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Abstract

Discounting the utilities of future people or giving smaller weights to groups other than

one’s own is often criticized on the grounds that the resulting objective function differs from

the ethically appropriate one. This paper investigates the consequences of changes in the

discount factor and weights when they are moved toward the warranted ones. Using the

utilitarian value function, it is shown that, except in restrictive special cases, those moves

do not necessarily lead to social improvements. We suggest that limitations to altruism are

better captured by maximizing the appropriate value function subject to lower bounds on

some utilities. Journal of Economic Literature Classification Nos.: D63, D71.

Keywords: Social Choice, Altruism, Consequentialism.



The Value of Limited Altruism

by

Charles Blackorby, Walter Bossert, and David Donaldson

1. Introduction

When economists investigate policies that affect the well-being of several generations, they

often employ objective functions that discount the well-being (utility) of future people. This

common practice has been criticized by many, either on the grounds that the implied ethics

are not impartial, or on the grounds that the absence of discounting is a consequence of

the axiom Pareto indifference.1 Alternatively, some argue that, although discounting is

ethically warranted, the levels chosen are too high.2 If these views are correct, a natural

recommendation is to use the appropriate value function. If, however, social decision-makers

are unwilling to do that, a response might be that moving the discount factor closer to one

would have good consequences.

A justification for using an objective function that discounts the utilities of future gen-

erations at a higher rate than the one that is appropriate is that the best policies, according

to the value function, may require very great sacrifices by the present generation. Disagree-

ments about the proper level of discounting may therefore take two forms: in the first, the

disagreement is about the appropriate value function; in the second, it is about the level of

altruism on the part of the present generation that can legitimately be expected.

In this paper, we ask whether moving the discount rate toward the one that is ethically

warranted results in better policies. Suppose that the appropriate value function is the

undiscounted sum of utilities.3 It can be used to assess the merits of choices made with

other objective functions. Thus, the objective-function-maximizing policies that correspond

to different discount rates may be ranked by comparing total utilities in the states of affairs

that arise.

1 See Blackorby, Bossert, and Donaldson [1995, 1996, 1997a,b], Broome [1992], Cowen [1992], and Cowen
and Parfit [1992].

2 There is a justification for discounting changes in incomes and other net benefits measured in monetary
terms (see, for example, Sugden and Williams [1978]), although most cost-benefit analysts argue that market
rates are inappropriate and lower ‘social’ rates should be used when projects affect several generations
(Sugden and Williams [1978, ch. 15]).

3 Throughout the paper, we assume that there is a finite number of generations, so convergence problems
with infinite horizons do not arise.
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In moral theory, traditional consequentialism requires agents to choose the actions that

have the best consequences according to some theory which ranks states of affairs with respect

to their goodness.4 These theories should rank states timelessly rather than in a single period

(see Blackorby, Bossert, and Donaldson [1996, 1997b] and Blackorby and Donaldson [1984])

and, if they are based exclusively on individual well-being, should employ comprehensive

notions of welfare such as the ones investigated by Griffin [1986] and Sumner [1996].

Traditional consequentialism may demand, however, that individuals make very great

sacrifices, such as giving a large percentage of their incomes to malnourished people. It is

commonly argued in moral theory that “ ‘ought’ implies ‘can’ ” (Griffin [1996, pp. 89–92]),

and that actions that are regarded as obligatory should take account of the natural limits

of individual altruism. Accordingly, some actions may be regarded as obligatory, while

others are ‘supererogatory’—beyond the call of duty.5 Supererogatory actions are morally

permissible and have better consequences than obligatory ones, but involve greater sacrifices

by the agent.

Because of the limits of individual altruism, moral agents may use an objective function

to guide their actions that is different from the one that gives everybody’s well-being equal

weight. One such suggestion has been made by Scheffler [1982],6 who advocates an objective

function that gives a greater weight to the well-being of the moral agent than to others.

More generally, consider an objective function that gives the highest weight to the agent’s

own well-being, a lesser weight to the well-being of his or her family members, a still smaller

weight to the utilities of friends, and so on. In such a setting, it is important to ask whether

moving the weights closer to the ethically correct ones will result in actions that have better

consequences.

We employ a simple model to investigate the problem. A fixed population is divided into

at least two groups. These may be different generations or the result of any other partition

of the population, and each group may contain a single person or more. Some members

of group one or a single person in the group must choose to take an action from a set of

feasible actions. We refer to the agent as ‘group one’ for convenience. Each of the actions has

consequences which, for the normative purposes of this paper, can be described as vectors

of utilities for the individuals, including the people in group one. It need not be the case

that the actions of others are fixed. All that is necessary is that they be predictable—the

agent may take actions that elicit cooperative behaviour by others, for example. We do not

consider strategic behaviour.

4 Although the theories that we employ in this paper are welfarist, it is possible to combine consequentialist
morality with any principle that provides social rankings.

5 See Griffin [1996] and Heyd [1982].
6 See also Mulgan [1997].
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In Sections 2 and 3, we assume that the value function that ranks alternative states of

affairs according to their goodness is the utilitarian one—the sum of individual utilities. If

group one acts to maximize the utilitarian value function, giving equal weight to its own

interests and the interests of others, we say that it is perfectly altruistic. Imperfect or limited

altruism is modeled by considering two different objective functions, each of which is used

to guide the behaviour of group one. The first of these is applicable to an intertemporal

setting and it discounts the utilities of the members of other groups geometrically. The

second applies weights to the utilities of other groups which are smaller than the weight

assigned to the members of group one. The second formulation therefore contains the first

as a special case. Sections 2 and 3 differ in the way the set of feasible actions facing group

one is described. In each case, however, the same question is asked. Does a reduction in the

discount rate or an increase in the weight assigned to the utilities of groups other than the

first lead to better choices? That is, do the actions taken lead to consequences with greater

total utility?

Section 2 is concerned with a very simple case, the pure distribution problem. A fixed

amount of a single resource is to be distributed to the people in the groups, and group one’s

set of feasible actions corresponds to all divisions of the resource. In the discounting case,

we show that a decrease in the discount rate always has good consequences—total utility

rises. In the case of weights, we show that (i) a decrease in the weight on the utilities

of the members of group one leads to an increase in total utility, (ii) an increase in the

smallest weight leads to greater total utility, (iii) increases in other weights have ambiguous

consequences, and (iv) some altruism (positive weights for at least one group other than

group one) is better than none (self-interested behaviour by group one).

Section 3 considers the general choice problem. Group one has an arbitrary set of feasible

actions to which correspond a set of feasible utility vectors. We show that, with three or

more groups, a decrease in the discount rate, a decrease in the weight for group one, and an

increase in the weight for any other group have ambiguous consequences: total utility may

rise, fall, or remain unchanged. In addition, we show that, although it is true that utilitarian

consequentialist behaviour is always best, some altruism may be worse than none at all. If,

however, there are only two groups, then decreasing the weight on group one or increasing

the weight on group two (which are both equivalent to decreasing the discount factor) have

good consequences and, as before, some altruism is always better than none.

In Section 4, we propose another way to describe objective functions for agents whose

altruism is limited. Instead of placing weights on the well-being of others, we suggest that

utility constraints be used. The constraints place lower limits on the total utility of group

one and, possibly, some of the other groups. Group one then acts to maximize the utilitarian

value function subject to the constraints. In this formulation, the relaxation of any constraint
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(moving it to a lower level) never leads to worse actions and may lead to better ones. We

show that the two approaches are equivalent in the two-group case.

Section 5 discusses a number of variations on our results. First, they are extended to

generalized-utilitarian consequentialism, which allows inequality aversion in utilities. Sec-

ond, our results are shown to be robust to modifications of the utilitarian and generalized

utilitarian principles which discount the well-being of the members of future generations.

