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Abstract

This paper considers the extent to which expenditure by contestants in
imperfectly discriminating rent-seeking contests dissipates all or only part
of the rent. In particular, we investigate strategic effects, technological
effects and asymmetry under an assumption of diminishing returns to scale.
Although asymmetry can reduce dissipation when there are few contestants,
we show that this effect disappears in the Nash equilibria of large contests.
Similarly, strategic effects are diminished if the cost of entry, which restricts
the number of contestants, is fully taken into account. When individual
entry costs fall to zero, the reduction in dissipation arising from technological
factors is entirely eliminated in the limit. More generally, the dissipation-
reducing properties of all three effects operating simultaneously disappear as
individual entry fees fall to zero provided the aggregate cost of entry is added
to the expenditure of entrants. These conclusions are robust to details of the
entry process which can be sequential, in which case the ordering is irrelevant
to the limiting results, or simultaneous. Our principal theoretical tool is
the share function which expresses the probability of a player winning the
contest as a function of aggregate expenditure. However, this methodology
has independent interest as it can be applied in many other contexts (not
formally analyzed here).

JEL classifications: C72, D72
Key words: entry costs, noncooperative game theory, rent dissipation,

rent seeking
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1 Introduction

Rent-seeking contests allow participants to expend resources in an attempt
to increase their probability of winning the rent, or to increase their share if
the rent is divisible. If entry to such contests is free, it is often contended
that the aggregate expenditure will be equal to the value of the rent. (See,
for example, Becker[3], Krueger[8] and Posner[13].) If this expenditure has
no economic value, this leads to the conclusion that the value of the rent
measures the waste of resources. However, Tullock[19] argues that this con-
clusion can “explain too much” and offers examples where there is evidence
that aggregate expenditure appears to fall well short of the rent.

Tullock[19] proposed a simple and insightful model of contests in which
both under-dissipation and, somewhat controversially, over-dissipation could
occur. (In this paper, we concentrate on the former case.) Analysis of this
model and its variants have led to the identification of a number of factors
leading to incomplete dissipation of the rent. Firstly, strategic effects can
reduce expenditure. For example, aggregate expenditure with two identical
contestants is half that when there are many similar contestants. (See, for
example, Perez-Castrillo and Verdier[12] for a detailed treatment of symmet-
ric Tullock contests.) A second factor reducing rent-seeking is the form of
the contest success function (which determines each contestant’s probability
of winning the rent as a function of the expenditure of each of the contes-
tants). When this takes the generalized logistic form in which the ratio of
winning probabilities is equal to the ratio of two functions of the outlays of
the players, the proportion of the rent dissipated in large contests depends on
the nature of these functions. It is convenient to refer to these as production
functions. If all contestants have the same production function which has
constant elasticity not exceeding one, the proportion of the rent dissipated is
equal to the value of this elasticity. A third factor leading to incomplete dis-
sipation is asymmetry. For example, when there are two types of contestant
with different linear production functions, aggregate expenditure can be an
arbitrarily small proportion of the rent even if the total number of contes-
tants is large. For indivisible rents, risk aversion can also reduce expenditure
(see, for example, Skaperdas and Gan [16] and Cornes and Hartley[5]) but
we will assume risk neutrality throughout the present paper.

Our intention here is to explore obstacles to these explanations for partial
dissipation. Consider asymmetry. In contests with several distinct types
of contestant having bounded marginal products, dissipation will be incom-
plete when there are few representatives of each type. However, once the
numbers of each type become large, the whole rent will be dissipated. The
reason is that only one type will make a positive outlay in the large-game
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limit, effectively rendering the contest a symmetric one in which dissipation
is complete. More generally, although technological effects can result in
incomplete dissipation even when there are many players, any further reduc-
tion due to asymmetry vanishes as the number of contestants of each type
becomes large. The reason is similar: one type will dominate the aggregate
expenditure on rent-seeking rendering the contest approximately symmetric.

Strategic factors also reduce dissipation when there are few contestants,
though this prompts the question of what restricts entry to the contest.
When there are barriers in the form of a non-refundable entry fee either paid
directly or incurred as an opportunity cost, it is appropriate to count such
fees in total expenditure. When a small number of entrants arises as a
consequence of a large cost of entry, the latter may dissipate a significant
additional portion of the rent, weakening the reduction in dissipation due
to strategic effects. Even a small entry fee may be significant if it is paid
by many entrants; the aggregate cost of entry can have a finite limit as
individual fees approach zero. We investigate this possibility by studying
subgame perfect equilibria of a sequential game in which entry decisions
are made (sequentially) in the preliminary stages and the Tullock contest is
played at the final stage by those players who chose to enter. We show that,
typically, when entry costs are small, almost all of the rent is dissipated in
equilibrium. In a symmetric contest with bounded marginal product, nearly
all this dissipation is in the form of outlays in the final contest. However,
when marginal products are unbounded, aggregate entry costs as well as
aggregate outlays in the final contest has a finite limit as the entry cost
falls to zero. The reduction in dissipation in large games due to technology
vanishes once entry costs are factored in. These conclusions persist even
when there are several distinct types of player: for small enough entry fees,
only one type will choose to enter in equilibrium and we can apply the results
for symmetrical contests.

The analysis employs a novel methodology involving extensive use of the
share function which expresses the probability of winning the contest as a
function of aggregate input (transformed aggregate outlay). We use share
functions for expositional convenience in the case of symmetric contests, but
they are an essential tool in our study of asymmetric problems and we present
new several results about share functions throughout the paper. These re-
sults have independent interest, as share functions have wide applicability
beyond the context of contest theory although we do not pursue such appli-
cations here.

In the next section, we discuss the basic model of contests used through-
out the paper as well as introducing and proving several properties of share
functions. In Section 3, we investigate rent dissipation in large symmetric
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contests and generalize well-known results for production functions with con-
stant elasticity to arbitrary concave production functions. In Section 4, we
turn to a consideration of asymmetric contests and apply the share-function
approach to prove that, when marginal products are bounded, only the most
efficient types eventually participate leading to full dissipation in the limit
and, when marginal products are unbounded, aggregate expenditure by ef-
ficient types swamps that of other types leading again leading to the same
level of dissipation as large symmetric contests. In Section 5, we present a
model including positive entry costs for symmetric contests and show that
subgame perfect equilibria of this model entail (nearly) complete dissipation.
Section 6 combines the analyses of Sections 4 and 5 to deduce that dissipa-
tion is complete even when there are multiple types possibly with unbounded
marginal product. Section 7 concludes and Section 8 contains the proofs of
our results.

2 Contests with a finite set of contestants

In this section we review, via a novel analysis, generalized Tullock rent-
seeking contests in which the set of contestants is finite, of size n (≥ 2),
and exogenously determined. Each contestant makes an outlay of xi in
an attempt to secure an indivisible rent of value R. The probability that
contestant i wins depends on the complete vector of outlays x according to a
contest success function, pi (x), which satisfies

∑n
j=1 pj (x) = 1 and pi (x) = 0

if xi = 0. We assume throughout that all contestants are risk neutral so
i’s payoff is Rpi (x) − xi. The same formula applies if the rent is divisible,
provided we interpret pi as i’s share of the rent.

The contest is a simultaneous-move game and we focus on Nash equilibria.
Note that any contestant has the option of making no outlay and receiving
zero payoff irrespective of the actions of her opponents. So, equilibrium pay-
offs must be non-negative: Rpi (x̂) − x̂i ≥ 0 and summing this over n shows
that aggregate expenditure cannot exceed the value of the rent at a pure-
strategy Nash equilibrium. When mixed strategies are allowed, Baye et al.[2]
show that aggregate expenditure may exceed the rent for some realizations
of the uncertainty but not on average.

