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Abstract

Discounting the utilities of future people or giving smaller weights to groups other than
one’s own is often criticized on the grounds that the resulting objective function differs from
the ethically appropriate one. This paper investigates the consequences of changes in the
discount factor and weights when they are moved toward the warranted ones. Using the
utilitarian value function, it is shown that, except in restrictive special cases, those moves
do not necessarily lead to social improvements. We suggest that limitations to altruism are
better captured by maximizing the appropriate value function subject to lower bounds on
some utilities. Journal of Economic Literature Classification Nos.: D63, D71.

Keywords: Social Choice, Altruism, Consequentialism.



The Value of Limited Altruism
by

Charles Blackorby, Walter Bossert, and David Donaldson

1. Introduction

When economists investigate policies that affect the well-being of several generations, they
often employ objective functions that discount the well-being (utility) of future people. This
common practice has been criticized by many, either on the grounds that the implied ethics
are not impartial, or on the grounds that the absence of discounting is a consequence of
the axiom Pareto indifference.! Alternatively, some argue that, although discounting is
ethically warranted, the levels chosen are too high.2 If these views are correct, a natural
recommendation is to use the appropriate value function. If, however, social decision-makers
are unwilling to do that, a response might be that moving the discount factor closer to one
would have good consequences.

A justification for using an objective function that discounts the utilities of future gen-
erations at a higher rate than the one that is appropriate is that the best policies, according
to the value function, may require very great sacrifices by the present generation. Disagree-
ments about the proper level of discounting may therefore take two forms: in the first, the
disagreement is about the appropriate value function; in the second, it is about the level of
altruism on the part of the present generation that can legitimately be expected.

In this paper, we ask whether moving the discount rate toward the one that is ethically
warranted results in better policies. Suppose that the appropriate value function is the
undiscounted sum of utilities.3 It can be used to assess the merits of choices made with
other objective functions. Thus, the objective-function-maximizing policies that correspond
to different discount rates may be ranked by comparing total utilities in the states of affairs

that arise.

1 See Blackorby, Bossert, and Donaldson [1995, 1996, 1997a,b], Broome [1992], Cowen [1992], and Cowen
and Parfit [1992].

There is a justification for discounting changes in incomes and other net benefits measured in monetary
terms (see, for example, Sugden and Williams [1978]), although most cost-benefit analysts argue that market
rates are inappropriate and lower ‘social’ rates should be used when projects affect several generations
(Sugden and Williams [1978, ch. 15]).

3 Throughout the paper, we assume that there is a finite number of generations, so convergence problems
with infinite horizons do not arise.



In moral theory, traditional consequentialism requires agents to choose the actions that
have the best consequences according to some theory which ranks states of affairs with respect
to their goodness.4 These theories should rank states timelessly rather than in a single period
(see Blackorby, Bossert, and Donaldson [1996, 1997b] and Blackorby and Donaldson [1984])
and, if they are based exclusively on individual well-being, should employ comprehensive
notions of welfare such as the ones investigated by Griffin [1986] and Sumner [1996].

Traditional consequentialism may demand, however, that individuals make very great
sacrifices, such as giving a large percentage of their incomes to malnourished people. It is
commonly argued in moral theory that “‘ought’ implies ‘can’” (Griffin [1996, pp. 89-92|),
and that actions that are regarded as obligatory should take account of the natural limits
of individual altruism. Accordingly, some actions may be regarded as obligatory, while
others are ‘supererogatory’—beyond the call of duty.? Supererogatory actions are morally
permissible and have better consequences than obligatory ones, but involve greater sacrifices
by the agent.

Because of the limits of individual altruism, moral agents may use an objective function
to guide their actions that is different from the one that gives everybody’s well-being equal
weight. One such suggestion has been made by Scheffler [1982],6 who advocates an objective
function that gives a greater weight to the well-being of the moral agent than to others.
More generally, consider an objective function that gives the highest weight to the agent’s
own well-being, a lesser weight to the well-being of his or her family members, a still smaller
weight to the utilities of friends, and so on. In such a setting, it is important to ask whether
moving the weights closer to the ethically correct ones will result in actions that have better
consequences.

We employ a simple model to investigate the problem. A fixed population is divided into
at least two groups. These may be different generations or the result of any other partition
of the population, and each group may contain a single person or more. Some members
of group one or a single person in the group must choose to take an action from a set of
feasible actions. We refer to the agent as ‘group one’ for convenience. Each of the actions has
consequences which, for the normative purposes of this paper, can be described as vectors
of utilities for the individuals, including the people in group one. It need not be the case
that the actions of others are fixed. All that is necessary is that they be predictable—the
agent may take actions that elicit cooperative behaviour by others, for example. We do not
consider strategic behaviour.

4 Although the theories that we employ in this paper are welfarist, it is possible to combine consequentialist
morality with any principle that provides social rankings.

% See Griffin [1996] and Heyd [1982].

6 See also Mulgan [1997].



In Sections 2 and 3, we assume that the value function that ranks alternative states of
affairs according to their goodness is the utilitarian one—the sum of individual utilities. If
group one acts to maximize the utilitarian value function, giving equal weight to its own
interests and the interests of others, we say that it is perfectly altruistic. Imperfect or limited
altruism is modeled by considering two different objective functions, each of which is used
to guide the behaviour of group one. The first of these is applicable to an intertemporal
setting and it discounts the utilities of the members of other groups geometrically. The
second applies weights to the utilities of other groups which are smaller than the weight
assigned to the members of group one. The second formulation therefore contains the first
as a special case. Sections 2 and 3 differ in the way the set of feasible actions facing group
one is described. In each case, however, the same question is asked. Does a reduction in the
discount rate or an increase in the weight assigned to the utilities of groups other than the
first lead to better choices? That is, do the actions taken lead to consequences with greater
total utility?

Section 2 is concerned with a very simple case, the pure distribution problem. A fixed
amount of a single resource is to be distributed to the people in the groups, and group one’s
set of feasible actions corresponds to all divisions of the resource. In the discounting case,
we show that a decrease in the discount rate always has good consequences—total utility
rises. In the case of weights, we show that (i) a decrease in the weight on the utilities
of the members of group one leads to an increase in total utility, (ii) an increase in the
smallest weight leads to greater total utility, (iii) increases in other weights have ambiguous
consequences, and (iv) some altruism (positive weights for at least one group other than
group one) is better than none (self-interested behaviour by group one).

