

µ(z, σ)

(
σez(z, σ)

∫ ∞
z

z

z

fσ(z;σ)

f(z;σ)
dz + σeσ(z, σ)

)
×
(
σeσ(z, σ)− Fσ(z;σ)

f(z;σ)
σez(z, σ)

)−1

and

∂ι

∂σe
=

[
∂Di(x(θ),θ)

∂xj

]−1

13

= − kι(ι)

kιι(ι)µ(z, σ)

f(z;σ)zFσ(z;σ) + f(z;σ)
∫∞
z
zfσ(z;σ)dz

f(z;σ)σeσ(z, σ)− Fσ(z;σ)σez(z, σ)

= − kι(ι)
kιι(ι)

ν(z)

µ(z, σ)

(
σeσ(z, σ)− Fσ(z;σ)

f(z;σ)
σez(z, σ)

)−1

.

We define the the credit spread wedge as:

ξcs|σe(z, σ) =

(
σez(z, σ)

(
ν(z, σ)

zf(z;σ)
− Fσ(z;σ)

f(z;σ)

)
+ σeσ(z, σ)

)
ζe(z, σ)

= 1 + σez(z, σ)
ν(z, σ)

zf(z;σ)
ζe(z, σ),

and the equity volatility wedge as:

ξσe|cs(z, σ) =

(
σeσ(z, σ)− Fσ(z;σ)

f(z;σ)
σez(z, σ)

)−1

.
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Investment ι, Credit Spreads with Positive Liquidation Value c̃s, and As-

set Volatility σ Instead of observing credit spreads cs and asset volatility σ, we

observe credit spreads cs with positive liquidation value c̃s and asset volatility σ.

We define the credit spreads with positive liquidation value as:

c̃s = F (z;σ)− α

b
E
[
Y (ι, z)1{z ≤ z}

]
.

where 1− α represents bankruptcy costs. Thus, we can write:

∂x(θ)

∂θi
= −

[
∂Di(x(θ),θ)

∂xj

]−1 [
∂D(x(θ),θ)

∂θi

]
,

where

D(x,θ) =

 ∫∞
z
Yι(ι, z)dF (z;σ)− 1

F (z;σ)− α
b

∫ z
0
Y (ι, z)dF (z;σ)− c̃s

 , x =

 ι

z

 , θ =

[
c̃s σ

]
.

We can derive the Jacobian matrix of D(x,θ) as:

[
∂Di(x(θ),θ)

∂xj

]
=

 ∫∞
z
Yιι(ι, z)dF (z;σ) −Yι(ι, z)f(z;σ)

−α
b

∫ z
0
Yι(ι, z)dF (z;σ) f(z;σ)(1− α)


since Y (ι, z) = b, and the partial derivatives as:

[
∂D(x(θ),θ)

∂c̃s

]
=

 0

−1

 , [
∂D(x(θ),θ)

∂σ

]
=

 ∫∞
z
Yι(ι, z)fσ(z)dz

Fσ(z)− α
b

∫ z
0
Y (ι, z)fσ(z)dz

 .
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To derive the comparative statics of interest, we only need few elements of
[
∂Di(x(θ),θ)

∂xj

]−1

.

Thus, we get:

∂ι

∂cs
=

[
∂Di(x(θ),θ)

∂xj

]−1

12

=
Yι(ι, z)∫∞

z
Yιι(ι, z)dF (z;σ) (1− α)− α

b
Yι(ι, z)

∫ z
0
Yι(ι, z)dF (z;σ)

=
kι(ι)

kιι(ι)

z

µ(z, σ) (1− α)− αkι(ι)
k(ι)

kι(ι)
kιι(ι)

(1− µ(z, σ))

=
kι(ι)

kιι(ι)

z

µ(z, σ)

1

(1− α)− αkι(ι)
k(ι)

kι(ι)
kιι(ι)

1−µ(z,σ)
µ(z,σ)

< 0.