To obtain more results, we restrict attention to contest success function
of the form1:

1This form of contest success function was introduced by Hirshleifer[7]. An axiomatic
justification is given by Skaperdas[15].

4



pi (x) =
fi (xi)∑n

j=1 fj (xj)
.

The function fi can be viewed as a transformation of contestant i’s outlay,
xi, into input yi = fi (xi) and it is convenient to refer to fi as a production
function. We assume that the production technology is continuous, increas-
ing and exhibits decreasing returns to scale. Without such an assumption,
equilibria may not be unique, with resultant coordination problems, or may
not even exist in pure strategies [5], [16]. It is also convenient to assume fi

can be differentiated.
A1. For contestant i, fi is continuous, strictly increasing, concave, differen-
tiable for positive arguments and satisfies fi (0) = 0.

Under A1 the derivative is non-increasing and it is natural to write f ′
i (0)

for the least upper bound of f ′
i (x) in x > 0 where such a bound exists.

Otherwise, we write f ′
i (0) = ∞. The distinction between bounded and

unbounded marginal product turns out to be a key determinant of rent dis-
sipation. For the function fi (x) = aix

ri , we have f ′
i (0) = ai if ri = 1 and

f ′
i (0) = ∞ if ri < 1.

It is often easier to work directly with inputs rather than outlays. Specif-
ically, we let gi denote the inverse function of fi and rewrite contestant i’s
payoff function as

πi (y) =
yi

Y
R − gi (yi) ,

where Y =
∑n

j=1 yj. A1 implies that gi is continuous, strictly increasing,
convex, differentiable for positive arguments and satisfies gi (0) = 0. Since
πi is concave and differentiable in yi, the first-order conditions are necessary
and sufficient for a best response. Writing Ỹi = Y − yi for the aggregate
input of contestant i’s opponents, the first-order conditions for yi to be a
best response to Ỹi are

∂πi

∂yi

=
Ỹi

Y 2
R − g′

i (yi) ≤ 0 (1)

with equality if yi > 0. Our analysis relies heavily on the observation
that, associated with each Y > 0 is a unique Nash equilibrium y satisfying
Y =

∑n
j=1 yj. (This is implicit in Proposition 2.1 below.) This allows

us to define a share function si (Y ) = yi/Y for each contestant i where
yi is the ith component of the associated equilibrium. For zero input by
contestant i to be a best response (1) the inputs of her competitors, implies
that R/Y −g′

i (0) ≤ 0 which can be rewritten as Y ≥ Rf ′
i (0), using f ′

i = 1/g′
i.

For such Y , si (Y ) = 0. For Y < Rf ′
i (0), it follows from (1) that si (Y ) is

5



the unique solution: σ of

(1 − σ) R = Y g′
i (σY ) . (2)

For some production functions, it is possible to solve (2) to obtain an
explicit form for the share function; two examples follow.

Example 2.1 When fi (x) = aix,

si (Y ) = max

{
1 − Y

aiR
, 0

}
. (3)

Example 2.2 When fi (x) = ai

√
x,

si (Y ) =

(
1 +

2Y 2

a2
i R

)−1

.

In general, analytic expressions for the share function will not be available,
even for cases such as constant elasticity productions functions. Neverthe-
less, a number of useful properties of share functions can be derived from
Assumption A1. The following proposition, proved in Section 8, summarizes
the most basic results.

Proposition 2.1 Suppose A1 is satisfied for contestant i. Then that con-
testant has a well-defined and continuous share function for Y > 0 which has
the following properties:

1. positive, differentiable and negative slope for 0 < Y < Rf ′
i (0),

2. approaches unity as Y −→ 0,

3. is equal to zero if Y ≥ Rf ′
i (0),

4. approaches zero as Y −→ ∞, if f ′
i (0) = ∞.

Note that there are two distinct types of share function. If the marginal
product of contestant i is bounded, her share function decreases strictly up
to Y = Rf ′

i (0) and is equal to zero for larger values. We refer to Rf ′
i (0)

as the dropout value for contestant i. Example 2.1 illustrates such a share
function with dropout value aiR. Alternatively, the share function is strictly
decreasing for all positive arguments and asymptotic to zero. Example 2.2
illustrates this case.
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We use share functions because they allow us to avoid becoming embroiled
in the complications of multi-dimensional best-response functions when char-
acterizing Nash equilibria. The link between share functions and Nash equi-
libria is a consequence of the self consistency condition that requires shares
to sum to one in equilibrium. For any Y > 0, we define the aggregate share
function

S (Y ) =
n∑

j=1

sj (Y )

and Ŷ is a Nash equilibrium value of Y if and only if S
(
Ŷ

)
= 1. The cor-

responding equilibrium strategy profile (in inputs), ŷ, satisfies ŷi = Ŷ si

(
Ŷ

)
for each i. Sometimes, we can apply this condition to obtain analytic ex-
pressions for equilibria.

Example 2.3 Suppose there are two contestants with fi (x) = aix for i =
1, 2. Both contestants must supply positive input in equilibrium (or the value
of the aggregate share function would be less than one) so, using (3),

S
(
Ŷ

)
= 1 − Ŷ

a1R
+ 1 − Ŷ

a2R
= 1

=⇒ Ŷ =R

(
1

a1

+
1

a2

)−1

(4)

and ŷ = (1/a2, 1/a1) Ŷ 2/R.

Example 2.4 As a second example, suppose fi (x) = axr for all n con-

testants. Then, Ŷ is uniquely determined by the equation s
(
Ŷ

)
= 1/n.

Substituting in (2) and solving gives

Ŷ = na

[
(n − 1) rR

n2

]r

(5)

and ŷi = Ŷ /n.

In both these examples, there is a unique value of equilibrium aggregate
input and therefore a unique equilibrium. This is a general result. Propo-
sition 2.1 implies that the aggregate share function exceeds one for small
enough Y , is less than one for large enough Y and is continuous. We can
deduce that there is some value of Y at which the aggregate share function is
equal to one and, since share functions are strictly decreasing where positive,
this value is unique. Hence, there is a unique equilibrium. This provides
an alternative proof of a recent result of Szidarovsky and Okuguchi[18].
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Corollary 2.2 (Szidarovsky and Okuguchi) Contests in which A1 is
satisfied for all players have a unique Nash equilibrium.

We are primarily interested in the dissipation ratio: ρ = X/R, where
X =

∑n
j=1 xj is aggregate expenditure. The following formula allows us to

deduce aggregate expenditure from aggregate input:

X =
n∑

j=1

gj (yj) =
n∑

j=1

gj [Y sj (Y )] . (6)

Example 2.5 (Example 2.3 continued) Applying (6) and using the for-
mula (3), gives

X̂ =
2∑

j=1

Ŷ

aj

(
1 − Ŷ

ajR

)
.

Using (4), we find

ρ̂ =
2a1a2

(a1 + a2)
2 .

This expression illustrates the role of asymmetry in reducing the proportion
of the rent dissipated in rent seeking: ρ̂ ≤ 1/2 with equality if and only if
a1 = a2. Indeed, the dissipation ratio can be arbitrarily small, if a1 differs
sufficiently from a2 .

If all players have the same production function, (6) implies ρ̂ = ngi

(
Ŷ /n

)
.

Example 2.6 (Example 2.4 continued) If fi (x) = axr for all i where
r < 1, we obtain

ρ̂ =

(
1 − 1

n

)
r.