Section 3 considers the general choice problem. Group one has an arbitrary set of feasible
actions to which correspond a set of feasible utility vectors. We show that, with three or
more groups, a decrease in the discount rate, a decrease in the weight for group one, and an
increase in the weight for any other group have ambiguous consequences: total utility may
rise, fall, or remain unchanged. In addition, we show that, although it is true that utilitarian
consequentialist behaviour is always best, some altruism may be worse than none at all. If,
however, there are only two groups, then decreasing the weight on group one or increasing
the weight on group two (which are both equivalent to decreasing the discount factor) have
good consequences and, as before, some altruism is always better than none.

In Section 4, we propose another way to describe objective functions for agents whose
altruism is limited. Instead of placing weights on the well-being of others, we suggest that
utility constraints be used. The constraints place lower limits on the total utility of group
one and, possibly, some of the other groups. Group one then acts to maximize the utilitarian
value function subject to the constraints. In this formulation, the relaxation of any constraint



(moving it to a lower level) never leads to worse actions and may lead to better ones. We
show that the two approaches are equivalent in the two-group case.

Section 5 discusses a number of variations on our results. First, they are extended to
generalized-utilitarian consequentialism, which allows inequality aversion in utilities. Sec-
ond, our results are shown to be robust to modifications of the utilitarian and generalized
utilitarian principles which discount the well-being of the members of future generations.
Third, the results of Section 2 on the pure distribution problem are extended to instances of
the general choice problem in which the set of feasible utility vectors associated with feasible
actions is described by an additively separable function. Last, we show that all our results
can be extended to actions whose consequences are uncertain. In this case, ex ante social
evaluations are employed.7 Section 6 concludes.

Throughout the paper, we assume that utilities satisfy the necessary measurability and
comparability requirements needed for the value and objective functions employed. In the
utilitarian cases of Sections 2, 3, and 4, utilities must be at least cardinally measurable and
unit comparable. The generalized utilitarian principles have more stringent measurability
and comparability requirements.

2. The Pure Distribution Problem

In this section, we investigate limited altruism in a very simple setting, the pure distribution
problem. A given amount of a single resource is to be divided among the members of a fixed
set of people. The amount of the resource is w € R4, the set of individuals is {1,...,n},
n > 2, and the utility function of person i € {1,...,n} is U;: R+ — R, with

U; = Ui(l‘i), (2'1)

where z; € R4 is person ¢’s consumption of the resource. We assume that, for each i, U; is
continuous, twice continuously differentiable on R, and strongly concave (Diewert, Avriel,
and Zang [1981]), which implies U/ (x;) < 0 for all z; € Ry4. We assume U/(x;) > 0 for all
z; € R4 and, in addition, that lim,, o Ui’ (x;) = oo; this ensures that each person receives

a positive consumption level whenever the weight on his or her utility is positive.?

7 For discussions of ex ante and ex post social evaluation, see Blackorby, Donaldson, and Weymark [1996,
1997], Broome [1991], and Mongin and d’Aspremont [1998].

8 See Blackorby, Donaldson, and Weymark [1984], Bossert [1991], Bossert and Weymark [1998], d’ Aspre-
mont and Gevers [1977], Roberts [1980a,b], and Sen [1974, 1977].

9 The utility function U; could, instead, be defined on the interval [s;, co) where s; is person #’s subsistence
level of consumption. The condition lim,, s, U/(x;) = oo would replace the one in the text and, if Z:‘L:l 85 <
w, would ensure that each person receives a consumption level that is greater than subsistence. Because
this complicates the presentation without enhancing our understanding (all results are unaffected), we have
chosen to work with the simpler model.



The utilitarian solution to the pure distribution problem is (fl, e ,%n), and it maximizes
Soiy Ui(z;) subject to 7" | 23 < w. The first-order conditions are

Ul () = A (2.2)

for all e = 1,...,n, where X\ is a Lagrange multiplier, and

n
Y Ei=w (2.3)
=1

(2.2) requires the resource to be distributed so that marginal utilities are the same for
everyone, and (2.3) requires the whole amount of the resource to be distributed.

In the following subsections, we assume that group one has a set of actions from which
it can choose and that, for every feasible allocation of the resource, there is an action which
leads to that allocation. Perfect altruism results in an action which maximizes total utility.
Limited altruism is characterized by assuming that group one acts to maximize an objective
function with utility weights on groups of individuals. In this case, group one receives a
higher weight than the others, and at least one other group has a positive weight. Self-
interested behaviour gives a weight of zero to the utilities of all groups other than the first.
The groups are Ni,..., Ny, m > 2, with at least one person in each, and they form a
partition of {1,...,n}—each person is in exactly one group.

It is convenient to deal with the maximization problems that follow in two stages. Be-
cause, in each problem, the utilities of the members of a group receive the same weight, the
allocation of resources within the groups must maximize ) ;. N, Ui(z;) subject to > ;¢ N, Ti <
zj, where z; is total consumption of group j, j = 1,...,m. The functions V;: Ry — R,

j=1,...,m, are given by

d ai< zj}. (2.4)

iENj

Vilzj) = (nax { > Ui(w:)
ViEN; ieN;
Given our assumptions, each Vj is continuous, twice continuously differentiable on Ry,
Vi(zj) > 0 and V() < 0 for all 2; € R4+, and lim,; 0 V}(2j) = oo (see Lemma 1 in the
Appendix).
It follows that the utilitarian solution maximizes
m

> Vilz) (2:5)

Jj=1
subject to
m
Y zi<w, (2.6)
J=1
and we write the solution as (,%kl, ceey fzkm)



2.1. Geometric Discounting

Suppose that group one is the present generation and that, although the social value function
is the utilitarian one, group one’s altruism is limited and, in deciding on its actions, it uses
an objective function that discounts the utilities of future generations geometrically. Let
d € (0,1) be the discount factor. Generation one acts to maximize

Z5j_l Z Ui(z;) (2.7)
j=1

iENj
subject to
n m
in:Zingw. (2.8)
i=1 j=1ieN;
Using the functions Vi, ..., Vi, this can be converted into a maximization problem which
assigns resources to groups. Group one must choose (z1,. .., zmy) to maximize
m .
Z(;J—lvj(zj) (2.9)
j=1
subject to the constraint
m
» z<w (2.10)
j=1
If (£1,...,#,) solves the maximization problem of (2.7) and (2.8), and the solution to the
maximization problem of (2.9) and (2.10) is (£1,. .., £m), then
gi=> & (2.11)
iENj
for all y = 1,...,m. The utilitarian social value of the solution is
n m
D U8 =D Vi(g)), (2.12)
i=1 j=1

the undiscounted sum of utilities.