Indeed, since α ≤ 0, we get that 1− α ≥ 0. Furthermore,

∂ι

∂σ
= −

[
∂Di(x(θ),θ)

∂xj

]−1

11

∫ ∞
z

Yι(ι, z)fσ(z)dz −
[
∂Di(x(θ),θ)

∂xj

]−1

12

(
Fσ(z)− α

b

∫ z

0

Y (ι, z)fσ(z)dz

)
= −

∫∞
z
Yι(ι, z)fσ(z)dz (1− α) + Yι(ι, z)

(
Fσ(z)− α

b

∫ z
0
Y (ι, z)fσ(z)dz

)∫∞
z
Yιι(ι, z)dF (z;σ) (1− α)− α

b
Yι(ι, z)

∫ z
0
Yι(ι, z)dF (z;σ)

= −
kι(ι)

∫∞
z
zfσ(z)dz (1− α) + kι(ι)

(
zFσ(z)− α

∫ z
0
zfσ(z)dz

)∫∞
z
Yιι(ι, z)dF (z;σ) (1− α)− αkι(ι)2

k(ι)
(1− µ(z, σ))

= −
kι(ι)(ν(z, σ)− α

∫∞
0
zfσ(z)dz)∫∞

z
Yιι(ι, z)dF (z;σ) (1− α)− αkι(ι)2

k(ι)
(1− µ(z, σ))

= − kι(ι)
kιι(ι)

ν(z, σ)

µ(z, σ)

1

(1− α)− αkι(ι)
k(ι)

kι(ι)
kιι(ι)

1−µ(z,σ)
µ(z,σ)

> 0.

Indeed, 1− µ(z, σ) ≥ 0.
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E Endogenous Leverage Dynamics

In this appendix, we extend the framework of DeMarzo and He (2020) to include

an investment function. We solve numerically the Markov perfect equilibrium and

confirm that our results hold in Figure 2. We refer to DeMarzo and He (2020) for

the proofs of the existence and uniqueness of the Markov perfect equilibrium.

We assume that agents are risk neutral with an exogenous discount rate of r > 0.

The firm’s assets-in-place generate operating cash flow at the rate of Yt, which evolves

according to a geometric Brownian motion:

dYt/Yt = µtdt+ σdZt

where Zt is a standard Brownian motion. A firm has at its disposal an investment

technology with adjustment costs, such that ιtYt spent allows the firm to grow its

capital stock by µ(ιt)Ytdt, where µ(·) is increasing and concave. Denote by B the ag-

gregate face value of outstanding debt that pays a constant coupon rate of c > 0. The

firm pays corporate taxes equal to π(Yt− cFt). We assume that debt takes the form

of exponentially maturing coupon bonds with a constant amortization rate ξ. Equity

holders control the outstanding debt Bt through an endogenous issuance/repurchase

policy dΓt but cannot commit on a policy. Thus, the evolution of the outstanding

face value of debt follows

dBt = dΓt − ξBtdt.
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In the unique Markov equilibrium, given the debt price p(Y,B), the firm’s issuance

policy dΓt = Gtdt and default time τ maximize the market value of equity:

E(Y,B) = max
τ,ιt,Gt

Et
[ ∫ τ

t

e−r(s−t)
[
(1− ιs)Ys − π(Ys − cBs)− (c+ ξ)Bs

+Gsps
]
ds

∣∣∣∣Yt = Y,Bt = B

]
.

Similarly, the equilibrium market price of debt must satisfy

p(Y,B) = Et
[∫ τ

t

e−(r+ξ)(c+ ξ)ds

∣∣∣∣Yt = Y,Bt = B

]
.

The Hamilton-Jacobi-Bellman (HJB) equation for equity holders is

rE(Y,B) = max
ι,G

[
(1− ι)Y − π(Y − cB)− (c+ ξ)Bs (9)

+Gp(Y,B) + (G− ξB)EB(Y, F ) + µ(ι)Y EY (Y,B) +
1

2
σ2Y 2EY Y (Y,B)

]
.

Thus, in equilibrium it must be that

p(Y,B) = −EB(Y,B).

The first-order condition for the investment rate is given by

1 = µι(ι)EY (Y,B).
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In the following, we define {ι(Y,B), G(Y,B)} as

{ι(Y,B), G(Y,B)} = arg max
ι,G

[
(1− ι)Y − π(Y − cB)− (c+ ξ)Bs

+Gp(Y,B) + (G− ξB)EB(Y, F ) + µ(ι)Y EY (Y,B)

+
1

2
σ2Y 2EY Y (Y,B)

]
.

In this setting with scale-invariance, the relevant measure of leverage is given by

yt ≡ Yt/Bt,

and the equity value function E(Y,B) and debt price p(Y,B) satisfy

E(Y,B) = E (Y/B, 1) ≡ e(y)B and p(Y,B) = p(Y/B, 1) ≡ p(y).

We also define the following:

ι(Y,B) ≡ ι(y) and G(Y,B) ≡ g(y)B.

