Bridging the Age Gap
Treatment Variation and Outcomes in Older Women with Breast Cancer

Lynda Wyld
Professor of Surgical Oncology
University of Sheffield

Honorary Consultant Oncoplastic Breast Surgeon, Doncaster and Bassetlaw NHS FT
NABCOP Audit 2018; Treatment Omission Related to Age
Rate of surgery with/without case mix adjustment by NHS Trust in 2 UK regions

Adjustment for age, deprivation quintile, method of presentation, grade, stage, nodal status and co-morbidity
Decision Making for Older Women

61% favour PET, 26 equal and 12% surgery

Some scenarios gave an equal 3 way split in decision

Precision Guess Work!
Cochrane Review of Surgery plus Adjuvant Tamoxifen versus Tamoxifen Only

2.1 Survival - overall

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Surgery Events</th>
<th>Total</th>
<th>PET Events</th>
<th>Total</th>
<th>O-E</th>
<th>Variance</th>
<th>Weight</th>
<th>Peto Odds Ratio Exp[(O-E)/V], Fixed, 95% CI</th>
<th>Peto Odds Ratio Exp[(O-E)/V], Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC</td>
<td>158</td>
<td>225</td>
<td>187</td>
<td>230</td>
<td>-21.71</td>
<td>85.27</td>
<td>55.4%</td>
<td>0.78 [0.63, 0.96]</td>
<td></td>
</tr>
<tr>
<td>GRETA</td>
<td>130</td>
<td>239</td>
<td>144</td>
<td>235</td>
<td>-1.29</td>
<td>65.19</td>
<td>42.4%</td>
<td>0.98 [0.77, 1.25]</td>
<td></td>
</tr>
<tr>
<td>Nottingham 2</td>
<td>8</td>
<td>53</td>
<td>14</td>
<td>94</td>
<td>-0.75</td>
<td>3.4</td>
<td>2.2%</td>
<td>0.80 [0.28, 2.32]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>517</td>
<td>559</td>
<td></td>
<td></td>
<td>100.0%</td>
<td></td>
<td></td>
<td>0.86 [0.73, 1.00]</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 297, 345

Heterogeneity: Chi² = 2.05, df = 2 (P = 0.36); I² = 3%

Test for overall effect: Z = 1.91 (P = 0.06)

2.2 Local disease control

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Surgery Events</th>
<th>Total</th>
<th>PET Events</th>
<th>Total</th>
<th>O-E</th>
<th>Variance</th>
<th>Weight</th>
<th>Peto Odds Ratio Exp[(O-E)/V], Fixed, 95% CI</th>
<th>Peto Odds Ratio Exp[(O-E)/V], Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC</td>
<td>36</td>
<td>225</td>
<td>115</td>
<td>230</td>
<td>-73.63</td>
<td>52.83</td>
<td>69.6%</td>
<td>0.25 [0.19, 0.32]</td>
<td></td>
</tr>
<tr>
<td>GRETA</td>
<td>27</td>
<td>239</td>
<td>95</td>
<td>235</td>
<td>-22.37</td>
<td>23.09</td>
<td>30.4%</td>
<td>0.38 [0.25, 0.57]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>464</td>
<td>465</td>
<td></td>
<td></td>
<td>100.0%</td>
<td></td>
<td></td>
<td>0.28 [0.23, 0.35]</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 63, 210

Heterogeneity: Chi² = 2.90, df = 1 (P = 0.09); I² = 66%

Test for overall effect: Z = 11.02 (P < 0.00001)

Hind, Wyld and Reed 2007
The flip side........US practice is surgery for all

- Recent US study of ~6000 nursing home residents in the USA with breast cancer undergoing surgery (Tang et al, JAMA Surgery, 2018)

 - The 30-day mortality rates were 8% after lumpectomy, 4% after mastectomy, and 2% after ALND....compared to 0.1% in the UK for all ages (and 0% out of ~3000 women over 70 in Age Gap)

 - The 1-year mortality rates were 41% after lumpectomy, 30% after mastectomy, and 29% after ALND.