According to the utilitarian value function, the no-discounting solution to the maximiza-
tion problem is better than the solution with discounting. The question we ask, however, is
the following: if group one were to discount future utilities less, would total (undiscounted)
utility at the chosen action rise? That is, if § > 8, and (Z1,. .., %,) and (&1,...,%,) are the

corresponding solutions to (2.7) and (2.8), is it true that
n n
D Ui(E) > ) Uil#i)? (2.13)
i=1 i=1

6



This question is equivalent to asking whether

m m
Y VilE) > > Vi), (2.14)
j=1 j=1

where (21,...,2mn) and (21, ..., 2my) are the optimal group consumption levels corresponding

to & and 4. In the case of the pure distribution problem, the answer is yes.

Theorem 1: In the pure distribution problem with discounting, if 6> 5, then
PRACHEDIRACH (2.15)

or, equivalently,

ZVJ‘(%‘) > ZVJ‘(%)- (2.16)

Proof: See the Appendix.

The result of Theorem 1 agrees with the standard intuition of those who regard discount-
ing as inappropriate: less of it is always better. We shall see, however, that this intuition is

not robust.

2.2. Weighting Schemes

Suppose, as in the previous subsection, that group one’s actions determine the distribution of
the resource and that, instead of employing an objective function that discounts the utilities
of other groups geometrically, it attaches weights to their utilities which are smaller than
the weight it gives itself. This might occur if group one were an agent’s family, group two
the members of his or her community, and so on. The optimization problem solved by group

one is to maximize
m

v Y Uiai) (2.17)
1

j= iENj

subject to
n
» wi<w, (2.18)
i=1

or, equivalently, to maximize

> iVilz) (2.19)



subject to
m
» zi<w (2.20)
j=1

If group one is perfectly altruistic, all the weights are equal and positive. If group one’s
altruism is limited, y1 > ; > 0 for all j = 2,...,m with 7; > 0 for at least one j > 1.
Because any two groups with the same weight can be combined, we can assume that the
group weights are pairwise distinct. Without loss of generality, therefore, we number the
groups so that v;_1 > «; for all j = 2,...,m. If group one’s behaviour is self interested,
71 >0and yj=0forall j=2,...,m.

In the case of limited altruism with ~,, > 0, the first-order conditions are

%5Vi (%) = A (2.21)
forall j =1,...,m, and

i Z = w. (2.22)

If v = 0, (2.21) holds for all j # m and Zz,, = 0. (2.21) shows that, in this solution, marginal
utilities are unequal; group one has the lowest and group m the highest. Consequently, from
the utilitarian point of view, transfers from groups with higher weights to groups with lower
weights are warranted.

Theorem 2 proves that, in the case of limited altruism, an increase in ,,, the smallest
weight, or a decrease in 71, the largest weight, leads to an increase in total utility. Thus,
from the (unweighted) utilitarian standpoint, such changes have good consequences.

Theorem 2: Given limited altruism, in the pure distribution problem with weights, if (i)
1 <A andF; =74 forallj =2,...,m, or (ii) ym > Ym andy; = 7; forallj =1,...,m—1,
then

ZUZ(.@) > ZUZ(.@) (2.23)
or, equivalently,

ZVJ‘(%‘) > ZVJ‘(%)- (2.24)



Proof: See the Appendix.

Suppose that v, > 0 and that the weight v, 1 < k < m, is increased. This might be
the result of an increase in concern for the agent’s friends, with other weights unchanged.
Lemma 2, which is used in the proof of Theorem 2, shows that, other weights equal, this
increases the consumption of group k£ and decreases the consumption of all other groups.
In addition, an increase in 7 increases the value of the multiplier A\. This implies that the
most deserving group (at the margin)—group m—Tloses consumption to other groups. Total
(unweighted) utility may rise, fall, or remain unchanged in this case.

The following is an example in which total utility falls in response to an increase in an
intermediate weight. For three groups, total utility T'U is Z V;(Zj) and, using (2.21), the
change in T'U with respect to an increase in 7 is given by

3

el o
From (2.22),
5 6 o 22
and it follows that T . . . 97
e e [t el (227

If vy =1, v2 = 1/2, and 3 = 1/3, this becomes

oTU 071 073
= — + . 2.28
02 Ove 02 ( )

Because both 0z1/0v2 and 0zZ3/0v2 are negative, the sign of 9TU/07v2 depends on their
relative magnitudes. Differentiating (2.21) with respect to y2 for j = 1,3 and setting y; = 1
and v3 = 1/3,

071 85\/8’)/2
= 2.29
and _
073 ON/02
=3 . 2.30
Consequently, (2.28) becomes
0Ty _ 0) RN S (2.31)

Oy Ol V(z) TVY(z%)
Both V/"(z1) and V3'(Z3) are negative, but they can take on any magnitude. That is, for any
w > 0, any (z1, 22, 23) € R?’H_ with Z?:l zj = w, and any (v1,vs,v3) € R3_, there exist

9



functions V1, Va, V3 such that (z1, 22, Z3) maximizes Vi (z1)+(1/2)Va(z2)+(1/3)V3(23) subject
to Y71 2 S w, and (V{'(21), V3 (22), V' (23)) = (v1,v2,v3). T V)'(21) = V'(23) = —1,

oTU __, 0X

=2 2.32
972 92 (2.32)

Lemma 2 shows that d\/97s is positive, and it follows that, in this example, OTU /0y < 0:
total utility falls when the weight on group 2 increases.

Is some altruism better than none at all? That is, is giving some weight to at least one
other group better than assigning a zero weight to all other groups? In the pure distribution
problem with weights, this is the case, and the result is proved in Theorem 3.

Theorem 3: In the pure distribution problem with weights, limited altruism results in a
better outcome, according to the utilitarian value function, than self-interested behaviour.

Proof: See the Appendix.

Theorem 3 implies that some altruism is always better than none in the pure distribution
problem with weights and with discounting. This implies that discounting with any § € (0, 1]
is better than purely self-interested behaviour.

3. The General Choice Problem

The pure distribution problem is a special case; in general, constraints may take many forms.
For example, moral agents (either single individuals or groups) cannot control the behaviour
of other people and technologies are rarely linear. Under certain circumstances, however, it
is possible to predict the behaviour of others and the effect that one’s actions have on it.
Given that, an agent’s actions will correspond to a set of feasible utility vectors.

Suppose that the set of feasible utility vectors corresponding to the set of actions available
to the agents in group one is F. It need not be convex, but it must be such that solutions
to our maximization problems exist. For that reason we assume that F is compact (this is
consistent with F being a finite set). We call the choice problem for group one the general
choice problem.