Third, the results of Section 2 on the pure distribution problem are extended to instances of

the general choice problem in which the set of feasible utility vectors associated with feasible

actions is described by an additively separable function. Last, we show that all our results

can be extended to actions whose consequences are uncertain. In this case, ex ante social

evaluations are employed.7 Section 6 concludes.

Throughout the paper, we assume that utilities satisfy the necessary measurability and

comparability requirements needed for the value and objective functions employed. In the

utilitarian cases of Sections 2, 3, and 4, utilities must be at least cardinally measurable and

unit comparable. The generalized utilitarian principles have more stringent measurability

and comparability requirements.8

2. The Pure Distribution Problem

In this section, we investigate limited altruism in a very simple setting, the pure distribution

problem. A given amount of a single resource is to be divided among the members of a fixed

set of people. The amount of the resource is ω ∈ R++, the set of individuals is {1, . . . , n},
n ≥ 2, and the utility function of person i ∈ {1, . . . , n} is Ui:R+ −→R, with

ui = Ui(xi), (2.1)

where xi ∈ R+ is person i’s consumption of the resource. We assume that, for each i, Ui is

continuous, twice continuously differentiable on R++, and strongly concave (Diewert, Avriel,

and Zang [1981]), which implies U ′′i (xi) < 0 for all xi ∈ R++. We assume U ′i(xi) > 0 for all

xi ∈ R++ and, in addition, that limxi→0 U
′
i(xi) =∞; this ensures that each person receives

a positive consumption level whenever the weight on his or her utility is positive.9

7 For discussions of ex ante and ex post social evaluation, see Blackorby, Donaldson, and Weymark [1996,
1997], Broome [1991], and Mongin and d’Aspremont [1998].

8 See Blackorby, Donaldson, and Weymark [1984], Bossert [1991], Bossert and Weymark [1998], d’Aspre-
mont and Gevers [1977], Roberts [1980a,b], and Sen [1974, 1977].

9 The utility function Ui could, instead, be defined on the interval [si,∞) where si is person i’s subsistence
level of consumption. The condition limxi→si U

′
i(xi) =∞ would replace the one in the text and, if

∑n
i=1 si <

ω, would ensure that each person receives a consumption level that is greater than subsistence. Because
this complicates the presentation without enhancing our understanding (all results are unaffected), we have
chosen to work with the simpler model.
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The utilitarian solution to the pure distribution problem is (∗x1, . . . ,
∗xn), and it maximizes∑n

i=1Ui(xi) subject to
∑n

i=1 xi ≤ ω. The first-order conditions are

U ′i(
∗xi) =

∗
λ (2.2)

for all i = 1, . . . , n, where λ is a Lagrange multiplier, and

n∑
i=1

∗xi = ω. (2.3)

(2.2) requires the resource to be distributed so that marginal utilities are the same for

everyone, and (2.3) requires the whole amount of the resource to be distributed.

In the following subsections, we assume that group one has a set of actions from which

it can choose and that, for every feasible allocation of the resource, there is an action which

leads to that allocation. Perfect altruism results in an action which maximizes total utility.

Limited altruism is characterized by assuming that group one acts to maximize an objective

function with utility weights on groups of individuals. In this case, group one receives a

higher weight than the others, and at least one other group has a positive weight. Self-

interested behaviour gives a weight of zero to the utilities of all groups other than the first.

The groups are N1, . . . , Nm, m ≥ 2, with at least one person in each, and they form a

partition of {1, . . . , n}—each person is in exactly one group.

It is convenient to deal with the maximization problems that follow in two stages. Be-

cause, in each problem, the utilities of the members of a group receive the same weight, the

allocation of resources within the groups must maximize
∑

i∈Nj Ui(xi) subject to
∑

i∈Nj xi ≤
zj , where zj is total consumption of group j, j = 1, . . . ,m. The functions Vj :R+ −→ R,

j = 1, . . . ,m, are given by

Vj(zj) = max
(xi)i∈Nj

{∑
i∈Nj

Ui(xi)

∣∣∣∣ ∑
i∈Nj

xi ≤ zj

}
. (2.4)

Given our assumptions, each Vj is continuous, twice continuously differentiable on R++,

V ′j (zj) > 0 and V ′′j (zj) < 0 for all zj ∈ R++, and limzj→0 V
′
j (zj) =∞ (see Lemma 1 in the

Appendix).

It follows that the utilitarian solution maximizes

m∑
j=1

Vj(zj) (2.5)

subject to
m∑
j=1

zj ≤ ω, (2.6)

and we write the solution as (∗z1, . . . ,
∗zm).
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2.1. Geometric Discounting

Suppose that group one is the present generation and that, although the social value function

is the utilitarian one, group one’s altruism is limited and, in deciding on its actions, it uses

an objective function that discounts the utilities of future generations geometrically. Let

δ ∈ (0, 1) be the discount factor. Generation one acts to maximize

m∑
j=1

δj−1
∑
i∈Nj

Ui(xi) (2.7)

subject to
n∑
i=1

xi =
m∑
j=1

∑
i∈Nj

xi ≤ ω. (2.8)

Using the functions V1, . . . , Vm, this can be converted into a maximization problem which

assigns resources to groups. Group one must choose (z1, . . . , zm) to maximize

m∑
j=1

δj−1Vj(zj) (2.9)

subject to the constraint
m∑
j=1

zj ≤ ω. (2.10)

If (◦x1, . . . ,
◦xn) solves the maximization problem of (2.7) and (2.8), and the solution to the

maximization problem of (2.9) and (2.10) is (◦z 1, . . . ,
◦zm), then

◦z j =
∑
i∈Nj

◦xi (2.11)

for all j = 1, . . . ,m. The utilitarian social value of the solution is

n∑
i=1

Ui(
◦xi) =

m∑
j=1

Vj(
◦z j), (2.12)

the undiscounted sum of utilities.

According to the utilitarian value function, the no-discounting solution to the maximiza-

tion problem is better than the solution with discounting. The question we ask, however, is

the following: if group one were to discount future utilities less, would total (undiscounted)

utility at the chosen action rise? That is, if δ̃ > δ̂, and (x̃1, . . . , x̃n) and (x̂1, . . . , x̂n) are the

corresponding solutions to (2.7) and (2.8), is it true that

n∑
i=1

Ui(x̃i) >
n∑
i=1

Ui(x̂i)? (2.13)
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This question is equivalent to asking whether

m∑
j=1

Vj(z̃j) >
m∑
j=1

Vj(ẑj), (2.14)

where (z̃1, . . . , z̃m) and (ẑ1, . . . , ẑm) are the optimal group consumption levels corresponding

to δ̃ and δ̂. In the case of the pure distribution problem, the answer is yes.

Theorem 1: In the pure distribution problem with discounting, if δ̃ > δ̂, then

n∑
i=1

Ui(x̃i) >
n∑
i=1

Ui(x̂i) (2.15)

or, equivalently,
m∑
j=1

Vj(z̃j) >
m∑
j=1

Vj(ẑj). (2.16)

Proof: See the Appendix.

The result of Theorem 1 agrees with the standard intuition of those who regard discount-

ing as inappropriate: less of it is always better. We shall see, however, that this intuition is

not robust.

2.2. Weighting Schemes

Suppose, as in the previous subsection, that group one’s actions determine the distribution of

the resource and that, instead of employing an objective function that discounts the utilities

of other groups geometrically, it attaches weights to their utilities which are smaller than

the weight it gives itself. This might occur if group one were an agent’s family, group two

the members of his or her community, and so on. The optimization problem solved by group

one is to maximize
m∑
j=1

γj
∑
i∈Nj

Ui(xi) (2.17)

subject to
n∑
i=1

xi ≤ ω, (2.18)

or, equivalently, to maximize
m∑
j=1

γjVj(zj) (2.19)
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subject to
m∑
j=1

zj ≤ ω. (2.20)

If group one is perfectly altruistic, all the weights are equal and positive. If group one’s

altruism is limited, γ1 > γj ≥ 0 for all j = 2, . . . ,m with γj > 0 for at least one j > 1.