This formula exhibits both strategic interaction and technological effects. Fi-
nite n reduces the level of dissipation. However, even if there are many
players the dissipation ratio is bounded away from unity.

Example 2.6 illustrates incomplete dissipation of the rent due to techno-
logical effects even in large contests. In the next section, we extend this
result to large symmetric contests with general production functions.
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3 Rent dissipation in large symmetric con-

tests

In this and the next section, we address contests with free entry by investi-
gating the limiting dissipation ratio as the number of contestants becomes
large. We use a formal structure consisting of an infinite sequence, S, of
contestants each characterized by a production function. For any n, let
Gn denote the contest played by the first n members of S. We will write
Xn (Y n) for the Nash equilibrium value of X (Y ) in Gn, and examine the
limit of the dissipation ratio ρn as n −→ ∞ where ρn = Xn/R. We have
seen that this limit cannot exceed unity but it can be strictly less than one
(Example 2.6).

We will write ηi (x) = xf ′
i (x) /fi (x) for the elasticity of production of

contestant i. The concavity of the production function implies that ηi is at
most unity for positive input. However, it need not be a monotonic func-
tion and it is convenient to rule out pathological behavior such as multiple
accumulation points as x −→ 0.
A2. For contestant i, the elasticity ηi (x) has a limit as x tends to zero
through positive values. We will write ηi (0) for limx−→o+ ηi (x).

Of course, for the constant elasticity production fi (x) = axr we have
ηi (0) = r ≤ 1. Note that, when the production function is linear the
limiting elasticity is unity. The next lemma extends this conclusion to a
much wider class of production functions. The proof is in Section 8.

Lemma 3.1 Assume A1 and that contestant i’s marginal product is bounded
above. Then A2 holds with ηi (0) = 1.

Note that the converse of this lemma is false. It is possible to construct
production functions which satisfy A1 and A2 for which f ′ (0) = ∞, but
ηi (x) −→ 1 as x −→ 0.

The main result of this section is that the dissipation ratio in large sym-
metric contests is equal to the limiting elasticity. To see this, consider a
symmetric sequence S in which fi is equal to f for all contestants. Wher-
ever we can do so without confusion, we will omit the subscript, i. Aggregate
input Y n can be found from the requirement ns (Y n) = 1. Substituting this
into (2), shows that Y n is the unique solution of

(n − 1) R = nY ng′
(

Y n

n

)
. (7)

Furthermore, with n identical contestants, (6) implies Y n = nf (Xn/n).
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Substituting into (7) and using the fact that g′ (f (x)) = 1/f ′ (x), we ob-
tain

ρn =
Xn

R
=

(
1 − 1

n

)
η

(
Xn

n

)
. (8)

Since the aggregate outlay Xn can not exceed the value of the rent, Xn/n −→
0 as n −→ ∞. Applying this limit in (8), gives the following result.

Theorem 3.2 In a symmetric sequence S satisfying A1 and A2 for all
contestants, ρn −→ η (0) as n −→ ∞.

Applying Lemma 3.1, gives the following corollary.

Corollary 3.3 If the marginal product of all contestants in a large symmet-
ric contest is bounded and A1 is satisfied, the rent is almost fully dissipated.

These results identify the boundedness or otherwise of production func-
tions and, more particularly, the elasticity of production for small outlays
as the determinant of the limiting dissipation ratio. For example, con-
sider a symmetric sequence S in which production functions take the form
f (x) = a (x + k)r − akr. This satisfies A1 if a > 0, k ≥ 0 and 0 < r < 1.
We may deduce from the theorem, that if k = 0, the limiting dissipation
ratio is r, whereas, for any k > 0, the limit is 1.

4 Large asymmetric contests

Example 2.5 demonstrated that heterogeneity amongst contestants can re-
duce dissipation. In this section, we examine whether such conclusions
remain true in large contests. So, consider an asymmetric sequence S in
which contestants come in T distinct types. Wherever it is necessary to
distinguish a contestant of type t = 1, . . . , T from an individual contestant i,
we enclose the subscript in parentheses to refer to the former. For example,
s(t) is the share function of contestants of type t. We use nt (n) to denote
the number of contestants of type t amongst the first n members of the se-
quence S and, wherever we can do so without ambiguity, omit the explicit
dependence on n.

In light of Example 2.5, multiple types might be expected to reduce rent
dissipation. This is indeed the case for small contests but, as the number of
contestants increases one type will typically come to dominate the aggregate
expenditure, effectively rendering the contest symmetric. The reduction in
dissipation due to asymmetry disappears in the limit.
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This is most easily seen when all contestants have bounded marginal
product for then only one type will typically make a positive outlay once
there are enough contestants of that type. For, it follows from Proposition
2.1 that the share functions of all contestants reach the axis. Suppose the
contestants are arranged so that the dropout point of type T lies to the right
of the dropout points of all other types. (This requires f ′

(t) (0) < f ′
(T ) (0) for

all t = 1, . . . , T − 1.) If nT is large enough, the aggregate share function
will exceed unity at the dropout points of all other contestants. (We need

nT ≥ 1/s(T )

(
Rf ′

(t) (0)
)

for all t ≤ T − 1.) Hence, no other type will be

active. If, further, there are infinitely many contestants of type T in S,
we may conclude from Theorem 3.2 that, in the limit, the whole of the rent
is dissipated. We have established this result under the assumption that
there is a unique type with the largest value of f ′

(t) (0). However, this is
not essential. It is easy to see that the same result holds provided there are
infinitely many contestants of at least one of the types with the joint highest
value of f ′

(t) (0).

Theorem 4.1 Suppose the production function of every contestant in the
asymmetric sequence S satisfies A1 and has bounded marginal product. If
f ′

(t) (0) ≤ f ′
(T ) (0) for all t = 1, . . . , T and there are infinitely many contestants

of type T in S, then ρn −→ 1 as n −→ ∞.

Note that this result does not depend on the ordering of the contestants
in S. However, the assumption that the contestant with the largest dropout
point, occurs infinitely often is essential to the result. To see this consider
the following counter-example.

Example 4.1 There are n− 1 contestants with f (x) = a1x and one contes-
tant with f (x) = a2x, where a2 > a1. Contestants with production function
a1x must participate, or only one contestant would be active which is impos-
sible in equilibrium. Since the share function for f (x) = a2x has dropout
point a2R which lies to the right of the dropout point for f (x) = a1x, the
contestant with f (x) = a2x also participates. Hence, all contestants are
active and Y n satisfies

(n − 1)

(
1 − Y n

a1R

)
+ 1 − Y n

a2R
= 1,

using the formula (3) for the share function. Solving, we find

Y n = (n − 1) R

(
n − 1

a1

+
1

a2

)
.
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Applying (6),

ρn = (n − 1)

(
1 − Y n

a1R

)
Y n

a1R
+

(
1 − Y n

a2R

)
Y n

a2R

=

[
n − 1

a2

] [
2 − n

a2

+
2 (n − 1)

a1

] [
1

a2

+
n − 1

a1

]−2

−→
(

2 − a1

a2

)
a1

a2

as n −→ ∞.

By suitable choice of a1/a2 the proportion of the rent dissipated can be made
arbitrarily small even for large contests.

