Breast Cancer in Older Patients
What is new?

Etienne GC Brain, MD PhD
Institut Curie
Saint-Cloud, France

www.siog.org
etienne.brain@curie.fr
Conflicts of interest

• Receipt of grants/research supports
 – TEVA (Cephalon), HalioDX (Qiagen/Ipsogen), Amgen

• Receipt of honoraria or consultation fees
 – AstraZeneca, BMS, Celgene, Clinigen, Hospira, Janssen, Mylan, OBI Pharma, Pfizer, Puma, Roche, Samsung
Highlights since 2017

• Numbers and factfulness!
• Targeted treatments
• Prediction
• Some thoughts
• Most common shortcut in statistics

 “1 in 8 women will develop BC in their lifetime”

 instead of

 “If everyone lived beyond the age of 70, 1 in 8 of those women would get or have had BC”

• Since BC risk increases with age, lifetime risk changes depending on age

 - Age 20-29 1 in 2,000
 - Age 30-39 1 in 229
 - Age 40-49 1 in 68
 - Age 50-59 1 in 37
 - Age 60-69 1 in 26
 - Ever 1 in 8
46% of cancer survivors are ≥ 70 yo
All adult oncologists are geriatric oncologists.

They just do not know it yet!
No simple dichotomy but 4 income levels
No country on level 4 has really short LE nor on level 1 has long LE
Most people in the middle, on levels 2 and 3 w/ huge ≠ in LE, depending on how income is used
Few older adults included in registration studies! Breast cancer as an example

<table>
<thead>
<tr>
<th>Agent Name</th>
<th>Approval</th>
<th>N</th>
<th>Age ≥ 65</th>
<th>N</th>
<th>Age ≥ 75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palbociclib</td>
<td>2/2015</td>
<td>37</td>
<td>44%</td>
<td>8</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>86</td>
<td>25%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Everolimus</td>
<td>7/2012</td>
<td>290</td>
<td>40%</td>
<td>109</td>
<td>15%</td>
</tr>
<tr>
<td>Pertuzumab</td>
<td>6/2012</td>
<td>60</td>
<td>15%</td>
<td>5</td>
<td>1%</td>
</tr>
<tr>
<td>Eribulin mesylate</td>
<td>11/2010</td>
<td>121</td>
<td>15%</td>
<td>17</td>
<td>2%</td>
</tr>
<tr>
<td>Lapatinib</td>
<td>1/2010</td>
<td>34</td>
<td>17%</td>
<td>2</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>282</td>
<td>44%</td>
<td>77</td>
<td>12%</td>
</tr>
<tr>
<td>Ixabepilone</td>
<td>10/2007</td>
<td>45</td>
<td>10%</td>
<td>3</td>
<td><1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>13%</td>
<td>6</td>
<td>2.5%</td>
</tr>
</tbody>
</table>

Package Insert, “Geriatric Usage” section

Courtesy to Arti Hurria (adapted)
Cleopatra double-blinded phase III trial

- Pertuzumab: 840 mg loading dose → 420 mg
- Trastuzumab: 8 mg/kg loading dose → 6 mg/kg
- Docetaxel: 75 mg/m2 → 100 mg/m2 depending on tolerance
- Primary objective: PFS
- Secondary objectives: OS, ORR, tolerance
- Stratification: geography, (neo)adjuvant treatment

MBC L1 HER2+ (central review) $N = 808$

R

1:1

Pertuzumab + trastuzumab + docetaxel ($n = 402$)

Placebo + trastuzumab + docetaxel ($n = 406$)

Final OS Analysis
Median follow-up 50 months (range 0–70 months)

HR 0.68
95% CI = 0.56, 0.84
p = 0.0002

Time (months)

OS (%)

n at risk

Plz + T + D 402 371 318 268 226 104 28 1
Pla + T + D 406 350 289 230 179 91 23 0

ITT population. Stratified by geographic region and neo/adjuvant chemotherapy.
CI, confidence interval; D, docetaxel; HR, hazard ratio; OS, overall survival; Pla, placebo; Plz, pertuzumab; T, trastuzumab.