Because any two groups with the same weight can be combined, we can assume that the

group weights are pairwise distinct. Without loss of generality, therefore, we number the

groups so that γj−1 > γj for all j = 2, . . . ,m. If group one’s behaviour is self interested,

γ1 > 0 and γj = 0 for all j = 2, . . . ,m.

In the case of limited altruism with γm > 0, the first-order conditions are

γjV
′
j (z̄j) = λ̄ (2.21)

for all j = 1, . . . ,m, and
m∑
j=1

z̄j = ω. (2.22)

If γm = 0, (2.21) holds for all j 6= m and z̄m = 0. (2.21) shows that, in this solution, marginal

utilities are unequal; group one has the lowest and group m the highest. Consequently, from

the utilitarian point of view, transfers from groups with higher weights to groups with lower

weights are warranted.

Theorem 2 proves that, in the case of limited altruism, an increase in γm, the smallest

weight, or a decrease in γ1, the largest weight, leads to an increase in total utility. Thus,

from the (unweighted) utilitarian standpoint, such changes have good consequences.

Theorem 2: Given limited altruism, in the pure distribution problem with weights, if (i)

γ̃1 < γ̂1 and γ̃j = γ̂j for all j = 2, . . . ,m, or (ii) γ̃m > γ̂m and γ̃j = γ̂j for all j = 1, . . . ,m−1,

then
n∑
i=1

Ui(x̃i) >
n∑
i=1

Ui(x̂i) (2.23)

or, equivalently,
m∑
j=1

Vj(z̃j) >
m∑
j=1

Vj(ẑj). (2.24)

8



Proof: See the Appendix.

Suppose that γm > 0 and that the weight γk, 1 < k < m, is increased. This might be

the result of an increase in concern for the agent’s friends, with other weights unchanged.

Lemma 2, which is used in the proof of Theorem 2, shows that, other weights equal, this

increases the consumption of group k and decreases the consumption of all other groups.

In addition, an increase in γk increases the value of the multiplier λ̄. This implies that the

most deserving group (at the margin)—group m—loses consumption to other groups. Total

(unweighted) utility may rise, fall, or remain unchanged in this case.

The following is an example in which total utility falls in response to an increase in an

intermediate weight. For three groups, total utility TU is
∑3

j=1 Vj(z̄j) and, using (2.21), the

change in TU with respect to an increase in γ2 is given by

∂TU

∂γ2
=

3∑
j=1

V ′j (z̄j)
∂z̄j

∂γ2
= λ̄

3∑
j=1

1

γj

∂z̄j

∂γ2
. (2.25)

From (2.22),
∂z̄2

∂γ2
= −∂z̄1

∂γ2
− ∂z̄3

∂γ2
(2.26)

and it follows that
∂TU

∂γ2
=

[
1

γ1
− 1

γ2

]
∂z̄1

∂γ2
+

[
1

γ3
− 1

γ2

]
∂z̄3

∂γ2
. (2.27)

If γ1 = 1, γ2 = 1/2, and γ3 = 1/3, this becomes

∂TU

∂γ2
= −∂z̄1

∂γ2
+
∂z̄3

∂γ2
. (2.28)

Because both ∂z̄1/∂γ2 and ∂z̄3/∂γ2 are negative, the sign of ∂TU/∂γ2 depends on their

relative magnitudes. Differentiating (2.21) with respect to γ2 for j = 1, 3 and setting γ1 = 1

and γ3 = 1/3,

∂z̄1

∂γ2
=
∂λ̄/∂γ2

V ′′1 (z̄1)
(2.29)

and
∂z̄3

∂γ2
= 3

∂λ̄/∂γ2

V ′′3 (z̄3)
. (2.30)

Consequently, (2.28) becomes

∂TU

∂γ2
=

∂λ̄

∂γ2

[
− 1

V ′′1 (z̄1)
+ 3

1

V ′′3 (z̄3)

]
. (2.31)

Both V ′′1 (z̄1) and V ′′3 (z̄3) are negative, but they can take on any magnitude. That is, for any

ω > 0, any (z̄1, z̄2, z̄3) ∈ R3
++ with

∑3
j=1 z̄j = ω, and any (v1, v2, v3) ∈ R3

−−, there exist
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functions V1, V2, V3 such that (z̄1, z̄2, z̄3) maximizes V1(z1)+(1/2)V2(z2)+(1/3)V3(z3) subject

to
∑3

j=1 zj ≤ ω, and
(
V ′′1 (z̄1), V ′′2 (z̄2), V ′′3 (z̄3)

)
= (v1, v2, v3). If V ′′1 (z̄1) = V ′′3 (z̄3) = −1,

∂TU

∂γ2
= −2

∂λ̄

∂γ2
. (2.32)

Lemma 2 shows that ∂λ̄/∂γ2 is positive, and it follows that, in this example, ∂TU/∂γ2 < 0:

total utility falls when the weight on group 2 increases.

Is some altruism better than none at all? That is, is giving some weight to at least one

other group better than assigning a zero weight to all other groups? In the pure distribution

problem with weights, this is the case, and the result is proved in Theorem 3.

Theorem 3: In the pure distribution problem with weights, limited altruism results in a

better outcome, according to the utilitarian value function, than self-interested behaviour.

Proof: See the Appendix.

Theorem 3 implies that some altruism is always better than none in the pure distribution

problem with weights and with discounting. This implies that discounting with any δ ∈ (0, 1]

is better than purely self-interested behaviour.

3. The General Choice Problem

The pure distribution problem is a special case; in general, constraints may take many forms.

For example, moral agents (either single individuals or groups) cannot control the behaviour

of other people and technologies are rarely linear. Under certain circumstances, however, it

is possible to predict the behaviour of others and the effect that one’s actions have on it.

Given that, an agent’s actions will correspond to a set of feasible utility vectors.

Suppose that the set of feasible utility vectors corresponding to the set of actions available

to the agents in group one is F . It need not be convex, but it must be such that solutions

to our maximization problems exist. For that reason we assume that F is compact (this is

consistent with F being a finite set). We call the choice problem for group one the general

choice problem.

The best possible behaviour for group one is to choose an action that maximizes the

unweighted sum
∑n

i=1 ui subject to (u1, . . . , un) ∈ F . If group one’s altruism is limited, it

maximizes the weighted sum
m∑
j=1

γj
∑
i∈Nj

ui (3.1)
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subject to the constraint

(u1, . . . , un) ∈ F , (3.2)

where γ1 > 0, γj−1 > γj for all j = 2, . . . ,m, and γm ≥ 0. Self-interested behaviour on the

part of group one is given by the case γj = 0 for all j = 2, . . . ,m, and behaviour that is guided

by the utilitarian principle corresponds to the case in which γj = γ1 for all j = 2, . . . ,m.

3.1. Two Groups

If there are only two groups of people, a very general result is true. In this case, group one

acts to maximize

γ1

∑
i∈N1

ui + γ2

∑
i∈N2

ui (3.3)

subject to (3.2). Because there are only two groups, this covers the discounting case with

δ = γ2/γ1.

We ask whether, when group one’s altruism is limited, increasing γ2 or decreasing γ1

results in a better outcome according to the utilitarian value function. In this case, it does.