Theorem 4.1 exploited boundedness of the marginal product to deduce
that inefficient types will be inactive for large n, allowing us to use results
from large symmetric contests. By contrast, if the marginal products of all
types are unbounded, all contestants will supply positive input in Gn for any
n, since their share function is always positive (Proposition 2.1). However,
we can still obtain a generalization of Theorem 3.2 for asymmetric contests by
showing that, although the aggregate input of inefficient types is positive, it
becomes a vanishingly small proportion of the aggregate input of the efficient
type as n −→ ∞. To establish these results requires an extension of the
theory of share functions developed in Section 2.

First note that, if all contestants have unbounded marginal product, then
Y n −→ ∞ as n −→ ∞. This is because the value of the aggregate share
function of Gn at any Y exceeds unity for large enough n and therefore
Y n > Y , by Proposition 2.1. If yn

(t)[ xn
(t)] denotes the input[ expenditure] of

contestants of type t in Gn, we have yn
(t) = s(t) (Y n) Y n = f(t)

(
xn

(t)

)
. The

absence of boundary solutions for such contestants allows us to apply the
interior first-order conditions (2) to deduce that[

1 − s(t) (Y n)
]
s(t) (Y n) R = yn

(t)g
′
i

(
yn

(t)

)
. (9)

Since s(t) (Y ) −→ 0 as Y −→ ∞ (Proposition 2.1), yn
(t) and therefore xn

(t)

vanishes for large n. For future use, we summarize these observations in the
following Lemma.

Lemma 4.2 Suppose the production function of every contestant in the asym-
metric sequence S satisfies A1 and has unbounded marginal product. Then,
as n −→ ∞, (i) Y n −→ ∞, (ii) yn

(t) −→ 0, (iii) xn
(t) −→ 0.

When there are many contestants, aggregate input becomes large and
the analysis rests on the asymptotic properties of share functions. Example
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2.2 shows that, if fi (x) is proportional to
√

x, the share function is asymp-
totically proportional to Y −2. Under the following technical refinement of
Assumption A2, we can generalize this result.
A2*. For contestant i, A2 holds and furthermore, the elasticity ηi (x) has
a right-sided derivative at the origin.

The importance of this assumption is that it allows us to deduce that
share functions are proportional to Y −αt for large Y , where

αt =
[
1 − η(t) (0)

]−1
. (10)

Formally, we have the following limit, proved in Section 8.

Lemma 4.3 Suppose A1 and A2* hold for contestants of type t and η(t) (0) <
1. Then Y αts(t) (Y ) −→ At(> 0) as Y −→ ∞.

To apply this result, we start by deriving a useful formula for the dissi-
pation ratio when all contestants have unbounded marginal product. Using
the fact that f ′

i = 1/g′
i, we can deduce from (9) that

xn
(t) = η(t)

(
xn

(t)

) [
1 − s(t) (Y n)

]
s(t) (Y n) R.

This gives the desired formula

ρn =
T∑

t=1

η(t)

(
xn

(t)

)
nt (n) s(t) (Y n)

[
1 − s(t) (Y n)

]
. (11)

We can use Lemma 4.3 to deduce the limiting value of ρn from (11) when
η(T ) (0) < η(t) (0) for all t �= T . These inequalities imply that, if t �= T , we
have αT < αt and the lemma allows us to deduce that

Y αT s(t) (Y ) −→ 0 as Y −→ ∞.

The equilibrium condition for Y n can be written

T∑
t=1

nt (n) s(t) (Y n) = 1.

Hence, the aggregate share of contestants of type T approaches unity as
n −→ ∞:

nT (n) s(T ) (Y n) =
[nT (n) /n] [Y n]αT s(T ) (Y n)∑T
t=1 [nt (n) /n] [Y n]αT s(t) (Y n)

−→ AT

AT

= 1,
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assuming that nT (n) /n has a positive limit. Of course the aggregate share of
other types vanishes in the limit: nts(t) (Y n) −→ 0 for t �= T . Applying these
limits and Lemma 4.2(iii) in (11) allows us to deduce that ρn −→ η(T ) (0)
as n −→ ∞. Although we have assumed that there is a unique type which
maximizes η(t) (0), it is straightforward to extend the argument to the case
of multiple maximizers, proving the following result.

Theorem 4.4 Suppose the production function of every contestant in the
asymmetric sequence S satisfies A1 and A2* and has unbounded marginal
product. Then

ρn −→ min
t=1,...,T

η(t) (0) as n −→ ∞,

provided the limiting proportion in S of at least one of the types achieving
the minimum exceeds zero.

Theorem 4.4 extends readily to the case when there is a mixture of types,
some with bounded and others with unbounded marginal product. Provided
at least one of the types with unbounded marginal product has positive
limiting proportion in S and n is large enough, the aggregate share function
at the dropout points of all types with bounded marginal product will exceed
unity. This means that such types will be inactive in Gn and Theorem 4.4
remains valid mutatis mutandis.

The main theme of this section is that the extra reduction in rent dis-
sipation caused by asymmetry in small contests is typically eliminated in
large contests. Provided the most efficient types are sufficiently richly rep-
resented in the sequence of contestants there are only two possibilities. All
participants are of one or more of the most efficient types, or all contestants
participate but the aggregate input of the most efficient types swamps the
aggregate input of the inefficient types. Even so, unless the marginal prod-
uct of all types is bounded, the rent will be incompletely dissipated in the
limit. In the next section, we show that if the number of contestants is made
endogenous by imposing a positive entry fee, the remainder of the rent will
be dissipated in entry fees provided these are small enough.

5 Symmetric contests with small costs of en-

try

In the contests considered so far, the number of participants is exogenous.
This finesses the problem of explaining why some potential contestants choose
to participate in the contest whilst others do not. Endogenizing the number
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of contestants was first addressed soon after the Tullock contest was intro-
duced. For example, Corcoran[4] used a free-entry/zero-profit condition to
obtain a formula for the number of contestants but this only gave a finite
answer for non-concave production functions. (He was primarily interested
in fi (x) = xr with r > 1.) Higgins et al.[6] also used a zero-profit condition
together with a positive and non-refundable entry fee but employed a non-
standard form of (symmetric) contest with the property that expenditure was
independent of the number of participants. Michaels[9] included entry costs
but focused on design issues rather than limiting dissipation. Schoonbeek
and Kooreman [14] restricted entry by requiring a minimum level of input
from any contestant who actively participated. They restricted attention to
two players.

In this and the next section, we study a simple model with entry costs. As
in the preceding sections, we start with a sequence S of potential contestants,
who, in this section, are assumed to have the same production function. We
modify the previous model by requiring participants in the contest to pay a
non-refundable entry fee of κ > 0. The decision to enter is taken during the
preliminary stages of the game after which there is a final stage consisting
of a simultaneous-move contest played by those potential contestants who
chose to pay the entry fee.

Formally, we consider a nested set of sequential games, one for each κ > 0,
and write G (κ) for the game associated with cost κ. In this game the set of
players consists of the first M (κ) potential contestants from S where M (κ) is
be “large enough” in a sense to be discussed below. Each player must decide
whether or not to enter and pay the entry fee. These decisions are taken
in the order determined by S and players are assumed to be aware of the
decision made by their predecessors in the sequence. The game concludes
with a contest played by the entrants, in which participant i chooses outlay
xi and receives payoff Rpi (x)−xi−κ where x is the vector of outlays. Non-
entrants receive a payoff of zero. We will discuss some modifications of the
timing in this model in the concluding section.