The best possible behaviour for group one is to choose an action that maximizes the
unweighted sum >_"" ; u; subject to (u1,...,u,) € F. If group one’s altruism is limited, it

maximizes the weighted sum
m

Vi Z Uj (3.1)
1

j= iENj

10



subject to the constraint

(uty...,un) € F, (3.2)
where 1 > 0, vj—1 >~y for all j = 2,...,m, and v, > 0. Self-interested behaviour on the
part of group one is given by the case v; = O for all j = 2,...,m, and behaviour that is guided
by the utilitarian principle corresponds to the case in which v; = 1 for all 7 = 2,...,m.

3.1. Two Groups

If there are only two groups of people, a very general result is true. In this case, group one

gl Z ui + 72 Z Ui (3.3)

1€EN1 1€ Ny

acts to maximize

subject to (3.2). Because there are only two groups, this covers the discounting case with
0 =2/m-

We ask whether, when group one’s altruism is limited, increasing 2 or decreasing y1
results in a better outcome according to the utilitarian value function. In this case, it does.

Theorem 4: Given limited altruism, in the general choice problem with two groups, if (i)
A1 =1 and 2 > Y2 or (it) 1 <Y1 and Y2 = 2 then

Zul > Zul (3.4)

Proof: See the Appendix.

Because Theorem 4 is true for the case 42 = 0, some altruism is at least as good as
none in the two-group case. The inequality of Theorem 4 is weak rather than strict because
maxima may not be unique and because the two utility vectors may coincide as well. If we
assume, however, that maxima are unique and that the two utility vectors are different, the
inequality in (3.4) is strict.

Theorem 4 shows that, in the case of two groups, an increase in the weight on group
two or, equivalently, a decrease in the weight on group one results in a social improvement
according to the utilitarian principle. We show in the following subsections that this result
does not generalize to three or more groups.

11



3.2. Geometric Discounting

In this subsection, we construct two examples to show that the result of Theorem 1 is not
true in the general choice problem. To do it, we consider the case in which there is one
person in each group.

First we consider the maximization problem with positive weights (y1,...,7) € R .
In that case, (a1,...,uU,) maximizes Y ;- iu; subject to (u1,...,un) € F. We define the
function II: R} , — R by

II(y1,...,) = max {Z%ul (ul,...,un)e}"}. (3.5)
i=1

(ul,...,un)

The function II is analogous to a profit function, and it is homogeneous of degree one and
convex. Standard duality theory shows that, if II is differentiable, then

OII(y1, .-, Yn)

foralli=1,...,n.
For our example, n = 3 and we choose the approximation

1 1 1 1 1 1
II(7v1,72,73) = 271 + 972 + 373 — 69773 + 37773 — 87573 - (3.7)

This function is a special case of Z?:l 2?21 aij'yi%’yj%, and it is capable of approximating
any function to the second order at a point (Diewert [1971]).

In the case of discounting, 7; = 6°~! for all 4 = 1,...,n. We choose § = 1/4, and at
that value, (vy1,72,73) = (1,1/4,1/16). Writing (11, @2, @3) as the vector that maximizes the
discounted sum of utilities, using (3.6), @1 = I11(1,1/4,1/16) = 7/8, 42 = [x(1,1/4,1/16) =
1, and @3 = I13(1,1/4,1/16) = 1.

The Hessian matrix of IT at (1,1/4,1/16) is

9/16 —3 3
H=| -3 16 -16]. (3.8)
3 —16 16

It can be checked that H satisfies the standard conditions for convexity and homogeneity of
I1.
Total utility is

3
TU =) @ =10 + Iy +IIs, (3.9)
=1

12



and
oTuU

5 IIy2 + 201113 + lgg + 201193 + II39 + 261133 (3.10)
=-3+3/24+16—-8—-16+8 = —3/2.
Thus, an increase in § decreases total utility.
If § = 1, TU is maximized. What the example shows is that T'U is not necessarily
monotonically increasing in ¢ throughout its range.
A second example is concerned with discrete choice. Suppose that n = 3 and that the set
F consists of just two utility vectors: (100,100, 100) and (90, 150,50). Action a; results in
the first of these and action ag leads to the second. Total utility is greater in (100, 100, 100),
so utilitarian consequentialism recommends a;. If person one discounts the utilities of the
other two with 6 = 1/4, (100,100, 100) has a discounted value of 100 + 25 + 6.25 = 131.25
and (90, 150,50) has a discounted value of 90 + 37.5 + 3.125 = 130.625 and a; will be
chosen. If, however, the level of discounting is reduced, with § = 1/2, discounted utilities
are 100+ 50+ 25 = 175 and 90+ 75+ 12.5 = 177.5, and as will be chosen. A decrease in the

amount of discounting leads to an action that is worse from the utilitarian point of view.

3.83. Weighting Schemes

If there are more than two groups, increasing the weight on the utilities of the people in
group m or decreasing the weight on the utilities of the people in group one has ambiguous
consequences. In addition, it is not necessarily true that some altruism is better than none.

As in Subsection 3.2, we construct examples for the case where there is one person in
each group. Analogously to (3.6), we know that

OI(y1, .-, Yn)
8%‘

— @, (3.11)

where (@1,...,u,) maximizes Y, , vju; subject to (u1,...,u,) € F. It follows that the
derivative of the change in total utility with respect to a change in 7 is

OTU
= (.-, m)- (3.12)
Om S

Using the example of Subsection 3.2,

3
= Ta(1,1/4,1/16) = 9/16 — 3 + 3 = 9/16 > 0. (3.13)
=1

oTuU
om

Consequently, in the general choice problem, property (i) of Theorem 2 does not hold: a
decrease in the weight on the utility of group one, other weights unchanged, can lead to a

13



decrease in total utility. Similar examples can be found in which an increase in the smallest
weight leads to a decrease in total utility.

A second example can be described as follows. Suppose that n = 3 and that the set
F consists of two utility vectors: (100,100, 100) and (80, 150,50). Action a; results in the
first vector and action ag leads to the second. Total utility is greater in (100, 100, 100), so
utilitarian consequentialism recommends a;. If person one is completely selfish, he or she
chooses actions using the weights (71,72,73) = (1,0,0). In this case, the weighted value of
(100, 100, 100) is 100 and the weighted value of (80, 150, 50) is 80, so a;—the better action—
is chosen. If, however, person one uses the weights (v1,72,73) = (1, .8, .2), weighted values of
the two utility vectors are 100 4+ 80 + 20 = 200 and 80 4+ 120 + 10 = 210, so az is chosen. An
increase in the weights on the utilities of others leads to a worse action from the utilitarian
point of view.