Theorem 4: Given limited altruism, in the general choice problem with two groups, if (i)

γ̃1 = γ̂1 and γ̃2 > γ̂2 or (ii) γ̃1 < γ̂1 and γ̃2 = γ̂2 then

n∑
i=1

ũi ≥
n∑
i=1

ûi. (3.4)

Proof: See the Appendix.

Because Theorem 4 is true for the case γ̂2 = 0, some altruism is at least as good as

none in the two-group case. The inequality of Theorem 4 is weak rather than strict because

maxima may not be unique and because the two utility vectors may coincide as well. If we

assume, however, that maxima are unique and that the two utility vectors are different, the

inequality in (3.4) is strict.

Theorem 4 shows that, in the case of two groups, an increase in the weight on group

two or, equivalently, a decrease in the weight on group one results in a social improvement

according to the utilitarian principle. We show in the following subsections that this result

does not generalize to three or more groups.
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3.2. Geometric Discounting

In this subsection, we construct two examples to show that the result of Theorem 1 is not

true in the general choice problem. To do it, we consider the case in which there is one

person in each group.

First we consider the maximization problem with positive weights (γ1, . . . , γn) ∈ Rn++.

In that case, (ū1, . . . , ūn) maximizes
∑n

i=1 γiui subject to (u1, . . . , un) ∈ F . We define the

function Π:Rn++ −→R by

Π(γ1, . . . , γn) = max
(u1,...,un)

{ n∑
i=1

γiui

∣∣∣ (u1, . . . , un) ∈ F
}
. (3.5)

The function Π is analogous to a profit function, and it is homogeneous of degree one and

convex. Standard duality theory shows that, if Π is differentiable, then

∂Π(γ1, . . . , γn)

∂γi
= Πi(γ1, . . . , γn) = ūi (3.6)

for all i = 1, . . . , n.

For our example, n = 3 and we choose the approximation

Π(γ1, γ2, γ3) = 2γ1 + 9γ2 + 3γ3 − 6γ
1
2
1 γ

1
2
2 + 3γ

1
2
1 γ

1
2
3 − 8γ

1
2
2 γ

1
2
3 . (3.7)

This function is a special case of
∑n

i=1

∑n
j=1 αijγ

1
2
i γ

1
2
j , and it is capable of approximating

any function to the second order at a point (Diewert [1971]).

In the case of discounting, γi = δi−1 for all i = 1, . . . , n. We choose δ = 1/4, and at

that value, (γ1, γ2, γ3) = (1, 1/4, 1/16). Writing (◦u1,
◦u2,
◦u3) as the vector that maximizes the

discounted sum of utilities, using (3.6), ◦u1 = Π1(1, 1/4, 1/16) = 7/8, ◦u2 = Π2(1, 1/4, 1/16) =

1, and ◦u3 = Π3(1, 1/4, 1/16) = 1.

The Hessian matrix of Π at (1, 1/4, 1/16) is

H =

 9/16 −3 3

−3 16 −16
3 −16 16

 . (3.8)

It can be checked that H satisfies the standard conditions for convexity and homogeneity of

Π.

Total utility is

TU =

3∑
i=1

◦ui = Π1 + Π2 + Π3, (3.9)
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and
∂TU

∂δ
= Π12 + 2δΠ13 + Π22 + 2δΠ23 + Π32 + 2δΠ33

= −3 + 3/2 + 16− 8− 16 + 8 = −3/2.

(3.10)

Thus, an increase in δ decreases total utility.

If δ = 1, TU is maximized. What the example shows is that TU is not necessarily

monotonically increasing in δ throughout its range.

A second example is concerned with discrete choice. Suppose that n = 3 and that the set

F consists of just two utility vectors: (100, 100, 100) and (90, 150, 50). Action a1 results in

the first of these and action a2 leads to the second. Total utility is greater in (100, 100, 100),

so utilitarian consequentialism recommends a1. If person one discounts the utilities of the

other two with δ = 1/4, (100, 100, 100) has a discounted value of 100 + 25 + 6.25 = 131.25

and (90, 150, 50) has a discounted value of 90 + 37.5 + 3.125 = 130.625 and a1 will be

chosen. If, however, the level of discounting is reduced, with δ = 1/2, discounted utilities

are 100+50+25 = 175 and 90+75+12.5 = 177.5, and a2 will be chosen. A decrease in the

amount of discounting leads to an action that is worse from the utilitarian point of view.

3.3. Weighting Schemes

If there are more than two groups, increasing the weight on the utilities of the people in

group m or decreasing the weight on the utilities of the people in group one has ambiguous

consequences. In addition, it is not necessarily true that some altruism is better than none.

As in Subsection 3.2, we construct examples for the case where there is one person in

each group. Analogously to (3.6), we know that

∂Π(γ1, . . . , γn)

∂γi
= ūi, (3.11)

where (ū1, . . . , ūn) maximizes
∑n

i=1 γiui subject to (u1, . . . , un) ∈ F . It follows that the

derivative of the change in total utility with respect to a change in γk is

∂TU

∂γk
=

n∑
i=1

Πik(γ1, . . . , γn). (3.12)

Using the example of Subsection 3.2,

∂TU

∂γ1
=

3∑
i=1

Πi1(1, 1/4, 1/16) = 9/16− 3 + 3 = 9/16 > 0. (3.13)

Consequently, in the general choice problem, property (i) of Theorem 2 does not hold: a

decrease in the weight on the utility of group one, other weights unchanged, can lead to a
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decrease in total utility. Similar examples can be found in which an increase in the smallest

weight leads to a decrease in total utility.

A second example can be described as follows. Suppose that n = 3 and that the set

F consists of two utility vectors: (100, 100, 100) and (80, 150, 50). Action a1 results in the

first vector and action a2 leads to the second. Total utility is greater in (100, 100, 100), so

utilitarian consequentialism recommends a1. If person one is completely selfish, he or she

chooses actions using the weights (γ1, γ2, γ3) = (1, 0, 0). In this case, the weighted value of

(100, 100, 100) is 100 and the weighted value of (80, 150, 50) is 80, so a1—the better action—

is chosen. If, however, person one uses the weights (γ1, γ2, γ3) = (1, .8, .2), weighted values of

the two utility vectors are 100 + 80 + 20 = 200 and 80 + 120 +10 = 210, so a2 is chosen. An

increase in the weights on the utilities of others leads to a worse action from the utilitarian

point of view.

In the same example, suppose that weights are (1, .3, .2). Then the weighted value

of (100, 100, 100) is 100 + 30 + 20 = 150 and the weighted value of (80, 150, 50) is 80 +

45 + 10 = 135. Consequently, a1 is chosen. Because a2 is chosen when the weights are

(1, .8, .2) an increase in the middle weight (γ2) results in an action which is worse according

to utilitarianism.

Now suppose that the set F consists of the utility vectors (100, 200, 0) and (200, 10, 80).

Action a1 results in the first vector and a2 results in the second. According to utilitarian

consequentialism, (100, 200, 0) is better and a1 is the best action person one can take. Sup-

pose that person one uses the weights (1, .6, .1) in his or her objective function. Then the

weighted value of the two outcomes is 100 + 120 = 220 and 200 + 6 + 8 = 214 so a1 is

chosen. If, however, the weight on person three is increased to .5, weighted values are 220

and 200 + 6 + 40 = 246 and a2 is chosen: an increase in the smallest weight leads to an

action that is worse.

Given our assumptions, maximized weighted utility is continuous in (γ1, . . . , γn). Conse-

quently, if the weights are sufficiently close to equality, moving them toward equality results

in actions that are no worse. Therefore, if departures from utilitarian consequentialism are

small, there is no problem.