By Theorem 2.2, the contest played at the final stage will have a unique
Nash equilibrium in pure strategies. Since all decisions made prior to the
final stage are binary, G (κ) will have a subgame perfect equilibrium in pure
strategies which can be found by backwards induction. Unless there are
ties in the value of the pay-offs, this equilibrium will be unique. For ease
of exposition, we resolve ties by forcing players indifferent between entering
and not entering to choose the former. Under this restriction G (κ) has
a unique equilibrium. (But our results are essentially unchanged if the
restriction is lifted.) On the equilibrium path, entrants always precede those
potential contestants who choose not to enter. This early-mover advantage
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is a consequence of the ordering of entry decisions together with the fact that
payoffs depend only on the number of entrants and not on their position in S.
If there are n̂ entrants on the equilibrium path, the payoff in a contest with
n̂ contestants must be at least κ. Hence, payoffs, net of entry cost, in the
subgame which starts after n̂ potential contestants have chosen to enter must
be non-negative. Since staying out has a net cost of zero, an application of
backwards induction shows that the first n̂ contestants will choose to enter
and therefore lie on the equilibrium path.

When considering total expenditure on rent-seeking, entry fees must be
taken into account. If X is aggregate input and there are n entrants, total
expenditure is X + nκ. In equilibrium, this can never exceed the value of
the rent. To see this, consider an entrant i who subsequently chooses outlay
x̂i. At the time of entry, that contestant had the option of staying out of
the contest and receiving a payoff of 0. Since they chose entry the payoff
from entry must be non-negative: Rpi (x̂) − x̂i − κ ≥ 0. The result follows
by summing over all entrants.

Lemma 5.1 Suppose that on the equilibrium path of a subgame perfect equi-
librium of G (κ) the first n̂ players enter and aggregate expenditure in the

final stage is X̂. Then, X̂ + n̂κ ≤ R.

We wish the number of entrants to be determined purely by the relative
levels of payoffs and entry fees and not subject to any exogenous constraints.
So, we assume that there are enough potential contestants to ensure that
some will choose not to enter. By the preceding lemma, a sufficient condition
is that M (κ) ≥ (R/κ) + 1 for all κ > 0. For the rest of this section,
we will write n (κ) for the number of entrants on the equilibrium path in
G (κ) and X (κ) for the aggregate output in a contest with n (κ) entrants.
To address the case of free entry, we will investigate the dissipation ratio
ρ (κ) = [X (κ) + κn (κ)] /R as κ −→ 0. We now show that, under suitable
assumptions, ρ (κ) approaches unity as κ approaches zero.

To complete our analysis of subgame perfect equilibria, we need to char-
acterize n (κ). To do this, it is useful to view i’s payoff in a contest as a
function of aggregate equilibrium input:

π̃i (Y ) = si (Y ) R − gi (Y si (Y )) . (12)

The value of Y will typically alter as a result of a change in i’s competitive
environment, for example a change in a rival’s payoff function or an additional
contestant. To examine the effect of such a change on i, we need to sign the
slope of π̃i. The next proposition, proved in Section 8, does this.
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Proposition 5.2 Suppose A1 is satisfied for contestant i and Y > 0 satis-
fies si (Y ) > 0. Then π̃′

i (Y ) < 0.

Since adding another contestant shifts the aggregate share function up-
wards, equilibrium input increases and the proposition implies that the payoff
of a currently active contestant falls. When all contestants are identical and
Xn denotes the aggregate outlay with n contestants, we conclude that, pay-
offs: (R − Xn) /n are strictly decreasing in n. It follows that there is a
unique n satisfying

R

n
− Xn

n
− κ ≥ 0 >

R

n + 1
− Xn+1

n + 1
− κ. (13)

We claim that n (κ) is this value of n. To see this note that the left-hand
inequality means that each of the first n (κ) players receives a non-negative
payoff and therefore prefers to enter, given her predecessors have done so.
The right-hand inequality ensures that player n (κ)+1 and all her successors
do better to stay out, once n (κ) players have entered, than to enter the
contest.

We now consider what happens as the entry cost decreases to zero. In
equilibrium, the number of entrants approaches infinity as the entry cost goes
to zero, since payoffs in symmetric contests approach zero as the number of
contestants becomes infinite. Hence, the total entry cost paid by all partici-
pants, the product of these two quantities, may have a positive limit. From
Lemma 5.1, this limit can never exceed the undissipated portion of the rent.
When the production function has bounded marginal product, the whole rent
is dissipated in large games (Corollary 3.3) and therefore for small entry fees.
In this case the total entry cost vanishes for small entry costs and the results
for large simultaneous-move contests are an effective guide to contests with
free entry. However, when the marginal product is unbounded, incomplete
rent dissipation leaves room for a positive limiting value of κn (κ) and we
will now show that this results in complete dissipation of the remaining rent.

Note that the inequality (13) can be rearranged as

0 ≤ 1 − Xn(κ) + κn (κ)

R
<

Xn(κ)+1 − Xn(κ) + κ

R
(14)

for all κ > 0. Under A2, Theorem 3.2 implies that Xn −→ η (0) R, as
n −→ ∞. It follows that the right-hand side of (14) approaches zero as
κ −→ 0, proving that the whole rent is dissipated in the limit.

Theorem 5.3 In a symmetric sequence S satisfying A1 and A2 for all
contestants, ρ (κ) −→ 1 as κ −→ 0.
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Comparing this theorem with Theorem 3.2 indicates that the many-player
limit may be a misleading guide to contests with free entry when marginal
products are unbounded.

Our focus on small entry costs can be viewed as a way of abstracting
away from strategic effects. However, accounting for entry costs increases
rent dissipation even when these costs are not small despite the restricted
number of contestants and the opportunity for strategic play that this will
entail. Indeed, when there are few entrants, we would expect high entry
costs relative to the rent. For example, consider Example 2.4, in which
payoffs are

πn =
1

n
(1 − r) R +

1

n2
rR.

Now introduce an entry cost κ = πn−ε, where ε is small and positive. Then,
there will be n entrants in equilibrium and the proportion of rent dissipated
will be 1 − ε. For example, in the case of linear production, if κ is just less
than R/4, nearly all the rent is dissipated even though only two contestants
are observed competing for it.

Even if κ is not so finely tuned, entry costs can dissipate a significant
proportion of the rent. The right-hand side of inequality (13) says that
πn(κ)+1 is a lower bound on κ. Hence, if n (κ) = n, using the result from
Example 2.6,

Xn + nκ >

(
1 − 1

n

)
rR + nπn+1

=
n

n + 1
R +

n2 − n − 1

n (n + 1)2 rR.

Consider the case of four observed contestants. If r = 1/2, the proportion of
the rent dissipated rises from 37.5%, when entry costs are left out of account,
to between 85.5% and 100% if they are included. When the production
function is linear, the dissipation ratio of 75% when entry costs are ignored
increases to at least 91% with their inclusion.

6 Asymmetric contests with entry costs

In this section, we extend the model of the previous section to the case where
potential contestants differ. So, we suppose that members of the sequence
of potential contestants S come in T types each of which occurs infinitely
often in S and is characterized by a distinct production function. As we
wish to allow the cost of entry to differ amongst types, we assume entrants
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of type t pay a fee of λtκ, where λt > 0. As in the previous section, we
write G (κ) for the game in which the first M (κ) players from S choose
sequentially whether to enter the final simultaneous-move contest. It is easy
to extend Lemma 5.1 to the asymmetric case: subgame perfect equilibria
of G (κ) cannot exhibit over-dissipation even when entry fees are taken into
account. We choose M (κ) to ensure that there is a potential contestant i
such that the successors in S of i (a) choose not to enter on the equilibrium
path of G (κ) and (b) contain at least one player of each type.