In the same example, suppose that weights are (1,.3,.2). Then the weighted value
of (100,100, 100) is 100 4+ 30 4+ 20 = 150 and the weighted value of (80,150,50) is 80 +
45 + 10 = 135. Consequently, a; is chosen. Because a2 is chosen when the weights are
(1,.8,.2) an increase in the middle weight (y2) results in an action which is worse according
to utilitarianism.

Now suppose that the set F consists of the utility vectors (100,200, 0) and (200, 10, 80).
Action aj results in the first vector and ag results in the second. According to utilitarian
consequentialism, (100,200, 0) is better and a; is the best action person one can take. Sup-
pose that person one uses the weights (1,.6,.1) in his or her objective function. Then the
weighted value of the two outcomes is 100 + 120 = 220 and 200 + 6 + 8 = 214 so aj is
chosen. If, however, the weight on person three is increased to .5, weighted values are 220
and 200 + 6 + 40 = 246 and a2 is chosen: an increase in the smallest weight leads to an
action that is worse.

Given our assumptions, maximized weighted utility is continuous in (71, ..., y,). Conse-
quently, if the weights are sufficiently close to equality, moving them toward equality results
in actions that are no worse. Therefore, if departures from utilitarian consequentialism are

small, there is no problem.

4. Solutions

If there is any reason for attaching lower weights to the interests of others than to oneself
(or one’s group), it must be that one wishes to limit the sacrifices that morally based action
demands. If this practice is to be a reasonable one, it ought to be true that any change
in the weights that brings them closer to the ones that represent the social good should
move behaviour in that direction as well. But, as we have seen, this is not the case, both
for reductions in discount rates and for changes in individual or group weights that move
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them closer to the weight on one’s own well-being. These results are obtained under the
assumption that the social good is represented by the utilitarian value function, but the
next section shows that they have a much broader application.

We suggest, therefore, that a new approach is needed. It is legitimate to expect that
agents may be unwilling to make very great sacrifices and to take actions that would harm
people or groups with which they are personally or emotionally involved. Our suggestion
is that principles for guiding action should take this into account explicitly rather than
attempting to mimic it with weighting schemes.

Suppose that group one is to take an action from a feasible set whose consequences, in
utility terms, consist of the vectors in the set F. In order to avoid untoward sacrifices, group
one chooses a set of utility levels that serve as constraints on its actions. Let C' be a proper
subset of the m groups which includes group one and, for each j € C, let ¢; be a total-utility
floor for the group. We assume that there is a feasible utility vector (u1,...,u,) € F in
which each group j € C has at least a total utility of ¢;. Group one chooses actions to
maximize total utility subject to these constraints. Therefore, an action is chosen such that

its associated utility vector (a1, ..., Uy) maximizes

Z u; (4.1)
i=1

subject to
(ut,...,up) € F (4.2)
and
> ui > ¢ (4.3)
1EN;
for all 5y € C.

This formulation of the problem has a significant advantage over the discounting/weights
one. If any of the constraints is relaxed, the action chosen is at least as good as the one
chosen before the change. The best action(s) is (are) unchanged if the constraint did not
bind in the original problem. If it did bind, the action that was chosen is still available
because its associated utility vector satisfies the new constraints. Therefore, the new action
can be no worse and may be better because more utility vectors and their associated actions
are now at hand.

In our suggestion in this section, all the actions that are better than the chosen action,
according to the utilitarian value function, must violate the constraints. If the constraints
on group utility levels are regarded as describing obligatory actions for an individual agent,
supererogatory actions are the ones that lead to utility vectors in F with greater total

utilities and, at the same time, violate the constraints. Our theorems show that no similar
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formulation is possible (for the general choice problem) in the discounting/weights approach
except in the two-group case.

In the general choice problem with two groups, the above formulation of the problem
is equivalent to the discounting/weights formulation. If a utility vector is chosen when the
weight on the utilities of people in group one is greater than the weight for group two
and both are positive, then the same utility vector maximizes total utility subject to the
constraint that the total utility of group one be no less than its total utility in the chosen
utility vector in the weights case. This is shown in the following theorem.

Theorem 5: In the general choice problem with two groups, for any (y1,72) with y1 >

y2 >0, (@1, ...,uy) mazimizes
Ny witre Y u (4.4)
1€EN1 1€ Ny
subject to
(uty...,up) € F (4.5)
if and only if (U1, ..., Un) mazimizes
n
ST SR S n
=1 1€EN1 1€ Ny
subject to
(uty...,up) € F (4.7)
and
D uiz ) (48)
1€N1 1€N1

Proof: See the Appendix.

The maximizing vectors in the two problems in Theorem 5 may not be unique. The
theorem indicates, however, that each of them is a solution to both problems.

Our new formulation of the problem leaves open the question of how to set the con-
straints. It might be argued, for example, that, for a single agent, a utility floor equal to
some fraction of the utility that he or she would get with selfish behaviour would be appro-
priate. These rules of thumb could be extended to other groups such as immediate family,

members of the agent’s community, and so on.
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5. Generalizations

The results of this paper are not limited to the models that we have chosen. The presentation
is significantly simplified with the utilitarian value function but other value functions preserve
the results. These include the generalized utilitarian principles, which allow for inequality
aversion in utilities (Subsection 5.1), and principles which discount the utilities of future
generations or weight the interests of different groups unequally (Subsection 5.2). We do not
endorse principles of the latter type, but include a discussion for completeness.

Some of the results of Section 2 on the pure distribution problem can also be generalized
to additively separable constraints (Subsection 5.3). The section concludes with a discussion
of uncertainty (Subsection 5.4). All our results on the general choice problem can be extended
to uncertain environments. In addition, combinations of these generalizations, applied to the
appropriate models, work without difficulty.

5.1. Generalized Utilitarianism

Utilitarianism is often criticized on the grounds that it exhibits no aversion to utility in-
equality.!0 The value function for generalized utilitarianism (GU)11 employs transformed
utility levels and is given by

> g(us) (5.1)
=1

where g is a continuous and increasing function. GU is weakly inequality averse if g is concave
and strictly inequality averse if ¢ is strictly concave. We assume in the discussion that
follows that g is concave (which includes the case of strict concavity) and twice continuously
differentiable.

The pure distribution problem can be adapted to GU by defining a transformed utility
function Uig = goU; for each ¢ = 1,...,n. Weights and discount factors are applied
to transformed utilities Uig(xi), the analysis is unchanged, and the theorems indicate the
direction of change in the GU value function.