4. Solutions

If there is any reason for attaching lower weights to the interests of others than to oneself

(or one’s group), it must be that one wishes to limit the sacrifices that morally based action

demands. If this practice is to be a reasonable one, it ought to be true that any change

in the weights that brings them closer to the ones that represent the social good should

move behaviour in that direction as well. But, as we have seen, this is not the case, both

for reductions in discount rates and for changes in individual or group weights that move
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them closer to the weight on one’s own well-being. These results are obtained under the

assumption that the social good is represented by the utilitarian value function, but the

next section shows that they have a much broader application.

We suggest, therefore, that a new approach is needed. It is legitimate to expect that

agents may be unwilling to make very great sacrifices and to take actions that would harm

people or groups with which they are personally or emotionally involved. Our suggestion

is that principles for guiding action should take this into account explicitly rather than

attempting to mimic it with weighting schemes.

Suppose that group one is to take an action from a feasible set whose consequences, in

utility terms, consist of the vectors in the set F . In order to avoid untoward sacrifices, group

one chooses a set of utility levels that serve as constraints on its actions. Let C be a proper

subset of the m groups which includes group one and, for each j ∈ C, let cj be a total-utility

floor for the group. We assume that there is a feasible utility vector (u1, . . . , un) ∈ F in

which each group j ∈ C has at least a total utility of cj. Group one chooses actions to

maximize total utility subject to these constraints. Therefore, an action is chosen such that

its associated utility vector (ǔ1, . . . , ǔn) maximizes

n∑
i=1

ui (4.1)

subject to

(u1, . . . , un) ∈ F (4.2)

and ∑
i∈Nj

ui ≥ cj (4.3)

for all j ∈ C.

This formulation of the problem has a significant advantage over the discounting/weights

one. If any of the constraints is relaxed, the action chosen is at least as good as the one

chosen before the change. The best action(s) is (are) unchanged if the constraint did not

bind in the original problem. If it did bind, the action that was chosen is still available

because its associated utility vector satisfies the new constraints. Therefore, the new action

can be no worse and may be better because more utility vectors and their associated actions

are now at hand.

In our suggestion in this section, all the actions that are better than the chosen action,

according to the utilitarian value function, must violate the constraints. If the constraints

on group utility levels are regarded as describing obligatory actions for an individual agent,

supererogatory actions are the ones that lead to utility vectors in F with greater total

utilities and, at the same time, violate the constraints. Our theorems show that no similar
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formulation is possible (for the general choice problem) in the discounting/weights approach

except in the two-group case.

In the general choice problem with two groups, the above formulation of the problem

is equivalent to the discounting/weights formulation. If a utility vector is chosen when the

weight on the utilities of people in group one is greater than the weight for group two

and both are positive, then the same utility vector maximizes total utility subject to the

constraint that the total utility of group one be no less than its total utility in the chosen

utility vector in the weights case. This is shown in the following theorem.

Theorem 5: In the general choice problem with two groups, for any (γ1, γ2) with γ1 >

γ2 > 0, (ǔ1, . . . , ǔn) maximizes

γ1

∑
i∈N1

ui + γ2

∑
i∈N2

ui (4.4)

subject to

(u1, . . . , un) ∈ F (4.5)

if and only if (ǔ1, . . . , ǔn) maximizes

n∑
i=1

ui =
∑
i∈N1

ui +
∑
i∈N2

ui (4.6)

subject to

(u1, . . . , un) ∈ F (4.7)

and ∑
i∈N1

ui ≥
∑
i∈N1

ǔi. (4.8)

Proof: See the Appendix.

The maximizing vectors in the two problems in Theorem 5 may not be unique. The

theorem indicates, however, that each of them is a solution to both problems.

Our new formulation of the problem leaves open the question of how to set the con-

straints. It might be argued, for example, that, for a single agent, a utility floor equal to

some fraction of the utility that he or she would get with selfish behaviour would be appro-

priate. These rules of thumb could be extended to other groups such as immediate family,

members of the agent’s community, and so on.
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5. Generalizations

The results of this paper are not limited to the models that we have chosen. The presentation

is significantly simplified with the utilitarian value function but other value functions preserve

the results. These include the generalized utilitarian principles, which allow for inequality

aversion in utilities (Subsection 5.1), and principles which discount the utilities of future

generations or weight the interests of different groups unequally (Subsection 5.2). We do not

endorse principles of the latter type, but include a discussion for completeness.

Some of the results of Section 2 on the pure distribution problem can also be generalized

to additively separable constraints (Subsection 5.3). The section concludes with a discussion

of uncertainty (Subsection 5.4). All our results on the general choice problem can be extended

to uncertain environments. In addition, combinations of these generalizations, applied to the

appropriate models, work without difficulty.

5.1. Generalized Utilitarianism

Utilitarianism is often criticized on the grounds that it exhibits no aversion to utility in-

equality.10 The value function for generalized utilitarianism (GU)11 employs transformed

utility levels and is given by
n∑
i=1

g(ui) (5.1)

where g is a continuous and increasing function. GU is weakly inequality averse if g is concave

and strictly inequality averse if g is strictly concave. We assume in the discussion that

follows that g is concave (which includes the case of strict concavity) and twice continuously

differentiable.

The pure distribution problem can be adapted to GU by defining a transformed utility

function Ugi = g ◦ Ui for each i = 1, . . . , n. Weights and discount factors are applied

to transformed utilities Ugi (xi), the analysis is unchanged, and the theorems indicate the

direction of change in the GU value function.

The general choice problem using GU as the value function requires the selection of a

utility vector in F that maximizes
n∑
i=1

g(ui). (5.2)

10 Utilitarianism does possess aversion to income inequality as long as individual (indirect) utility functions
have the property of decreasing marginal utility of income.
11 See Blackorby, Bossert, and Donaldson [1995, 1996, 1997a,b] and Broome [1992] for discussions.
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This problem can be rewritten by defining transformed utilities υi = g(ui). The set of

feasible transformed utilities is

Fg =
{

(υ1, . . . , υn)
∣∣ υi = g(ui) for all i = 1, . . . , n and (u1, . . . , un) ∈ F

}
, (5.3)

and the maximization problems use unweighted, discounted, or weighted transformed utilities

and the feasible set Fg.

5.2. Discounting in the Value Function

It might be thought that discounting or weighting is appropriate in the value function that

represents the social good. We discuss the discounting case in this subsection and note that

the case of weights is analogous. Either case can be extended to GU without difficulty.

Suppose that the social good is represented by the value function

m∑
j=1

δ̄j−1
∑
i∈Nj

ui (5.4)

where δ̄ is the ethically appropriate discount factor. We define ῡi to be δ̄j−1ui for all i ∈ Nj
and all j = 1, . . . ,m. In the pure distribution problem, ῡi = Ūi(xi): = δ̄j−1Ui(xi) for all

i ∈ Nj and all j = 1, . . . ,m. In addition, we define δ̌ = δ/δ̄ where δ is the actual discount

factor in group one’s objective function.

In the pure distribution problem, the best actions maximize

m∑
j=1

δ̄j−1
∑
i∈Nj

Ui(xi) =
m∑
j=1

∑
i∈Nj

Ūi(xi) =
n∑
i=1

Ūi(xi), (5.5)

and, when utilities are discounted at a level that is more than the ethically appropriate level

(δ < δ̄), chosen actions will maximize the objective function

m∑
j=1

δj−1
∑
i∈Nj

Ui(xi) =
m∑
j=1

(
δ

δ̄

)j−1 ∑
i∈Nj

δ̄j−1Ui(xi) =
m∑
j=1

δ̌j−1
∑
i∈Nj

Ūi(xi). (5.6)

Moving δ closer to δ̄ is equivalent to moving δ̌ toward one, our analysis is unchanged and

Theorem 1 can be interpreted as describing the consequences of moving δ toward δ̄.