The argument used in the preceding section to demonstrate early-mover
advantage are readily extended to multiple types. In particular, for each
t, entrants of type t always precede potential contestants of type t on the
equilibrium path of the subgame perfect equilibrium of G (κ). Hence, equi-
librium outcome is completely determined once the number of entrants of
each type is specified. Typically, when the sequence S is asymmetric these
numbers will depend on the precise ordering of types in S. However, for all
small enough κ this complication disappears. We will show that, typically,
only one type will enter once κ falls below a threshold value which is indepen-
dent of the ordering of types in S. This permits us to use the results from
the previous section to analyze the limiting value of the dissipation ratio as
κ −→ 0.

We first consider the case in which all potential contestants have bounded
marginal revenue and suppose that

f ′
(t) (0) ≤ f ′

(T−1) (0) < f ′
(T ) (0) for all t = 1, . . . , T − 2. (15)

Let Y be the type-(T − 1) dropout point: Y = Rf ′
(T−1) (0), let N be the

smallest integer satisfying N ≥ 1/s(T )

(
Y

)
and let Y ∗ satisfy s(T ) (Y ∗) = 1/N .

Finally, define κ = π̃(T ) (Y ∗) /λT > 0. [Recall the definition of π̃i in (12).]
Consider those potential contestants choosing to enter on the equilibrium
path in the subgame perfect equilibrium of G (κ). We claim that, if κ < κ,
all such entrants are of type T .

To justify the claim, suppose, to the contrary that there is an entrant of
type t on the equilibrium path. To make entry worthwhile such a contestant
must be active in the final contest. This requires that the equilibrium value
of aggregate input must be less than its dropout point and therefore less
than Y , by (15) the largest dropout point other than for type T . This can
only happen if the number of entrants of type T does not exceed N − 1.
Let i be the last potential contestant of type T in S who plays in G (κ). By
construction, i does not enter in equilibrium and we establish a contradiction
by showing that i would be better off changing their decision. Were i to
enter, the equilibrium aggregate input in the final contest would rise to Y ′,
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say. Then, either Y ′ ≤ Y < Y ∗, or Y ′ > Y . In the latter case, all contestants
in the final contest would be of type T and s(T ) (Y ′) ≥ 1/N since there would
be at most N contestants. In either case, i’s payoff net of entry cost would
be at least π̃i (Y

∗) − κλT > 0 which exceeds the payoff of zero from not
entering. Hence, only players of type T will enter. This argument is readily
extended to the case when f ′

(t) (0) does not have a unique maximizer and we
summarize these conclusions in the following proposition.

Proposition 6.1 Suppose there are T types with production functions sat-
isfying A1 and f ′

(t) (0) < ∞ for all t. Then there exists κ > 0 such that,
for any asymmetric sequence S of these types, all entrants on the equilibrium
path in any subgame perfect equilibrium of G (κ) is of type T if 0 < κ < κ.

Corollary 3.3 allows us to deduce that the whole rent will be dissipated
in the limit: ρ (κ) −→ 1 as κ −→ 0. When marginal products are bounded,
the total expenditure on entry fees vanishes in the limit, as in the symmetric
case.

When marginal products are unbounded, a more subtle argument is
needed, but we are still able to show that, once the entry fee is small enough,
the equilibrium will involve entrants of a single type and will therefore be
independent of the ordering of S. These conclusions apply the following nec-
essary conditions for a subgame perfect equilibrium of G (κ) in which there
are nt entrants of type t on the equilibrium path.

Condition 6.2 For each type t, if nt > 0 then

π̃(t) (Y ) = Rs(t) (Y ) − g(t)

[
Y s(t) (Y )

] ≥ κλt, (16)

where Y > 0 is the unique solution of

T∑
u=1

nus(u) (Y ) = 1. (17)

For each type t,
π̃(t) (Y ′

t ) < κλt. (18)

where Y ′
t is the unique solution of

s(t) (Y ′
t ) +

T∑
u=1

nus(u) (Y ′
t ) = 1. (19)
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The inequality (16) reflects the equilibrium requirement that potential
contestants who choose to enter on the equilibrium path must receive a non-
negative payoff, net of entry cost, in the final contest played on this path.
Note that Y in (17) is the value of aggregate input in this contest. For type
t, (18) expresses the equilibrium requirement that were player i, the final
potential contestant of type t (in the ordering of S), to enter, her payoff in
the resulting contest would fall short of the entry cost. Note that no successor
of i chooses to enter on the equilibrium path. It follows from Proposition
5.22 that, in the subgame which commences with i entering the contest, the
payoffs to all other types of contestant in any final contest in this subgame
are lower than those in the game played at the conclusion of the equilibrium
path. Hence, no potential contestant other than i chooses to enter on the
equilibrium path of this subgame, which means that the aggregate input in
the contest played in equilibrium in this subgame is given by (19) so that
π̃(t) (Y ′

t ) is i’s payoff in this contest.
The next proposition shows that for small enough entry costs only the

most efficient types, as measured by the limiting elasticity of production at
the origin, will choose to enter. The proof, which is rather intricate because
of the necessity to deal with all orderings of S, utilizes further asymptotic
properties of share functions and of payoffs. Details may be found in Section
8.

Proposition 6.3 Suppose there are T types with production functions sat-
isfying A1 and A2* and ηT (0) < ηt (0) < 1 for all t = 1, . . . , T − 1. Then
there exists κ > 0 such that, for any asymmetric sequence of these types, if
n1, . . . , nT satisfy Condition 6.2 with 0 < κ < κ, then n1 = · · · = nT−1 = 0.

Note that, unlike the case of bounded marginal costs, a positive entry fee
is essential for this result. Even in a large game, if there is no entry fee,
all types will ‘enter’ in the sense of making a positive outlay. However, we
also need the entry fee to be small to ‘smooth out’ the details of the entry
process and, in particular, to obtain a result independent of the ordering of
potential contestants.

Proposition 6.3 requires every type to have limiting elasticities less than
one. However, it can be extended to games with a mixture of types: potential
contestants with both bounded and unbounded marginal products. This is
a consequence of the fact that share functions of contestants with bounded
marginal products eventually reach the axis. Once there are enough entrants
with unbounded marginal product, the aggregate share value exceeds one at

2The entry of i raises the aggregate share function so that aggregate input rises and
payoffs fall by the proposition.
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the dropout values of all contestants with bounded marginal product. The
arguments above extend readily to show that the number of entrants with
unbounded marginal product is unbounded as the entry fee approaches zero.
Hence, contestants with bounded marginal product will be inactive in the
final-stage contest and therefore will not enter in the initial stages. We can
use this to extend the previous result in the following corollary which also
exploits the necessity of Condition 6.2 for equilibrium.

Corollary 6.4 Suppose there are T types with production functions satisfy-
ing A1 and for any type t with unbounded marginal product, A2* holds with
ηT (0) < ηt (0) < 1. Then there exists κ > 0 such that, for any asymmetric
sequence S of these types, only potential contestants of type T enter in any
subgame perfect equilibrium of G (κ) for all κ ∈ (0, κ).

The main application of this Corollary is that we are left with entrants
of a single type once the entry fee becomes sufficiently small. We may
then use the results obtained for symmetric contests to deduce that the full
expenditure on rent-seeking, including entry fees, exhausts the rent when the
entry fee is small.

Theorem 6.5 Suppose there are T types with production functions satisfying
A1 and for any type t with unbounded marginal product, A2* holds with
ηT (0) < ηt (0) < 1. Then, for any asymmetric sequence S, ρ (κ) −→ 1 as
κ −→ 0.