The general choice problem using GU as the value function requires the selection of a
utility vector in F that maximizes

S glus). (5.2)
=1

10 ytilitarianism does possess aversion to income inequality as long as individual (indirect) utility functions
have the property of decreasing marginal utility of income.
11 gee Blackorby, Bossert, and Donaldson [1995, 1996, 1997a,b] and Broome [1992] for discussions.
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This problem can be rewritten by defining transformed utilities v; = g(u;). The set of
feasible transformed utilities is

fgz{(vl,...,vn) }Ui:g(ui) forall i=1,...,n and (ul,...,un)e}"}, (5.3)

and the maximization problems use unweighted, discounted, or weighted transformed utilities
and the feasible set FY.

5.2.  Discounting in the Value Function

It might be thought that discounting or weighting is appropriate in the value function that

represents the social good. We discuss the discounting case in this subsection and note that

the case of weights is analogous. Either case can be extended to GU without difficulty.
Suppose that the social good is represented by the value function

m
SIS (5.4)
j=1 i€N;
where ¢ is the ethically appropriate discount factor. We define ©; to be ¢~ lu; for all i € N;
and all j = 1,...,m. In the pure distribution problem, ¥; = Uj(z;): = 6/~ U;(x;) for all
i € Njand all j = 1,...,m. In addition, we define 5 = §/6 where 0 is the actual discount
factor in group one’s objective function.
In the pure distribution problem, the best actions maximize
m m n
ST Ui =) Uilwi) =Y Uilwi), (5.5)
j=1 iEN; j=1ieN; i=1
and, when utilities are discounted at a level that is more than the ethically appropriate level
(6 < 6), chosen actions will maximize the objective function

m m 5 j—1 ‘ mo
Z&J—l ‘Z Uj(z;) = Z (g) > (i) =) 6! 2 Ui(@). (56)
j=1 1€EN; j=1 ]
Moving § closer to ¢ is equivalent to moving 6 toward one, our analysis is unchanged and
Theorem 1 can be interpreted as describing the consequences of moving 6 toward §.
Similar techniques permit the reinterpretation of Theorems 2 and 3. In those cases,
actual weights are less than the ethically appropriate weights and are moved toward them.
In the general choice problem, the set of feasible discounted utilities is

faz {(@1,...,@n)}@i:(§j—1ui for all iENj, j=1,...,m,
(5.7)
and (ul,...,un)e}"},

and the results of Sections 3 and 4 can be reinterpreted without difficulty.
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5.3. Additive Separability and the Feasible Set

Some of the results of Section 2 (on the pure distribution problem) can be extended to the
general choice problem if the feasible set F can be described by an additively separable
function. In this case, there exist functions Ay, ..., h, and a constant @ such that

F = {(ul,...,un) ) ghi(ui) gw}. (5.8)

We assume that each function h; is increasing, twice continuously differentiable, and strongly
convex. This ensures that the set F is strictly convex.

For each i, we define v; = h;(u;) so that u; = hi_l (vi). Because each h; is strongly convex,
hi_l is strongly concave. Defining T; = hi_l for all © = 1,...,n, the utilitarian solution to

the general choice problem requires the choice of an action that leads to a vector (7/"1, ceey 13"”)

that maximizes
n
> Ti(w) (5.9)
=1
subject to

n
Y ui<w (5.10)
=1

with similar maximization problems for the discounting and weights cases. Provided that
solutions to the maximization problems exist, it is straightforward to reinterpret Theorem 1
and, with positive weights, Theorem 2 in this generalization.

5.4. Uncertainty

The results of Sections 3 and 4 can be generalized to the case of uncertainty. Let S be a
finite set of contingent states of affairs with state-contingent feasible utility vectors. Thus

(uf,...,u}) is the utility vector that occurs in state s € S and the set F< consists of vectors

of the form ((ul,...,ul), ..., (uf,...,u3)) where S = |S|. Individual i’s ex ante utility is

u; = Uf(ul,. .. ,u;g ) where Uf is an increasing function. We do not assume that it satisfies

the expected-utility hypothesis, although that is covered as a special case. It is possible to
describe the set of feasible ex ante utilities 7 given the functions U7, i =1,...,n. It is

1 S
w = U (uj, ..., u;

2) forall i=1,...,n

F¢= {(ul,...,un)

(5.11)
and ((u%,,u}t),,(u‘f,,uﬁ)) € ‘7_—8}.

This reduces the general choice problem under uncertainty to the mathematical equivalent
of the general choice problem without uncertainty.

19



6. Conclusion

This paper suggests that objective functions that attach weights to or discount the utilities
of others perform poorly as guides to action when altruism is limited. In the idealized
environment of the pure distribution problem, the discounting formulation performs in a
reasonable way—decreases in the discount rate result in better choices. In the weights
formulation, however, only decreases in the weight for group one or increases in the weight
for group m lead to the same result; all other changes have ambiguous consequences. In
addition, a move from self-interested behaviour for group one to any amount of altruism
leads to a better outcome.

In the general choice problem with three or more groups, however, none of these changes
in objective functions has similar implications. Although utilitarian consequentialist be-
haviour, in which the value function and objective functions coincide, leads to the best
outcome, increases in the amount of altruism may lead to better or worse outcomes. In
addition, self-interested behaviour by group one may be better than incomplete altruism.
In the case of two groups, any increase in the weight on the utilities of the members of the
second group improves the choices of the first.

We have shown that these results are robust to a number of generalizations, which
include employment of the generalized utilitarian value functions, value functions that allow
discounting, and environments that allow the consequences of actions to be uncertain.1? In
addition, we show that some of the results of Section 2 on the pure distribution problem
can be extended to the general choice problem if the feasible set of utility vectors F has an
additively separable representation. We cannot reasonably expect feasible sets to take this
form, however. Technologies are more general except in the simplest of models and moral
agents cannot control the behaviour of others completely.

We suggest, therefore, that constraints on the utility levels of groups in which the agent
is especially interested provide a better way to guide actions when altruism is less than
perfect. In the case of intertemporal economic policies, the present generation might select
total utility levels for itself and, possibly, several others that follow it. No policy would be
chosen that has the consequence of pushing group utilities below these floors. In the case
of individual moral agents, no action would be taken that fails to keep the well-being of the
agent and the groups with which he or she is especially concerned at or above the constraint
levels. In both cases, any relaxation of the constraints leads to outcomes that are no worse
and, possibly, better. It is true, of course, that the best actions are the ones in which the

constraints are absent.