Swain ESMO 2014; Swain NEJM 2015
Pertuzumab

CLEOPATRA
808 patients

→ 127 (16%) 65+
→ 19 (2%) 75+

More frequent in elderly patients

- **Any grade**: diarrhea, asthenia, fatigue, anorexia, vomiting and dysgeusia
- **Grade 3**: diarrhea, peripheral neuropathy
- **Dose intensity**: 12% dose escalation, 31% dose reduction, 20-30% G-CSF
EORTC 75111-10114
(Co-PI Hans Wildiers & Etienne Brain)

80 pts HER2+ MBC ≥ 70 Years
(≥65/≥60y with co-morbidity)

Primary endpoint
PFS at 6 months of PH or PHM

Secondary endpoints
OS, BCSS, toxicity, RR (RECIST v1.1),
HRQoL, evolution of GA during treatment

Pertuzumab + Trastuzumab

Pertuzumab + Trastuzumab + metronomic CT

Stratification: ER/PgR, previous HER2 treatment, G8

Pertuzumab
840 mg loading dose, further 420 mg q3w iv

Trastuzumab
8 mg/kg loading dose, further 6 mg/kg q3w iv

Chemotherapy
Metronomic chemotherapy: cyclophosphamide 50 mg/d po continuously

On progression
Option to have T-DM1 (3.6 mg/kg iv q3w) till progression

→ PD → T-DM1

Wildiers Lancet Oncol 2018
Pertuzumab and trastuzumab with or without metronomic chemotherapy for older patients with HER2-positive metastatic breast cancer (EORTC 75111-10114): an open-label, randomised, phase 2 trial from the Elderly Task Force/Breast Cancer Group

Hans Wildiers, Konstantinos Tryfonidis, Lisandra Dal Lago, Peter Vuylsteke, Giuseppe Curigliano, Simon Waters, Barbara Brouwers, Sevilay Altintas, Nathan Touati, Fatima Cardoso, Etienne Brain

Elderly/frail HER2+ MBC population

TP + metronomic CT > TP
(7-month longer median PFS: 12.7 vs 5.6)

Acceptable safety profile

T-DM1 at progression active
Competing risks for mortality

Dutch & Belgian postmenopausal pts w/ EBC ER+ in the TEAM trial (2001-2006) exemestane vs sequential tamoxifen → exemestane 5 yr

3,159 pts (70% <70 yr); median FU 10 yr; cumulative incidence of BC mortality
Competing risks for mortality

≥70 yr & no comorbidity (33%)
→ higher BC mortality

22.2%, 95% CI, 17.5–26.9 vs 15.6%, 95% CI, 13.6–17.7

sHR 1.49, 95% CI, 1.12–1.97, p = .005
5-year BCSM by Age and RS Group

- RS predicts BCSM in both age groups (p<0.001)
- Low 5-y BCSM was observed with RS <18 in both age groups
- Higher 5-y BCSM was observed with RS 18-30 and RS ≥31 in older patients
Reported Chemotherapy (CT) Use

<table>
<thead>
<tr>
<th>Age <70 years</th>
<th>Age ≥70 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tested (N=43,693)</td>
<td>Not Tested (N=100,519)</td>
</tr>
<tr>
<td>Tested</td>
<td>Not Tested</td>
</tr>
</tbody>
</table>

- CT use was lower in patients ≥70 years, in both RS-tested and untested cohorts

- CT use reported as ‘yes’
- CT use reported as ‘no/unknown’

Chemotherapy use is known to be under-reported to SEER
5-year Other-Cause Mortality by Age and RS Group

As expected, RS group does not predict other-cause mortality (p=NS)
As expected, higher other-cause mortality was observed in older patients
ASTER 70s (EUDRACT N° 2011-004744-22, PHRC national 2011, NCT01564056)
Adjuvant chemotherapy for ER+ HER2- BC in 70+ patients

Complete curative surgery

Group I* High GG
- Arm A = HT
- Arm B = CT + HT
- Chemo tolerance
- Standard Lab
- 1 blood + serum
- MMSE, IADL, QLQ C30 & ELQ15
- Socioeconomic

Group II Low GG
- NO CHEMOTHERAPY IS RECOMMENDED - Follow-up
- CCI
- Polymedications
- Events