 - Among 1-year survivors, the functional decline rate was 56% to 60%. The mean MDS-ADL score increased (signifying greater dependency) by 3 points for lumpectomy, 4 points for mastectomy, and 5 points for ALND.
The Patients Voice: Surgical Fears

- Fear of losing independence: 3 strongly disagree, 10 disagree, 9 neutral, 5 agree, 5 strongly agree
- Worried unable to carry on as normal: 2 strongly disagree, 6 disagree, 8 neutral, 10 agree, 1 strongly agree
- Worried about losing their breast: 7 strongly disagree, 5 disagree, 6 neutral, 6 agree, 6 strongly agree
- Worried about hospitalisation: 7 strongly disagree, 6 disagree, 5 neutral, 6 agree, 5 strongly agree
Views on Primary Endocrine Therapy

- Worried about needing an op in future: 2 strongly disagree, 4 disagree, 6 neutral, 7 agree, 8 strongly agree
- Reassured life carries on as normal: 2 strongly disagree, 6 disagree, 7 neutral, 1 agree
- Already take tablets: 15 strongly disagree, 13 disagree, 12 neutral, 7 agree, 6 strongly agree
- Reassured by HCPs: 13 strongly disagree, 12 disagree, 4 neutral, 4 agree, 1 strongly agree
- Reassured that surgery still in reserve: 1 strongly disagree, 2 disagree, 2 neutral, 4 agree, 1 strongly agree
Priorities of Older Women Faced with Cancer

- I value my independence
- I have a good relationship with my friends and family
- I would rather stay strong and independent than be dependent on my loved ones
- I have strong support from my family and friends
- I have a positive outlook on life
- My ability to take part in my hobbies and activities is important to me
- The life I have lived so far has been fulfilling
- I have a reasonable quality of life
- I am financially secure
- I am happy with my social life
- Living longer to me is important
- My family and friends are my priority. I want to be around as long as possible, despite being in worse health
- I feel I am in good health
- I was worried treatment would interfere with my ability to carry on with my normal activities
- I am not afraid of death
- I have a lot of physical problems
The Key Question

- When is Primary Endocrine Therapy Appropriate?

- Is there an age/fitness/tumour biology composite score that will guide best practice?
The Age Gap Cohort Study

Recruited 3460 women over age 70 across 56 sites.

Recruitment complete and analysis underway
Cohort Demographics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70-74</td>
<td>77</td>
<td>70-102</td>
</tr>
<tr>
<td>75-79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85-90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charlson Co-morbidity score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Range 3-17</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activities of Daily Living</td>
<td>1</td>
<td>1-20</td>
</tr>
<tr>
<td>1-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognition Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>Normal to severely impaired</td>
</tr>
<tr>
<td>Mild impairment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate impairment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe impairment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Surgery versus Primary Endocrine Therapy

ADL scores between surgery (orange) and PET (blue)

Age between surgery (orange) and PET (blue)

Charlson co-morbidity score between surgery (orange) and PET (blue)
Survival Outcomes: Surgery versus PET

- Mortality rate at 3.5 year median survival is 27% for women treated with PET versus 11% for surgery.

- The percentage of deaths due to BC is 19% for PET group versus 48% for surgery.