12 Uncertainty is sometimes used as a justification for discounting. In our formulation, however, it does
not provide one because risk aversion is captured by individual utility functions.
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APPENDIX

Lemma 1: For each j =1,...,m, the function V;, given by (2.4), is twice differentiable,

Vi(zj) >0 and V'(z) <0

for all z; € Ry, and

Y () = 0

Proof: For all z; € R4, the first-order conditions for the maximization problem in (2.4)

are

and

From (A.3), A > 0.
The function Vj satisfies

Consequently,
Vj(25)
From (A.4),
SO
From (A.3),

Ul(2) = A
Z i‘i = zZj.
iENj

Vi(z) = Y Uil#a).

U/ (&)

iENj

0z; _1
0z

) =A>0.
oo
0zj N 0z

(A.3)

(A.4)

(A7)

(A.8)

(A.9)

Because U” (#;) < 0 for all i € Nj, if d\/dz; > 0, it follows that 9i;/0z; < 0 for all i € N

which contradicts (A.7). Consequently, d\/dz; < 0 and di;/z; > 0.

(A.8) implies

Vi'(2)

O\

= — <0.

0z
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As zj — 0, #; — 0 and, using (A.3), lim,, 0 ) = 0o. From (A.8), lim,; o Vj’(zj) = 0.

Theorem 1:

or, equivalently,

Proof: It suffices to show that the assumptions imply (A.12). If (£1,...
maximization problem of (2.9) and (2.10), the first-order conditions are
SWIE) - X =0
and
m
Z fitw=

[

<.

which implies
: 8 -

forall j =1,...,
J > 2. Furthermore,

Vi(25) = 0"V (2m)
for all 7 < m.

Differentiating the first-order conditions with respect to d, we obtain

0
0 -1 —17 [ oX/as 0 )
1 V" 0 0£1/06 _ —VI(£9) _ A
: : : : 1)
. "
1 0 Vm 8,Zom/85 __(m )5m 2‘/751( )

where V" is used instead of V' (£;) for simplicity.

22

m. (A.13) implies V{(£1) = X and (- 1)5j_2vj/(’2@j) =

In the pure distribution problem with discounting, if 6> 5, then

(A.11)

(A.12)

, £m) solves the

(A.13)

(A.14)

(A.15)

(j — 1)X/8 for all

(A.16)
0
0
1
—(m.— 1)
(A.17)



Let o := (6/X)(ON/5), yj := (6/X)(82;/06) for all j =1,...,m, and

Yo
Y1
Yy = .

Ym

(A.18)

Using these definitions and interchanging the first and last rows of (A.17), this system of

equations is equivalent to

-1 0 -+ 0 V'] [ —(m—1)7
-1 Vl// R 0 0 01
P ot |y= : (A.19)
-1 0 vy 0 '
0 -1 " ~(m=2)
- - i 0 i
Multiplying the first equation by —1 and adding it to all rows but the last,
10 0 —ve o [T
o v’ ... 0 . v/ m —
1 " m—2
P : Loy = (A.20)
0 0 A v .
|0 —1 -1 -1 0

Dividing all but the first and last rows by V/’, ..

to the last row,

1 0
0 1

0 0
0 0

0 _y :
0 vy

1 —Va Vi,

0 —{HZZS vgz/vh”}

., V" _ respectively and adding all of them

m—1
(m —1)/V
: (A.21)
1V

LSSRE (m = h) [V

Finally, we divide the last row by — {1 + Z;an—ll v /vy } to obtain

1 0
0 1

o O e

0
0
1
0

—V// 7
m
ViV
: Y=
—Vi/Vina
1 _ |: m—1
A h=1
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/W
1/V;§{_1
-y /o sistvemy|

(A.22)



Therefore,
-1
 2ohey (m— )V

ym = —1 (A23)
L+ 3205 Vin/vy!
For 1 < j < m, we obtain
m—j V! 1 ,
Yj = v + V—T;ym = v [(m - .7) + V#ym}‘ (A'24)
J J J
Now we differentiate (A.16) with respect to ¢ to obtain
V//azoj _ : 5m_j_1V/ @) 5m—jv//azom A.925
jﬁ_(m_]) m(Zm) + m a5 (A.25)
Substituting (i/é)yj for 92;/06, and using (A.13) for V., (Zm),
X X X
V]”gyj = (m — j)5m_]_15m—_1 + 5m_]er—ym, (A26)
which is the same as
X X1 X
Vj”gyj = (m — j)ém_]_lgém——2 + 5m_JV,f{—ym. (A27)
Dividing by X /6 and simplifying,
Vi = (m — §)67 + IV y,,. A.28
J 9 m
By (A.24), Vj”yj = (m — j) + V) ym,. Therefore, by (A.28),
(m = )87 + 8™ Vg = (m = §) + Vi ym. (A.29)
Solving for V! y,,, we obtain
m— ) (617 —1
Vinym = ( : —)(5m—j ) (A.30)
for all j =1,...,m — 1. Substituting (A.30) into (A.24),
1 L (m= ) 1)
0= | om =)+ G
(A.31)

1 {(m—j)(él—f —6%]‘)} “0

Ty 1—om—j

J
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forallj=1,...,m—1. By (A.15), ym, = — Z;n:_ll yj. Therefore, using (A.13),

m m 1 m—1 1 1 m—1
> Vi = XZ STV = X{Z ST~ ST D yj]

j=1 j=1 j=1 j=1
. (A.32)
_ N 1—j 1-m
=A> (6777 =6"T)y; >0,
j=1
where the last line follows from (A.31). Substituting back (d/ i)(azo j/00) for y;,
m m @)
; 00z
Zvj’(é’j) Z g9 — gtmm) o a5j (A.33)
j=1 j=1
and, therefore, writing total utility Z Vi(£;) as TU,
ITU & 02; o'~ 0
NN EL ST — gt =L S A.34
96 ; 7(%3) 55 j:l( )55 > (A.34)

because y; < 0 implies (K/(S)yj =02;/05 < 0.
|

Lemma 2: Given limited altruism, in the pure distribution problem with positive weights,
foranyk=1,...,m

)

0z,
— >0, A.35
o (A.35)
8Zj
— <0 A.36
o (A.36)
forall j =1,...,m such that j # k, and
O\
— > 0. A.37
o (A.37)
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Proof: Differentiating the first-order conditions (2.21) and (2.22),

0z, o\
e nes 9%k _ A A
Vie(Zr) + Vi (2k) o o (A.38)
dzj  OA
Rved z. -y 2 A.39
Vi J ( J)a,)/k af)/k ( )
for all j =1,...,m such that j # k, and
3 ? = 0. (A.40)
= O
If ON/Oy;, <0, it follows that 0z;/0yy > 0 for all j # k (from (A.39)), and
0z, o\
Vi (zk) o = o— — Vi(zk) <0 A4l
MV ( k)a’m o % (Zk) (A.41)