Similar techniques permit the reinterpretation of Theorems 2 and 3. In those cases,

actual weights are less than the ethically appropriate weights and are moved toward them.

In the general choice problem, the set of feasible discounted utilities is

F δ̄ =
{

(ῡ1, . . . , ῡn)
∣∣ ῡi = δ̄j−1ui for all i ∈ Nj , j = 1, . . . ,m,

and (u1, . . . , un) ∈ F
}
,

(5.7)

and the results of Sections 3 and 4 can be reinterpreted without difficulty.
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5.3. Additive Separability and the Feasible Set

Some of the results of Section 2 (on the pure distribution problem) can be extended to the

general choice problem if the feasible set F can be described by an additively separable

function. In this case, there exist functions h1, . . . , hn and a constant ω̄ such that

F =

{
(u1, . . . , un)

∣∣∣ n∑
i=1

hi(ui) ≤ ω̄

}
. (5.8)

We assume that each function hi is increasing, twice continuously differentiable, and strongly

convex. This ensures that the set F is strictly convex.

For each i, we define νi = hi(ui) so that ui = h−1
i (νi). Because each hi is strongly convex,

h−1
i is strongly concave. Defining Υi = h−1

i for all i = 1, . . . , n, the utilitarian solution to

the general choice problem requires the choice of an action that leads to a vector (∗ν1, . . . ,
∗νn)

that maximizes
n∑
i=1

Υi(νi) (5.9)

subject to
n∑
i=1

νi ≤ ω̄ (5.10)

with similar maximization problems for the discounting and weights cases. Provided that

solutions to the maximization problems exist, it is straightforward to reinterpret Theorem 1

and, with positive weights, Theorem 2 in this generalization.

5.4. Uncertainty

The results of Sections 3 and 4 can be generalized to the case of uncertainty. Let S be a

finite set of contingent states of affairs with state-contingent feasible utility vectors. Thus

(us1, . . . , u
s
n) is the utility vector that occurs in state s ∈ S and the set FS consists of vectors

of the form ((u1
1, . . . , u

1
n), . . . , (u

S
1 , . . . , u

S
n)) where S = |S|. Individual i’s ex ante utility is

ui = Uei (u
1
i , . . . , u

S
i ) where Uei is an increasing function. We do not assume that it satisfies

the expected-utility hypothesis, although that is covered as a special case. It is possible to

describe the set of feasible ex ante utilities Fe given the functions Uei , i = 1, . . . , n. It is

Fe =
{

(u1, . . . , un)
∣∣∣ui = Uei (u

1
i , . . . , u

S
i ) for all i = 1, . . . , n

and
(
(u1

1, . . . , u
1
n), . . . , (u

S
1 , . . . , u

S
n)
)
∈ FS

}
.

(5.11)

This reduces the general choice problem under uncertainty to the mathematical equivalent

of the general choice problem without uncertainty.
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6. Conclusion

This paper suggests that objective functions that attach weights to or discount the utilities

of others perform poorly as guides to action when altruism is limited. In the idealized

environment of the pure distribution problem, the discounting formulation performs in a

reasonable way—decreases in the discount rate result in better choices. In the weights

formulation, however, only decreases in the weight for group one or increases in the weight

for group m lead to the same result; all other changes have ambiguous consequences. In

addition, a move from self-interested behaviour for group one to any amount of altruism

leads to a better outcome.

In the general choice problem with three or more groups, however, none of these changes

in objective functions has similar implications. Although utilitarian consequentialist be-

haviour, in which the value function and objective functions coincide, leads to the best

outcome, increases in the amount of altruism may lead to better or worse outcomes. In

addition, self-interested behaviour by group one may be better than incomplete altruism.

In the case of two groups, any increase in the weight on the utilities of the members of the

second group improves the choices of the first.

We have shown that these results are robust to a number of generalizations, which

include employment of the generalized utilitarian value functions, value functions that allow

discounting, and environments that allow the consequences of actions to be uncertain.12 In

addition, we show that some of the results of Section 2 on the pure distribution problem

can be extended to the general choice problem if the feasible set of utility vectors F has an

additively separable representation. We cannot reasonably expect feasible sets to take this

form, however. Technologies are more general except in the simplest of models and moral

agents cannot control the behaviour of others completely.

We suggest, therefore, that constraints on the utility levels of groups in which the agent

is especially interested provide a better way to guide actions when altruism is less than

perfect. In the case of intertemporal economic policies, the present generation might select

total utility levels for itself and, possibly, several others that follow it. No policy would be

chosen that has the consequence of pushing group utilities below these floors. In the case

of individual moral agents, no action would be taken that fails to keep the well-being of the

agent and the groups with which he or she is especially concerned at or above the constraint

levels. In both cases, any relaxation of the constraints leads to outcomes that are no worse

and, possibly, better. It is true, of course, that the best actions are the ones in which the

constraints are absent.

12 Uncertainty is sometimes used as a justification for discounting. In our formulation, however, it does
not provide one because risk aversion is captured by individual utility functions.
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APPENDIX

Lemma 1: For each j = 1, . . . ,m, the function Vj , given by (2.4), is twice differentiable,

V ′j (zj) > 0 and V ′′j (zj) < 0 (A.1)

for all zj ∈ R++, and

lim
zj→0

V ′j (zj) =∞. (A.2)

Proof: For all zj ∈ R++, the first-order conditions for the maximization problem in (2.4)

are

U ′i(x̂i) = λ̂ (A.3)

and ∑
i∈Nj

x̂i = zj. (A.4)

From (A.3), λ̂ > 0.

The function Vj satisfies

Vj(zj) =
∑
i∈Nj

Ui(x̂i). (A.5)

Consequently,

V ′j (zj) =
∑
i∈Nj

U ′i(x̂i)
∂x̂i

∂zj
= λ̂

∑
i∈Nj

∂x̂i

∂zj
. (A.6)

From (A.4), ∑
i∈Nj

∂x̂i

∂zj
= 1, (A.7)

so

V ′j (zj) = λ̂ > 0. (A.8)

From (A.3),

U ′′i (x̂i)
∂x̂i

∂zj
=
∂λ̂

∂zj
. (A.9)

Because U ′′i (x̂i) < 0 for all i ∈ Nj , if ∂λ̂/∂zj ≥ 0, it follows that ∂x̂i/∂zj ≤ 0 for all i ∈ Nj
which contradicts (A.7). Consequently, ∂λ̂/∂zj < 0 and ∂x̂i/∂zj > 0.

(A.8) implies

V ′′j (zj) =
∂λ̂

∂zj
< 0. (A.10)
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As zj → 0, x̂i → 0 and, using (A.3), limzj→0 λ̂ =∞. From (A.8), limzj→0 V
′
j (zj) =∞.

Theorem 1: In the pure distribution problem with discounting, if δ̃ > δ̂, then

n∑
i=1

Ui(x̃i) >
n∑
i=1

Ui(x̂i) (A.11)

or, equivalently,
m∑
j=1

Vj(z̃j) >
m∑
j=1

Vj(ẑj). (A.12)

Proof: It suffices to show that the assumptions imply (A.12). If (◦z 1, . . . ,
◦zm) solves the

maximization problem of (2.9) and (2.10), the first-order conditions are

δj−1V ′j (
◦z j)−

◦
λ = 0 (A.13)

and

−
m∑
j=1

◦z j + ω = 0 (A.14)

which implies
m∑
j=1

∂ ◦z j
∂δ

= 0 (A.15)

for all j = 1, . . . ,m. (A.13) implies V ′1(◦z 1) =
◦
λ and (j − 1)δj−2V ′j (

◦z j) = (j − 1)
◦
λ/δ for all

j ≥ 2. Furthermore,

V ′j (
◦z j) = δm−jV ′m(◦zm) (A.16)

for all j < m.