Theorems 6.5 and 5.3 exhibit full dissipation in the limit for the specific
model of entry embodied in the sequential game G (κ) (though, in the asym-
metric case, this conclusion does not depend on the ordering of types in S) but
our results are robust to some changes in the way in which entry is modelled.
Proposition 6.3, used to prove Theorem 5.3, implies full limiting dissipation
in any entry process in which Condition 6.2 is necessary for equilibrium.
For example, we could allow entry decisions to be made simultaneously by
replacing G (κ) with a two stage game, G∗ (κ), in which, in the first stage,
players must decide whether to enter without knowing the decisions taken by
her competitors. This makes the first stage a simultaneous-move game and
the second and final stage is the same as G (κ): entrants play a final contest.
Pay-offs are the same as G (κ).

Unlike G (κ) itself, G∗ (κ) has multiple equilibria. For example, even
in the symmetric case, the set of entrants in any subgame perfect equilib-
rium can be replaced by any other set of contestants of the same cardinality.
There will also be equilibria with mixed strategies in the first stage. In-
deed, the only symmetric equilibrium will be in mixed strategies but since
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such solutions are controversial in contest theory (and indeed in many other
applications [17]), we do not discuss them further here. With so many equi-
libria the players face extreme problems of coordination. Nevertheless, if we
assume that players have some mechanism available to help them coordinate
on a single pure-strategy subgame perfect equilibrium, this must have the
property that the payoff to entrants into the final stage receive a payoff no
smaller than the entry cost whereas the payoff of non-entrants, were they to
enter, would fall short of the cost of entry. This shows says that Condition
6.2 is necessary for G∗ (κ) and the principal theorems in this and the previous
section remain valid for pure-strategy solutions of G∗ (κ). The ordering of
players in G (κ) serves to select which players enter the contest rather than
the numbers of each type who enter, the latter being independent of the or-
dering for small enough κ. Indeed, the ordering can be viewed as a selection
mechanism for resolving the coordination problem in G∗ (κ).

7 Conclusions

We have investigated both symmetric and asymmetric contests in which the
number of players is specified exogenously and is large or is endogenously de-
termined by an entry process with a small cost of entry. We have shown that
when production functions have bounded marginal product the whole value
of the rent is dissipated in expenditures in the contest. This holds even for
asymmetric examples provided that the most efficient types occur infinitely
often in the sequence of potential contestants. We have also demonstrated
that the remaining undissipated portion of the value of the rent can be ex-
pended in entry costs when the entry process is formally modelled and entry
costs are small, a result which is independent of the ordering of the types of
potential contestant or some details of the entry process.

8 Appendix: Proofs

Proof of Proposition 2.1. The existence of a share function is estab-
lished for 0 < Y < Rf ′

i (0), by observing that (2) has a unique solution
σ ∈ (0, 1). This follows since the left hand side decreases from R to 0 and,
under Assumption A1, the right hand side increases from Y g′

i (0) [< R] to
Y g′

i (Y ) [> 0] as σ goes from 0 to 1. Differentiability of the solution with
respect to Y is a consequence of the implicit function theorem. When the
share function is positive we can differentiate the first order conditions (2)
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and rearrange the result to give

s′i (Y ) = −−g′
i [Y si (Y )] − Y si (Y ) g′′

i [Y si (Y )]

R + Y 2g′′
i [Y si (Y )]

.

Since g′
i (y) > 0 and g′′

i (y) ≥ 0 for y > 0 by A1, we deduce that s′i (Y ) < 0,
proving the first part of the Lemma.

If Y −→ 0, the right hand side of (2) goes to zero which implies that
σ −→ 1, establishing Part 2

Part 3 follows from the first order conditions in Section 2. Note that, if
Y ≥ Rf ′

i (0), then σ = 0 satisfies these conditions. Furthermore, there can
be no positive solution since now the left hand side of (2) is less than R for
positive σ, whereas the right hand side is at least Y g′

i (0) [≥ R] since g′
i is a

non-decreasing function. We may conclude that (2) has no positive solution
for such Y and, further, that σ = 0 is a solution if and only if Y g′

i (0) = R
i.e. Y = Rf ′

i (0). This shows that the share function is continuous at
Y = Rf ′

i (0) when f ′
i (0) is finite, completing the proof of continuity in Part

1 and justifying the assumption that si is well-defined.
If f ′

i (0) = ∞, (2) holds for all positive Y and we can deduce that si (Y )
satisfies the inequality g′

i (si (Y )) ≤ R/Y . Since the only zero of g′
i (0) is

the origin, we may conclude that si (Y ) −→ 0 as Y −→ ∞ and the proof is
completed.

Proof of Lemma 3.1. Under the hypothesis of the proposition, let µi

denote the least upper bound of f ′
i (x). Since fi is concave, for any δ > 0

there is ε > 0 such that

µi −
µiδ

2
≤ f ′

i (x) ≤ µi for 0 < x < ε.

Since fi (0) = 0, we can integrate this result from 0 to x to obtain(
µi −

µiδ

2

)
x ≤ fi (x) ≤ µix for 0 < x < ε

and deduce that

1 − δ

2
≤ ηi (x) ≤

(
1 − δ

2

)−1

for 0 < x < ε.

If δ is chosen to satisfy 0 < δ < 1, then (1 − δ/2)−1 < 1 + δ so that
|ηi (x) − 1| < δ for 0 < x < ε. This establishes the lemma.

To derive the asymptotic form for share functions as Y −→ ∞ it is useful
to start with a lemma relating inverse share functions to elasticity.
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Lemma 8.1 Suppose A1 and A2* hold for player i. Then

y−1/ηi(0)gi (y) −→ Ki > 0 as y −→ 0+, (20)

y1−1/ηi(0)g′
i (y) −→ Ki/ηi (0) > 0 as y −→ 0+. (21)

Proof. Defining ξi (y) = [ηi (gi (y))]−1 for y > 0 and ξi (0) = [ηi (0)]−1,
we have

ξi (y) =
y

gi

dgi

dy

and we can solve this equation for gi:

gi (y) = gi (1) exp

{∫ y

1

ξi (z)

z
dz

}
. (22)

Now note that

y−ξi(0) = exp

{∫ y

1

−ξi (0)

z
dz

}
, (23)

so that

y−ξi(0)gi (y) = gi (1) exp

{∫ y

1

ξi (z) − ξi (0)

z
dz

}
. (24)

Under Assumption A2(ii) ηi (x) has a right-sided derivative at the origin
and the same is true of ξi (x). Therefore the integrand in (24) is a continuous
function for 0 ≤ z ≤ 1, if it takes the value of the derivative at z = 0. Hence
the right-hand side of (24) is well-defined at y = 0 (taking the value Ki, say)
and (20) follows.

A similar argument proves (21). Differentiating (22) and using (23) gives

y1−ξi(0)g′
i (y) = gi (1) ξi (y) exp

{∫ y

1

ξi (z) − ξi (0)

z
dz

}
. (25)

The limit (21) follows by a similar argument to that establishing (20).
Completion of proof of Lemma 4.3. We can write the interior first

order conditions (2), for contestants of type t, as[
1 − s(t) (Y )

]
s(t) (Y ) R = yg′

(t) (y) (26)

where y = Y s(t) (Y ). Proposition 2.1 states that s(t) (Y ) −→ 0 as Y −→ ∞
and (26) implies y −→ 0. Equation (26) can be arranged as

s(t) (Y ) Y −ϑ/η(t)(0) =
{

R−1
[
1 − s(t) (Y )

]−1
y1−1/η(t)(0)g′

(t) (y)
}ϑ

,
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where ϑ = η(t) (0) /
[
η(t) (0) − 1

]
. It follows from (21) that s(t) (Y ) Y −ϑ/η(t)(0)

has a finite limit as Y −→ ∞. The lemma is a consequence of the fact that
−ϑ/η(t) (0) = αt.