(from (A.38)), implying 0z /0v; > 0, which contradicts (A.40). Consequently, OX/dv;, > 0.
From (A.39), 0%;/0v, < 0 for all j # k and, from (A.40), 0z;/0y; > 0.
|

Theorem 2: Given limited altruism, in the pure distribution problem with weights, if (i)
1 <A andF; =74 forallj =2,...,m, or (ii) ym > Ym andy; = 7; forallj =1,...,m—1,
then

n n
Z Ui(Z;) > Z Ui(Z4) (A.42)
=1 =1
or, equivalently,
m m
Vi(z) > Y Vi) (A.43)
j=1 j=1

Proof: Suppose that 7, > 0. Total utility is TU = Z;n:l V;(Z;) and we show 0TU/0y1 < 0
and 0TU/0vy, > 0. From Lemma 2, 0Z1/0y1 > 0, 0Z;/0y1 < 0 for all j = 2,...,m, and
ON/0y1 > 0. Using (2.21),

oTU & 0Z;  <~= 1 0z
:E:v! z _9:)\§ Bty A.44
on = (Zj)a’ﬂ i (A-44)
From (A.40),
071 Uk 8Zj
- _ E I A.45
om0 (A.45)
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and, substituting into (A.44),

OTU - [1  1]0%
—:)\Z{———}ﬁ<0 (A.46)
o Sl mlon

because [1/7; —1/y1] > 0 for all j = 2,...,m. Consequently, an increase in 1 decreases

TU and a decrease in 7 increases TU. From Lemma 2, 0Zy,/0vm > 0, 0Z;/0vym < 0 for
all 7 # m, and ON/dym, > 0. A slight reworking of (A.44), (A.45), and (A.46) shows that
OTU/0vy, > 0. Consequently, if 4, > 0, (A.42) and (A.43) are true.

In case (i), if v, = 0, m > 3 and Z,, = 2, = 0. Consequently, the above analysis applies
to groups 1,...,m — 1 and (A.42) and (A.43) are satisfied in this case.

In case (ii), because 9TU /07y, > 0 for all 7, > 0 and because, given our assumptions,
TU is continuous, (A.42) and (A.43) are satisfied when 4, = 0.
|

Theorem 3: In the pure distribution problem with weights, limited altruism results in a
better outcome, according to the utilitarian value function, than self-interested behaviour.

Proof: In the case where 41 > 0 and 4; = 0 for all j = 2,...,m, it is true that 2; > 0 and
2j =0for all j = 2,...,m. This solution is the same as the one obtained when v, = 4 and
v; = 0 for all j = 2,...,m. Now consider the case in which 1 = 741, 72 = 72, and ~; = 0 for
all 7 = 3,...,m. In this solution, z; = 0 for all j = 3,...,m, and the change is equivalent
to one in which there are only two groups. Because the weight on group 2 has increased,
total utility rises by Theorem 2 (ii). The weights on groups 3,...,m can be increased to
43, --,¥m, one at a time. Because each z; with a zero weight remains at zero, the result of

Theorem 2 (ii) may be used as many times as necessary, and the theorem is established.
[ |

Theorem 4: Given limited altruism, in the general choice problem with two groups, if (i)
A1 =1 and Y2 > Y2 or (11) 1 <41 and F2 = 42, then

i U > i ;. (A.47)
=1 =1
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Proof: (i) Without loss of generality, let 41 = 41 = 1, 42 = 4, and 42 = 4. Because
(U1,...,0n) € F and (41,...,Un) € F,

Swi+y Y U=y wit+y Yy (A.48)

1€N1 1€ Ny 1€N1 1€ Ny
and
S+ = w+y Y i (A.49)
1€N1 1€ Ny 1€N1 1€ Ny
Adding and simplifying,
G- w=G=4) Y . (A.50)
1€ Ny 1€ Ny

Because ¥ > 4, (¥ —4) > 0 and

S =) (A.51)

1€ Ny 1€ Ny

Making use of this and (A.48),

n
Zﬁi: Zﬁi-i- Zﬁl
=1

1€N1 1€ Ny
SDILEED BRI
i1€ENy 1€ENo 1€N2
S ILEED RN a2
1€EN, 1€ENo 1€N2
SIS
1€N1 1€ Ny

n
= E Ug,
i=1

which proves case (i). The proof of case (ii) is analogous.
[

Theorem 5: In the general choice problem with two groups, for any (y1,72) with y1 >

v2 >0, (a1, ...,u,) mazimizes
Ny witre Y u (A.53)
1€N1 1€ Ny
subject to
(uty...,up) € F (A.54)



if and only if (U1, ..., Un) mazimizes

Zui = Z Ui + Z U; (A.55)
=1

1€N1 1€ Ny
subject to
(uty...,up) € F (A.56)
and
S ui= )i (A.57)
1€N1 1€N1

Proof: Without loss of generality, let 7 = 1 and 72 = 7. Define Uy = ) ;. N, Wi and

U = ) icn, - Suppose that (u1,...,u,) maximizes Y, n, wi + 7D e, Ui Subject to
(ut,...,un) € F, and (d1,...,1,) maximizes
n
Zui = Z Ui + Z U; (A.58)
=1 1€EN1 1€ Ny
subject to ZieNl u; > ZieNl @; and (u1,...,uy) € F. Then
* * . .
U;+Uy >U; +Uy (A.59)
and
. y * *
U; +9U2 > Up +~Uo. (A.GO)

Adding (A.59) and (A.60) and simplifying,

% - - %
Us +9U2 > Uz +9U> (A.61)

which implies

* .

Usz(1—7) > Usa(1 —7). (A.62)
Because 0 <y < 1, (1 —~) >0, and

U, > Us. (A.63)

(A.63) implies
U2 > 10, (A.64)
and, adding (A.60) and (A.64) and simplifying,

U, > Uy (A.65)
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Because ZieNl fi > ZieNl g, f_kh > U; and, hence, f_kh = Uj. Therefore, (A.59)

implies

f_klg > t}g (A.66)
and (A.60) implies

. *

YUz > 7Uy (A.67)

or

v *

Uy > Us. (A.68)
(A.66) and (A.68) together imply

* .

Uy = Us. (A.69)

. .. > >
Because, in addition, U; = Uy,

( > H ) %L) = ( > i, Y ul> (A.70)

1€N1 1€ Ny 1€N1 1€ Ny

and the theorem is proved.
[ |
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