Differentiating the first-order conditions with respect to δ, we obtain


0 −1 · · · −1
−1 V ′′1 · · · 0
...

...
...

−1 0 · · · V ′′m



∂
◦
λ/∂δ

∂ ◦z 1/∂δ
...

∂ ◦zm/∂δ

 =


0
0

−V ′2(◦z 2)
...

−(m− 1)δm−2V ′m(◦zm)

 =

◦
λ

δ


0
0
−1
...

−(m− 1)


(A.17)

where V ′′j is used instead of V ′′j (◦z j) for simplicity.
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Let y0 := (δ/
◦
λ)(∂

◦
λ/∂δ), yj := (δ/

◦
λ)(∂ ◦z j/∂δ) for all j = 1, . . . ,m, and

y =


y0

y1
...

ym

 . (A.18)

Using these definitions and interchanging the first and last rows of (A.17), this system of

equations is equivalent to
−1 0 · · · 0 V ′′m
−1 V ′′1 · · · 0 0
...

...
...

...

−1 0 · · · V ′′m−1 0
0 −1 · · · −1 −1

 y =



−(m− 1)

0
−1
...

−(m− 2)
0

 . (A.19)

Multiplying the first equation by −1 and adding it to all rows but the last,
1 0 · · · 0 −V ′′m
0 V ′′1 · · · 0 −V ′′m
...

...
...

...
0 0 · · · V ′′m−1 −V ′′m
0 −1 · · · −1 −1

 y =



m− 1

m− 1
m− 2

...

1
0

 . (A.20)

Dividing all but the first and last rows by V ′′1 , . . . , V
′′
m−1 respectively and adding all of them

to the last row,

1 0 · · · 0 −V ′′m
0 1 · · · 0 −V ′′m/V ′′1
...

...
...

...
0 0 · · · 1 −V ′′m/V ′′m−1

0 0 · · · 0 −
[
1 +

∑m−1
h=1 V

′′
m/V

′′
h

]


y =


m− 1

(m− 1)/V ′′1
...

1/V ′′m−1∑m−1
h=1 (m− h)/V ′′h

 . (A.21)

Finally, we divide the last row by −
[
1 +

∑m−1
h=1 V

′′
m/V

′′
h

]
to obtain


1 0 · · · 0 −V ′′m
0 1 · · · 0 −V ′′m/V ′′1
...

...
...

...
0 0 · · · 1 −V ′′m/V ′′m−1

0 0 · · · 0 1

 y =



m− 1

(m− 1)/V ′′1
...

1/V ′′m−1

−
[∑m−1

h=1 (m− h)/V ′′h
]/[

1 +
∑m−1

h=1 V
′′
m/V

′′
h

]


.

(A.22)
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Therefore,

ym = −
∑m−1

h=1 (m− h)/V ′′h
1 +

∑m−1
h=1 V

′′
m/V

′′
h

> 0. (A.23)

For 1 ≤ j < m, we obtain

yj =
m− j
V ′′j

+
V ′′m
V ′′j

ym =
1

V ′′j

[
(m− j) + V ′′mym

]
. (A.24)

Now we differentiate (A.16) with respect to δ to obtain

V ′′j
∂ ◦z j
∂δ

= (m− j)δm−j−1V ′m(◦zm) + δm−jV ′′m
∂ ◦zm
∂δ

. (A.25)

Substituting (
◦
λ/δ)yj for ∂ ◦z j/∂δ, and using (A.13) for V ′m(◦zm),

V ′′j

◦
λ

δ
yj = (m− j)δm−j−1

◦
λ

δm−1
+ δm−jV ′′m

◦
λ

δ
ym, (A.26)

which is the same as

V ′′j

◦
λ

δ
yj = (m− j)δm−j−1

◦
λ

δ

1

δm−2
+ δm−jV ′′m

◦
λ

δ
ym. (A.27)

Dividing by
◦
λ/δ and simplifying,

V ′′j yj = (m− j)δ1−j + δm−jV ′′mym. (A.28)

By (A.24), V ′′j yj = (m− j) + V ′′mym. Therefore, by (A.28),

(m− j)δ1−j + δm−jV ′′mym = (m− j) + V ′′mym. (A.29)

Solving for V ′′mym, we obtain

V ′′mym =
(m− j)(δ1−j − 1)

1− δm−j (A.30)

for all j = 1, . . . ,m− 1. Substituting (A.30) into (A.24),

yj =
1

V ′′j

[
(m− j) +

(m− j)(δ1−j − 1)

1− δm−j

]
=

1

V ′′j

[
(m− j)(δ1−j − δm−j)

1− δm−j

]
< 0

(A.31)
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for all j = 1, . . . ,m− 1. By (A.15), ym = −
∑m−1

j=1 yj. Therefore, using (A.13),

m∑
j=1

V ′j (
◦z j)yj =

◦
λ

m∑
j=1

1

δj−1
yj =

◦
λ

[m−1∑
j=1

1

δj−1
yj −

1

δm−1

m−1∑
j=1

yj

]

=
◦
λ

m−1∑
j=1

(δ1−j − δ1−m)yj > 0,

(A.32)

where the last line follows from (A.31). Substituting back (δ/
◦
λ)(∂ ◦z j/∂δ) for yj ,

m∑
j=1

V ′j (
◦z j)

δ
◦
λ

∂ ◦z j
∂δ

=
◦
λ

m∑
j=1

(δ1−j − δ1−m)
δ
◦
λ

∂ ◦z j
∂δ

, (A.33)

and, therefore, writing total utility
∑m

j=1 Vj(
◦z j) as TU ,

∂TU

∂δ
=

m∑
j=1

V ′j (
◦z j)

∂ ◦z j
∂δ

=
◦
λ

m−1∑
j=1

(δ1−j − δ1−m)
∂ ◦z j
∂δ

> 0 (A.34)

because yj < 0 implies (
◦
λ/δ)yj = ∂ ◦z j/∂δ < 0.

Lemma 2: Given limited altruism, in the pure distribution problem with positive weights,

for any k = 1, . . . ,m,
∂z̄k
∂γk

> 0, (A.35)

∂z̄j

∂γk
< 0 (A.36)

for all j = 1, . . . ,m such that j 6= k, and

∂λ̄

∂γk
> 0. (A.37)
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Proof: Differentiating the first-order conditions (2.21) and (2.22),

V ′k(z̄k) + γkV
′′
k (z̄k)

∂z̄k
∂γk

=
∂λ̄

∂γk
, (A.38)

γjV
′′
j (z̄j)

∂z̄j

∂γk
=

∂λ̄

∂γk
(A.39)

for all j = 1, . . . ,m such that j 6= k, and

m∑
j=1

∂z̄j

∂γk
= 0. (A.40)

If ∂λ̄/∂γk ≤ 0, it follows that ∂z̄j/∂γk ≥ 0 for all j 6= k (from (A.39)), and

γkV
′′
k (z̄k)

∂z̄k
∂γk

=
∂λ̄

∂γk
− V ′k(z̄k) < 0 (A.41)

(from (A.38)), implying ∂z̄k/∂γk > 0, which contradicts (A.40). Consequently, ∂λ̄/∂γk > 0.

From (A.39), ∂z̄j/∂γk < 0 for all j 6= k and, from (A.40), ∂z̄k/∂γk > 0.

