CLUSTERS: CHEMISTRY AND PHYSICS IN A FINITE WORLD

TONY STACE
University of Nottingham

Clusters:

Small collections (~ 1000) of atoms and/or molecules that are typically studied in the gas phase. These could behave as extremely small images of a bulk liquid or solid –

or, they could be unique materials!

How small does the collection have to become, before it fails to function in the same way as a bulk material?

The types of questions we might seek answers to:

how many water molecules do we need to dissolve common salt (sodium chloride)?

or

how many metal atoms do we need to make a piece of copper wire?

Important physical and chemical properties of bulk materials:

Structure
Melting
Conduction of electricity
Solubility
Magnetism
Chemistry

diamond ice cube copper wire salt in water ???????

Size effects (bulk): (spherical cluster model)

 R_a radius of a single atom

 R_{c} radius of cluster

Volume of 1 atom $-4/3\pi R_a^3$

Volume of a cluster – $4/3\pi R_c^3$

no. of atoms (N) is $\propto (R_a/R_a)^3$ $R_c = R_a N^{1/3}$

Scaling cluster properties: $X_N = X_{\text{bulk}} (1 \pm \beta/N^{1/3})$ or $(1 \pm \alpha/R)$

Melting temperature of N atoms of gold $T_M / K = 1336.15 - \beta / N^{1/3}$

Size effects (surface):

No. of atoms on the surface (N_s) is $\propto 4(R_c/R_a)^2 = 4N^{2/3}$

Fraction of surface atoms $F_s = N_s/N = 4/N^{1/3}$

 $F_s < 0.01 (1\%)$ for N > 64,000,000 atoms

The significance of surface atoms is that when F_s is large, surface energy (surface tension) becomes as important as bulk binding energy in determining the properties of a material.

no. of atoms	radius	atoms on the surface
N	$R_c(\mathring{A})$	N _s /N (%)
125	4	80
1000*	10	40
10,000	22	10
1m	100	4

^{*} start of nanotechnology

1
$$Å = 0.0000000001 \text{ m} = 0.1 \text{ nm}$$

Production of clusters

Temperature: $300 \text{ K} \rightarrow 1 \text{ K}$

Time taken for an atom to reach the vacuum is 0.000001 s

Rate of cooling: >10,000,000 K per second

Pure argon

Carbon clusters and fullerenes

Kaldor *et al* 1984

Kroto *et al* 1985

How Nobel Prizes are won and lost!!

Structure

Be, B, Cd, Co, Ru, Sc, Re

For clusters, one way to investigate structure is to look for stable collections of atoms in a mass spectrum –

- a stable structure will be strongly bound and so will give a comparatively intense signal.
- structures that are less stable will yield weaker signals.

Mass / amu ->

All stable icosahedra 13 309 561 (P)

For single-atom systems there is no bulk equivalent – the structure is only stable because of surface energy.

The driving force for this effect in small clusters is surface energy, and a cluster needs to contain about 2000 atoms before the bulk binding energy is high enough for them to adopt stable close-packed structures.

Melting

Melting in deposited gold nanoparticles

Melting is initiated by the presence of mobile atoms or molecules on surfaces.

On a piece of metal 1cm³ in size, fewer than 0.000000001% of the atoms are on the surface and so they have almost no influence on how the metal behaves at low temperature.

However, in a cluster F_s is large and so melting can take place at much lower temperatures.

A E A D

Electrical conductivity

How small is a piece of wire?

Electrical Properties

single metal atom ionisation energy

metallic solid work function (φ or ω)

Metal cluster

None of the electrons are associated with any particular atom

Measuring the ionisation energies of mercury clusters

Ionisation energy of mercury clusters as a function of 1/radius

Solubility

Sodium chloride (salt) in water

Entropy is also important under certain circumstances

Gas phase experiment

$$Na^+ + H_2O \longrightarrow Na^+(H_2O)$$
 $\triangle E$

$$Na^+(H_2O) + H_2O \longrightarrow Na^+(H_2O)_2 \triangle E'$$

$$Na^+(H_2O)_2 + H_2O \longrightarrow Na^+(H_2O)_3 \triangle E^*$$

Na⁺ + nH₂O
$$(\Delta E + \Delta E' + \Delta E'' +)$$

Ion hydration energies / kJ mol⁻¹

lon	6 water	Bulk
	molecules	
H+	1123	1129
Li+	515	520
Na ⁺	403	405
K+		
r\'	333	321

Solvation

For singly-charged metal ions it is possible to reproduce the essential energetics of ion solvation with ~ 6 - 10 molecules.

To dissolve sodium chloride we need approximately 12 water molecule for each NaCl unit

No comparable data on how metal ions carrying more than one charge dissolve.

Almost all of the metals that are important for our existence and quality of life carry more than one charge:

Ca²⁺, Cu²⁺, Ni²⁺ and Fe^{2+/3+}

Experiments suggest that these ions need 20 – 30 water molecules to dissolve.

Chemistry

lonosphere (100 km)

Most abundant species is NO+

NO originates from activities on the surface of the Earth and because it has a low ionisation energy, it acts as a charge sink. Neutral O_2 and N_2 are far more abundant, but have much higher ionisation energies.

As the altitude drops, ions of the form $(H_2O)_nH^+$ begin to appear and these are thought to be precursors to cloud formation.

The clouds that are formed are often referred to as "night-shining" or Noctilucent clouds.

They form in an upper layer of the Earth's atmosphere called the mesosphere during the Northern Hemisphere's summer season, and they are also seen during the summer months in the Southern Hemisphere.

Ionosphere

(90 km)

Need a chemical route for the transition:

$$NO^+ \rightarrow (H_2O)_nH^+$$

Suggested pathway:

$$NO^{+}.(H_{2}O)_{3} + H_{2}O \rightarrow (H_{2}O)_{3}H^{+} + HONO$$

Cluster equivalent

$$NO^+.(H_2O)_4 \rightarrow (H_2O)_3H^+ + HONO$$

Where is cluster science going?

Metal clusters and the possibility of creating new catalysts – reactions take place on the surface and clusters offer a high surface to volume ratio.

fcc icosahedron

v vı

 Co_{55}

Helium Nanodroplets (10³ – 10⁶ atoms)

Internal temperature of 0.38 K

Helium nanodroplets (superfluid!):

- 1 Chemical Reactions at 0.38 K
- 2) Magnetic behaviour
- 3) Superconductivity
- 4) Spectroscopy

How small is a solid or a liquid?

Structure (regular) ~13 atoms

Structure (bulk) ~2000 atoms

Melting ~1,000,000 atoms

Becoming a metal ~200 atoms

Solvation ~ 6 molecules (Na+)

~ 30 molecules (Cu²⁺)