Chemo = 4 TC or 4 AC or 4 MC

Hypothesis B > A Δ±7.5% (A 80% vs B 87.5%) HR 0.60 ± 5% ± 10%
4-yr OS

screened 1,989
randomized 1,089

April 2012
April 2016
1. 58% grade ≥ 3 toxicity
2. Risk increased w/ increasing risk score
3. AUC/ROC 0.65 (95%CI 0.58-0.71) ~ development cohort 0.72 (95%CI 0.68-0.77) (P = .09)
4. No association between PS and chemo toxicity (P = .25)
CARG-BC

473 pts evaluable/501
- 283 development
- 190 validation

Median age 70 (65-85)
Stage I/II/III 39%/41%/20%
TNBC/ER+/HER2+ER+/HER2+ER- 24%/48%/10%/17%
Grade 3-5 AEs 46% (Heme 25%/Non-Heme 36%

<table>
<thead>
<tr>
<th>Risk factors for Gr. 3-5 Toxicity</th>
<th>OR (95% CI)</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARG Score: Medium Risk</td>
<td>2.47 (1.35-4.51)</td>
<td>3</td>
</tr>
<tr>
<td>High Risk</td>
<td>2.26 (0.70-7.35)</td>
<td></td>
</tr>
<tr>
<td>Anthracycline</td>
<td>1.37 (0.65-2.85)</td>
<td>1</td>
</tr>
<tr>
<td>Stage II/III</td>
<td>1.79 (1.00-3.23)</td>
<td>2</td>
</tr>
<tr>
<td>Duration of tx > 3 months</td>
<td>2.98 (1.46-6.09)</td>
<td>4</td>
</tr>
<tr>
<td>Abnormal liver function</td>
<td>2.21 (0.90-5.47)</td>
<td>3</td>
</tr>
<tr>
<td>Limited in walking a mile</td>
<td>2.22 (1.21-4.05)</td>
<td>3</td>
</tr>
<tr>
<td>Lack of someone to provide advice</td>
<td>2.34 (0.99-5.58)</td>
<td>3</td>
</tr>
</tbody>
</table>
CARG-BC score \(\rightarrow\) prediction of grade 3-5 toxicity better than CARG or KPS

But also: dose reduction, delay, reduced RDI, hospitalization
Adjuvant palbociclib as an alternative to chemotherapy for older patients with high risk luminal early breast cancer

EORTC–ETF-BCG Study 1745 (APPALACHES)

Hans Wildiers & Etienne Brain
Non-comparative randomized (2:1) phase II study

70+, surgery for stage II-III EBC ER pos, HER2 neg
adjuvant chemotherapy required according to treating physician and patient

Stratification for clinical frailty (G8 >14 vs ≤ 14) and stage

Adjuvant chemo choice:
- 4 TC + G-CSF
- 4 EC or AC + G-CSF
- 12 taxol weekly

Primary endpoint
3y DRFI (distant metastases or death from breast cancer) for Al+Palbo arm
- 3-year DRFI of <88% is unacceptable.
- 3-year DRFI of ≥93% is success

Pros:
- Easy endpoint, clinically relevant
- Feasible numbers
- Similar endpoint in 1 arm was used in Mindact and Tolaney study (both NEJM)
- If study is + (88% not included in CI), the conclusion and consequences can be similar as for Mindact and Tolaney study: new standard
- QoL and OS/BCSS can be compared to chemo as secondary

Cons:
- No formal comparison w/ chemo group for primary endpoint
- Less data on QoL/OS/BCSS versus chemo

1
Adjuvant chemo -> Al

2
Al + Palbo 1y

366 patients required (244:122)
Accrual 2y
80 centres required
Tumour extent
TNM

Tumour biology
Luminal A/B
HER2 & TNBC
Gene expression profile

General health status
Geriatric assessment
Life expectancy
Treatment toxicity

Patient preference & acceptability
Past Presidents: Etienne Brain, Arti Hurrria, Riccardo Audisio, Martine Extermann, Jean-Pierre Droz, Harvey Cohen, Silvio Monfardini

Key persons: Matti Aapro, Lodovico Balducci

Stuart Lichthman
Immediate Past President
MSKCC, USA

Hans Wildiers
President
University Hospitals Leuven, Belgium

Ravindran Kanesvaran
President Elect
NCCS, Singapore

Najia Musolino
CEO
SIOG HO, Geneva, Switzerland
Optimising treatment in older cancer patients is precision medicine too!