Theorem 2: Given limited altruism, in the pure distribution problem with weights, if (i)

γ̃1 < γ̂1 and γ̃j = γ̂j for all j = 2, . . . ,m, or (ii) γ̃m > γ̂m and γ̃j = γ̂j for all j = 1, . . . ,m−1,

then
n∑
i=1

Ui(x̃i) >

n∑
i=1

Ui(x̂i) (A.42)

or, equivalently,
m∑
j=1

Vj(z̃j) >

m∑
j=1

Vj(ẑj). (A.43)

Proof: Suppose that γm > 0. Total utility is TU =
∑m

j=1 Vj(z̄j) and we show ∂TU/∂γ1 < 0

and ∂TU/∂γm > 0. From Lemma 2, ∂z̄1/∂γ1 > 0, ∂z̄j/∂γ1 < 0 for all j = 2, . . . ,m, and

∂λ̄/∂γ1 > 0. Using (2.21),

∂TU

∂γ1
=

m∑
j=1

V ′j (z̄j)
∂z̄j

∂γ1
= λ̄

m∑
j=1

1

γj

∂z̄j

∂γ1
. (A.44)

From (A.40),

∂z̄1

∂γ1
= −

m∑
j=2

∂z̄j

∂γ1
(A.45)
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and, substituting into (A.44),

∂TU

∂γ1
= λ̄

m∑
j=2

[
1

γj
− 1

γ1

]
∂z̄j

∂γ1
< 0 (A.46)

because [1/γj − 1/γ1] > 0 for all j = 2, . . . ,m. Consequently, an increase in γ1 decreases

TU and a decrease in γ1 increases TU . From Lemma 2, ∂z̄m/∂γm > 0, ∂z̄j/∂γm < 0 for

all j 6= m, and ∂λ̄/∂γm > 0. A slight reworking of (A.44), (A.45), and (A.46) shows that

∂TU/∂γm > 0. Consequently, if γ̄m > 0, (A.42) and (A.43) are true.

In case (i), if γm = 0, m ≥ 3 and z̄m = ẑm = 0. Consequently, the above analysis applies

to groups 1, . . . ,m− 1 and (A.42) and (A.43) are satisfied in this case.

In case (ii), because ∂TU/∂γm > 0 for all γm > 0 and because, given our assumptions,

TU is continuous, (A.42) and (A.43) are satisfied when γ̂m = 0.

Theorem 3: In the pure distribution problem with weights, limited altruism results in a

better outcome, according to the utilitarian value function, than self-interested behaviour.

Proof: In the case where γ̂1 > 0 and γ̂j = 0 for all j = 2, . . . ,m, it is true that ẑ1 > 0 and

ẑj = 0 for all j = 2, . . . ,m. This solution is the same as the one obtained when γ1 = γ̃1 and

γj = 0 for all j = 2, . . . ,m. Now consider the case in which γ1 = γ̃1, γ2 = γ̃2, and γj = 0 for

all j = 3, . . . ,m. In this solution, zj = 0 for all j = 3, . . . ,m, and the change is equivalent

to one in which there are only two groups. Because the weight on group 2 has increased,

total utility rises by Theorem 2 (ii). The weights on groups 3, . . . ,m can be increased to

γ̃3, . . . , γ̃m, one at a time. Because each zj with a zero weight remains at zero, the result of

Theorem 2 (ii) may be used as many times as necessary, and the theorem is established.

Theorem 4: Given limited altruism, in the general choice problem with two groups, if (i)

γ̃1 = γ̂1 and γ̃2 > γ̂2 or (ii) γ̃1 < γ̂1 and γ̃2 = γ̂2, then

n∑
i=1

ũi ≥
n∑
i=1

ûi. (A.47)
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Proof: (i) Without loss of generality, let γ̃1 = γ̂1 = 1, γ̃2 = γ̃, and γ̂2 = γ̂. Because

(ũ1, . . . , ũn) ∈ F and (û1, . . . , ûn) ∈ F ,∑
i∈N1

ũi + γ̃
∑
i∈N2

ũi ≥
∑
i∈N1

ûi + γ̃
∑
i∈N2

ûi (A.48)

and ∑
i∈N1

ûi + γ̂
∑
i∈N2

ûi ≥
∑
i∈N1

ũi + γ̂
∑
i∈N2

ũi. (A.49)

Adding and simplifying,

(γ̃ − γ̂)
∑
i∈N2

ũi ≥ (γ̃ − γ̂)
∑
i∈N2

ûi. (A.50)

Because γ̃ > γ̂, (γ̃ − γ̂) > 0 and ∑
i∈N2

ũi ≥
∑
i∈N2

ûi. (A.51)

Making use of this and (A.48),

n∑
i=1

ũi =
∑
i∈N1

ũi +
∑
i∈N2

ũi

=
∑
i∈N1

ũi + γ̃
∑
i∈N2

ũi + (1− γ̃)
∑
i∈N2

ũi

≥
∑
i∈N1

ûi + γ̃
∑
i∈N2

ûi + (1− γ̃)
∑
i∈N2

ûi

=
∑
i∈N1

ûi +
∑
i∈N2

ûi

=
n∑
i=1

ûi,

(A.52)

which proves case (i). The proof of case (ii) is analogous.

Theorem 5: In the general choice problem with two groups, for any (γ1, γ2) with γ1 >

γ2 > 0, (ǔ1, . . . , ǔn) maximizes

γ1

∑
i∈N1

ui + γ2

∑
i∈N2

ui (A.53)

subject to

(u1, . . . , un) ∈ F (A.54)
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if and only if (ǔ1, . . . , ǔn) maximizes

n∑
i=1

ui =
∑
i∈N1

ui +
∑
i∈N2

ui (A.55)

subject to

(u1, . . . , un) ∈ F (A.56)

and ∑
i∈N1

ui ≥
∑
i∈N1

ǔi. (A.57)

Proof: Without loss of generality, let γ1 = 1 and γ2 = γ. Define U1 =
∑

i∈N1
ui and

U2 =
∑

i∈N2
ui. Suppose that (ǔ1, . . . , ǔn) maximizes

∑
i∈N1

ui + γ
∑

i∈N2
ui subject to

(u1, . . . , un) ∈ F , and (∗u1, . . . ,
∗un) maximizes

n∑
i=1

ui =
∑
i∈N1

ui +
∑
i∈N2

ui (A.58)

subject to
∑

i∈N1
ui ≥

∑
i∈N1

ǔi and (u1, . . . , un) ∈ F . Then

∗
U1 +

∗
U2 ≥ Ǔ1 + Ǔ2 (A.59)

and

Ǔ1 + γǓ2 ≥
∗
U1 + γ

∗
U2. (A.60)

Adding (A.59) and (A.60) and simplifying,

∗
U2 + γǓ2 ≥ Ǔ2 + γ

∗
U2 (A.61)

which implies
∗
U2(1− γ) ≥ Ǔ2(1− γ). (A.62)

Because 0 < γ < 1, (1− γ) > 0, and

∗
U2 ≥ Ǔ2. (A.63)

(A.63) implies

γ
∗
U2 ≥ γǓ2 (A.64)

and, adding (A.60) and (A.64) and simplifying,

Ǔ1 ≥
∗
U1. (A.65)
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Because
∑

i∈N1

∗ui ≥
∑

i∈N1
ǔi,
∗
U1 ≥ Ǔ1 and, hence,

∗
U1 = Ǔ1. Therefore, (A.59)

implies
∗
U2 ≥ Ǔ2 (A.66)

and (A.60) implies

γǓ2 ≥ γ
∗
U2 (A.67)

or

Ǔ2 ≥
∗
U2. (A.68)

(A.66) and (A.68) together imply
∗
U2 = Ǔ2. (A.69)

Because, in addition,
∗
U1 = Ǔ1,(∑

i∈N1

∗ui,
∑
i∈N2

∗ui

)
=

(∑
i∈N1

ǔi,
∑
i∈N2

ǔi

)
(A.70)

and the theorem is proved.
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