Proof of Lemma 5.2. From Proposition 2.1, s(t) is differentiable where
positive, so

dπ̃i

dY
= Rsi (Y ) − {si (Y ) + Y s′i (Y )} g′

i [Y si (Y )] .

Multiplying by Y , substituting from the first order conditions (2) and sim-
plifying yields

Y

R

dπ̃i

dY
= Y si (Y ) s′i (Y ) − si (Y ) {1 − si (Y )} .

By Proposition 2.1 and 0 < s(t) < 1 the right hand side is negative.
To prove Proposition 6.3, we first show that the type-t payoff function

π̃(t) (Y ) decreases with Y and has the same asymptotic form as the type-t
share function.

Lemma 8.2 Suppose A1 and A2* hold for players of type t and η(t) (0) < 1,
then

Y αtπ̃(t) (Y ) −→ RAt

[
1 − η(t) (0)

]
as Y −→ ∞,

where At is defined in Lemma 4.3.

Proof. We start by using the first order conditions to establish a rela-
tionship between the limiting constants Ki in Lemma 8.1 and Ai in Lemma
4.3 for players of type t. These conditions can be rewritten, for type t, in
the form

R
[
1 − s(t) (Y )

]
=

[
Y αis(t) (Y )

][1−η(t)(0)]/η(t)(0)
y

1−1/η(t)(0)

(t) g′
(t)

(
y(t)

)
(27)

where y(t) = Y s(t) (Y ). By Lemma 4.3, y −→ 0 as Y −→ ∞. Taking the
limit in Lemmas 8.1 and 4.3 and rearranging the result gives

Kt = A
1−1/η(t)(0)

t Rη(t) (0) . (28)

From the formula for π̃(t), we have, after some manipulation,

Y αt π̃(t) (Y ) = RY αts(t) (Y ) − [
Y αts(t) (Y )

]1/η(t)(0)
y−1/η(t)(0)g(t) (y) .

The proof is completed by taking the limit, applying the results of Lemmas
8.1 and 4.3, and using (28) to rearrange the result.

Proposition 13, applied to players of type t, implies that there is a thresh-
old κ∗

t > 0 such that π̃(t) (Y ) = λtκ has a unique solution Y for all κ < κ∗
t .

We will write Yt (κ) for this solution. The next result records an obvious
implication of Lemma 8.2.
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Lemma 8.3 Suppose A1 and A2* hold for players of type t, then Yt (κ) −→
∞ as κ −→ 0.

Lemmas 4.3 and 8.2 allow us to relate Yt (κ) with type-t share functions.

Lemma 8.4 Suppose A1 and A2* hold for players of types t and u and
ηt (0) < 1 and ηu (0) < 1. Then κ−αu/αts(u) (Yt (κ)) has a finite and positive
limit as κ −→ 0.

Proof. Writing Bt = RAt

[
1 − η(t) (0)

]
> 0, where At is defined as in

Lemma 4.3, the required limit is C = AuB
−αu/αt

t . Let ε > 0. We shall show
that κ−αu/αts(u) (Yt (κ)) is within ε of C for all small enough κ.

As a preliminary observation, note that

Au + z

(Bt − z)αu/αt
−→ C as z −→ 0

and it follows that, there is an ε′ > 0 such that

C − ε <
Au − ε′

(Bt + ε′)αu/αt
<

Au + ε′

(Bt − ε′)αu/αt
< C + ε. (29)

By Lemma 8.2, there is a Y1 such that∣∣Y αt π̃(t) (Y ) − Bt

∣∣ < ε′ for all Y > Y1.

For all κ < κ̃1 (say), we have Yt (κ) > Y1 by Lemma 8.3 and therefore,
recalling π̃(t) (Yt (κ)) = κ,

κ

Bt + ε′
< [Yt (κ)]−αt <

κ

Bt − ε′
(30)

=⇒
(

κ

Bt + ε′

)αu/αt

< [Yt (κ)]−αu <

(
κ

Bt − ε′

)αu/αt

.

Applying Lemma 4.3 to contestants of type u, there is a Y2 such that∣∣Y αus(u) (Y ) − Au

∣∣ < ε′ for all Y > Y2.

For all κ < κ̃2 (say), we have Yt (κ) > Y2 and therefore

[Yt (κ)]−αu (Au − ε′) < s(u) (Yt (κ)) < [Yt (κ)]−αu (Au + ε′) . (31)

If κ < min{κ̃1, κ̃2}, we can combine (30) and (31) to obtain

Au − ε′

(Bt + ε′)αu/αt
< κ−αu/αts(u) (Yt (κ)) <

Au + ε′

(Bt − ε′)αu/αt
,

and comparison with (29) completes the proof.
The following corollary is particularly useful.
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Corollary 8.5 If αT < αt then, for u = 1, . . . , T ,

s(u) (YT (κ))

s(u) (Yt (κ))
−→ 0 as κ −→ 0.

Proof. Apply Lemma 8.4 to the right hand side of:

s(u) (YT (κ))

s(u) (Yt (κ))
=

κ−αu/αT s(u) (YT (κ))

κ−αu/αts(u) (Yt (κ))
κθ,

where

θ = αu

(
1

αT

− 1

αt

)
> 0.

We have now assembled the machinery required to prove Proposition 6.3.
Completion of proof of Proposition 6.3.
We consider entry costs satisfying

κ < κ1 = min
t=1,...,T

{κ∗
t}

so that Yt (κ) is defined for all t. Applying the second part of Condition 6.2
to type T : if

s(T ) (Y ′
T ) +

T∑
u=1

nus(u) (Y ′
T ) = 1, (32)

then π̃(T ) (Y ′
T ) < κλT = π̃(T ) (YT (κ)). It follows from Proposition 5.2 that

Y ′
T > YT (κ) and hence, by Proposition 2.1, s(t) (Y ′

T ) ≤ s(t) (YT (κ)) for all t,
with strict inequality if s(t) (YT (κ)) > 0. We may deduce from (32) that

s(T ) (YT (κ)) +
T∑

u=1

nus(u) (YT (κ)) > 1. (33)

Note that (10) implies that αt > αT for t = 1, . . . , T − 1. It follows from
Corollary 8.5 that there is a κ2 ∈ (0, κ1] such that, if 0 < κ < κ2,

2s(u) (YT (κ)) < s(u) (Yt (κ)) (34)

for all t �= T and all u = 1, . . . , T . Lemma 8.3 and Proposition 2.1 imply
that there is a κ3 ∈ (0, κ1] such that, if 0 < κ < κ3,

2s(T ) (YT (κ)) < 1. (35)
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Multiplying (33) by 2 and rearranging gives

1 < 2s(T ) (YT (κ)) − 1 + 2
T∑

u=1

nus(u) (YT (κ))

< 2
T∑

u=1

nus(u) (Yt (κ)) ,

for t = 1, . . . , T−1. The second inequality exploits (34) and (35) and implies
that, if Y satisfies (17) in Condition 6.2, then Y > Yt (κ) and holds provided
0 < κ < κ = min {κ2, κ3}. Hence, π̃(t) (Y ) < π̃(t) (Yt (κ)) = κλt which
conflicts with (16). Condition 6.2 can only be satisfied if nt = 0, completing
the proof.
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