- Propensity score matching will be used to identify a matched cohort and compare mortality which will also help identify a fitness threshold for PET.
Cohort consented 3460

Eligible 3375

85 excluded due to metastatic disease, withdrawal of consent or other factors

Primary endocrine therapy: 505
Other non-surgical treatments: 54 (either no treatment or palliative RT)

Surgery patients 2816

Surgery per patient 2793
Surgery per breast 2851
2735 unilateral, 58 bilateral

Mastectomy 316
BCS 132
+ Axillary Clearance

Mastectomy & reconstruction 7
Oncoplastic BCS 11

Mastectomy 35
BCS 53
+ No axillary surgery

Mastectomy & reconstruction 0
Oncoplastic BCS 2

Mastectomy 707
BCS 1506
+ SLNB

Mastectomy & reconstruction 23
Oncoplastic BCS 59

Excluded due to inadequate surgical data 23

Treatment Allocations
Demographics

Age

P<0.01

Frailty Activities of Daily Living

P<0.01

Charlson Co Morbidity Score

P<0.01
Late or Systemic Complications

<table>
<thead>
<tr>
<th>Complications</th>
<th>Mastectomy only</th>
<th>Reconstruction</th>
<th>Wide local excision</th>
<th>Therapeutic mammoplasty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=947</td>
<td>n=34</td>
<td>n=1458</td>
<td>n=43</td>
</tr>
<tr>
<td>Wound Pain</td>
<td>26 (2.7%)</td>
<td>2 (5.9%)</td>
<td>24 (1.6%)</td>
<td>2 (4.7%)</td>
</tr>
<tr>
<td>Functional difficulty</td>
<td>25 (2.6%)</td>
<td>1 (2.9%)</td>
<td>14 (1%)</td>
<td>1 (2.3%)</td>
</tr>
<tr>
<td>Neuropathy</td>
<td>26 (2.7%)</td>
<td>0</td>
<td>15 (1%)</td>
<td>0</td>
</tr>
<tr>
<td>Lymphoedema</td>
<td>4 (0.4%)</td>
<td>0</td>
<td>4 (0.3%)</td>
<td>1 (2.3%)</td>
</tr>
</tbody>
</table>

Systemic complications

<table>
<thead>
<tr>
<th></th>
<th>Mastectomy only</th>
<th>Reconstruction</th>
<th>Wide local excision</th>
<th>Therapeutic mammoplasty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somnolence</td>
<td>18 (1.9%)</td>
<td>0</td>
<td>10 (0.7%)</td>
<td>1 (2.3%)</td>
</tr>
<tr>
<td>Allergic reaction</td>
<td>2 (0.2%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Arrhythmia</td>
<td>4 (0.4%)</td>
<td>0</td>
<td>5 (0.3%)</td>
<td>0</td>
</tr>
<tr>
<td>DVT</td>
<td>3 (0.3%)</td>
<td>0</td>
<td>1 (0.07%)</td>
<td>0</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>2 (0.2%)</td>
<td>0</td>
<td>2 (0.1%)</td>
<td>0</td>
</tr>
<tr>
<td>Stroke</td>
<td>0</td>
<td>0</td>
<td>1 (0.07%)</td>
<td>0</td>
</tr>
<tr>
<td>Atelectasis</td>
<td>1 (0.1%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Mortality According to Dementia Category

Dementia moderate and severe: 60/146 patients died at 3.5 year FU (rate 41%). 73% of deaths due to non breast cancer causes, 22% due to breast cancer.

No, or mild dementia: 421/3310 died at median 3.5 year FU, (rate 13%). 41% of deaths due to breast cancer, 55% due to non breast cancer.
Impact of Dementia on Treatment Choice

64% of women with severe dementia had surgery

- Normal
- Mild
- Moderate
- Severe

Surgery
Primary endocrine therapy
Quality of Life Impact of Surgery or PET

• Age Gap has collected QoL data at baseline, 1.5, 6, 12, 18 and 24 months

• EORTC validated tools for generic (C30), breast cancer specific (BR23) and elderly specific (ELD14) at all time points

• Data therefore adjusted for baseline variance and propensity score matched to adjust for fitness variation
Propensity Matching

- Surgical and PET patients assigned propensity score
- 1:1 matching
 - Age
 - Co-morbidities
 - Frailty (Activities of Daily Living Score (ADL))
 - Pre-operative tumour size, grade and nodal status
 - Oestrogen receptor +ve