Thus, we can rewrite (9) as follows

(r + ξ)e(y) = max
ι

[
(1− ι)y − π(y − c)− (c+ ξ) + (µ(ι) + ξ)ye′(y) +

1

2
σ2y2e′′(y)

]
.

(10)
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The optimal default boundary is such that

e′(yb) = 0.

The higher bound is such that

e′(y) = φy − ρ,

which corresponds to the value of equity without a default option. We can solve for

φ and ρ with

(r + ξ)(φy − ρ) = max
ι

[
(1− ι)y − π(y − c)− (c+ ξ) + (µ(ι) + ξ)φy

]
.

Thus,

ρ =
(1− τ)c+ ξ

r + ξ
,

φ =
1− ι? − π
r − µ(ι?)

,

1 = µ′(ι?)φ.

The HJB for p(Y,B) is given by

rp(Y,B) = c+ ξ(1− p(Y,B)) + (G− ξB)pB(Y,B) + µ(Y,B)Y pY (Y,B) +
1

2
σ2Y 2pY Y (Y,B).
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where we define µ(Y,B) ≡ µ(ι(Y,B)) ≡ µ(y).

Thus, we can write the HJB for p(y) as

rp(y) = c+ ξ(1− p(y))− (g(y)− ξ)p′(y)y + µ(y)yp′(y) +
1

2
σ2y2p′′(y). (11)

where g(y) = G(Y,B)/B. We need g(y) to be such that p(y) = e′(y)y − e(y). From

(10), we get

(r + ξ)e′(y)y = (1− ι(y))y − πy − ι′(y)y2 + (µ(y) + ξ)y2e′′(y) + (µ(y) + ξ)ye′(y) + µ′(y)y2e′(y)

+
1

2
σ2y3e′′′(y)) + σ2y2e′′(y).

Thus,

(r + ξ)(e′(y)y − e(y)) = (1− π)c+ ξ − ι′(y)y2 + (µ(y) + ξ)ye′′(y) + µ′(y)y2e′(y)

+
1

2
σ2y2e′′′(y) +

1

2
σ2y2e′′(y).

Thus, g(y) is such that

c+ ξ − (g(y)− ξ)p′(y)y + µ(y)yp′(y) +
1

2
σ2y2p′′(y)

= (1− π)c+ ξ − ι′(y)y2 + (µ(y) + ξ)y2e′′(y) + µ′(y)y2e′(y)

+
1

2
σ2y3e′′′(y)) +

1

2
σ2y2e′′(y).
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With further algebra, we get

−gp′(y)y = −πc− ι′(y)y2 + µ′(y)y2e′(y).

Since µ′(ι)e′(y) = 1 and µ′(y) = µ′(ι)ι′(y), we get

g(y) =
πc

p′(y)y
.

Plugging the solution for g(y) in (11) yields

(r + ξ)p(y) = (1− π)c+ ξ + (µ(y) + ξ)yp′(y) +
1

2
σ2y2p′′(y).

We solve numerically for the solution using ODE45 in Matlab. We use the following

pseudo-algorithm.

1. Start with yL = 0 and yH = H, where H is a sufficiently large number.

2. Given yb = 1/2(yL + yH), e(yb) = 0, and e′(yb) = 0, we solve for e(y) on [yb, yB]

where YB is a large number.

3. Check if |e(YB) − (φyB − ρ)| ≤ ε, where ε > 0 is a small number. If e(YB) −

(φyB − ρ) > ε, set yL = yb and repeat 2-3. If e(yB) − (φyB − ρ) < −ε, set

yH = yb and repeat 2-3. Otherwise move to 4.

4. Start with ppL = 0 and ppH = H, where H is a sufficiently large number.
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Figure 2: Optimal investment in dynamic setting with µ(ι) = log(1+κι)
κ , κ = 100, r = 0.05,

ξ = 1/8, c = 0.05, π = 0.3.

5. Given ppb = 1/2(ppL+ppH), p(yb) = 0, p′(yb) = ppb we solve for p(y) on [yb, yB].

6. Check if |p(yB) − ρ| ≤ ε If p(YB) − ρ > ε, set pH = pb and repeat 2-3. If

p(yB)− ρ < −ε, set ppL = ppb and repeat 4-5. Otherwise move to 7.

7. Check if |p′(yb) − e′′(yb)yb| ≤ ε. If not, increase the precision of the ODE45

solver and restart from 1.
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