• 169 patients matched

Matched cohort
- Surgery – too fit for PET
- PET – too frail for surgery
Comparative Analysis – Global QoL

Surgery - 11 points drop from baseline Vs 24 months (p<0.0001)

PET - 4 points drop from baseline Vs 24 months (p = 0.2)
EORTC-QLQ-C30 - Pain

PET – stable scores

Surgery – 14 points increase BS Vs 24 months (p < 0.0001)

EORTC-QLQ-C30 - Fatigue

PET – 8 points increase BS Vs 24 months (p = 0.7)

Surgery – 15 point increase BS Vs 24 months (p < 0.0001)
Baseline 6 weeks 6 months 12 months 18 months 24 months

EORTC-QLQ-BR23 – Breast Symptoms
- Surgery

EORTC-QLQ-BR23 – Arm Symptoms
- Surgery – 8 point increase BS vs 24 months (p = 0.0028)
Mortality in the Matched Cohort at 2 Years

PET → 11
- Breast Cancer – 1
- Other – 5
- Unknown - 5

Surgery → 10
- Breast Cancer – 5
- Other - 5
Conclusions

• In older frailer women, PET may have minimal detrimental effect on survival.

• In fit older women surgery enhances survival and is well tolerated in women selected for it

• This may be at the expense of Quality of Life in women of borderline fitness

• For this borderline group, a decision support tool was developed and trialled as part of the project
Age Gap Cluster Randomised Trial

- 50% of existing cohort sites trained in use of the tools and given access
- 50% usual care

- Outcome: Quality of life, treatment allocation and measures of decision regret.

- Study just closed. Recruited 1330 of 1328 cases. Analysis ongoing
2 booklets and 2 brief decision aids (frequently asked questions) developed using rigorous methodology.
Primary Endocrine Therapy:

Outcomes by age and fitness cohort

Omission of surgery in older women with early breast cancer has an adverse impact on breast cancer-specific survival

BJS 2018
Age Gap Decision Tool: Surgery vs PET

<table>
<thead>
<tr>
<th>Age</th>
<th>Tumour grade</th>
<th>Tumour size</th>
<th>Disease node positive?</th>
<th>Comorbidities</th>
<th>Frailty</th>
</tr>
</thead>
<tbody>
<tr>
<td>86</td>
<td>2</td>
<td>15mm</td>
<td>No</td>
<td>None</td>
<td>ADL Stage 0</td>
</tr>
</tbody>
</table>

Overall Survival At Two Years

- **Surgery**: 84 out of 100 women are alive at 2 years with Surgery.
- **PET**: 81 out of 100 women are alive at 2 years with PET.
Conclusions

• The Age Gap study has shown that recruiting older women to trials can be very successful

• Should give us evidence based guidelines on who to offer PET or surgery to and who to offer chemotherapy to.

• Data will be used to validate/calibrate the online tool which will be made open access on the internet
Acknowledgements

The Team

Lynda Wyld – University of Sheffield, Chief Investigator
Malcolm Reed – University of Brighton and Sussex Co-CI
Charlene Martin – University of Sheffield
Maria Burton – Sheffield Hallam University
Geoffrey Holmes – University of Sheffield
Sue Ward - University of Sheffield
Karen Collins – Sheffield Hallam University
Jenna Morgan – University of Sheffield
Anne Shrestha- University of Sheffield
Ricardo Audisio - University of Gothenberg
Tim Chater – University of Sheffield
Kirsty Pemberton – University of Sheffield
Kwok-Leung Cheung – University of Nottingham
Alistair Ring – Royal Marsden NHS Foundation Trust
Thompson Robinson – University of Leicester
Stephen Walters – University of Sheffield
Jacqui Gath – North Trent Cancer Network
Dierdre Revell – North Trent Cancer Network
Tracy Green- North Trent Cancer Network

• The Age Gap team would like to thank
• ALL of the older women who took part in this study
• Local principle investigators and research nurses at all 56 Age Gap Recruiting sites