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Abstract

We derive an explicit formula of the Watts’ poverty index, in terms of pa-
rameters of bivariate lognormal distributions of price indices and nominal living
standards. This result enables us to: analyse the contributions of the distributions
of prices and nominal living standards in poverty; interpret the e¤ects on poverty
of changes in price distributions; estimate poverty when only means and variances
of price indices and nominal living standards are known.

Using data from peasants in Rwanda, we test and estimate bivariate lognormal
distributions of price indices and nominal living standards in four quarters of an
agricultural year, and we calculate MLE of Watts’ indices using the model, as well
as estimates directly derived from the sampling scheme. The results show that
despite frequent rejections of the lognormality assumptions, the Watts’ poverty
index estimated using the model is not signi…cantly di¤erent from sampling esti-
mates. Moreover, estimates of the Watts index, using MME based on empirical
means and variances of prices and nominal living standards, are not signi…cantly
di¤erent. This allows the estimation of poverty without the direct availability of
household survey data. Finally, we present simulations of e¤ects on poverty of
changes in levels and changes in price variability.

Résumé

Nous dérivons une formule explicite pour l’indice de pauvreté de Watts, en ter-
mes des paramètres de distributions lognormales bivariées des prix et des niveaux
de vie nominaux. Ce résultat nous permet d’analyser les contributions des distrib-
utions des prix et niveaux de vie nominaux dans la pauvreté; d’interpréter les e¤ets
sur la pauvreté des changements des distributions des prix; d’estimer la pauvreté
quand seulement moyennes et variances empiriques des indices de prix et niveaux
de vie nominaux sont connus.

A partir de données pour les paysans au Rwanda, nous testons et estimons des
distributions bivariées lognormales d’indices de prix et de niveaux de vie nominaux,
pour les trimestres d’une année agricole. Nous calculons des estimateurs par la
méthode du maximum de vraisemblance, de l’indice de pauvreté de Watts en util-
isant le modèle, ainsi que des estimateurs dérivés directement du plan de sondage.
Les résultats montrent que malgré de fréquentes rejections de l’hypothèse de log-
normalité, l’indice de pauvreté de Watts, estimé en utilisant le modèle n’est pas
signi…cativement di¤érent de l’estimateur du sondage. De plus, des estimations de
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l’indice de Watts, faisant appel à la la méthode des moments basée sur les moyennes
et variances empiriques des prix et des niveaux de vie, ne sont pas signi…cativement
di¤érentes. Ceci permet l’estimation de la pauvreté sans la disponibilité directe
de données d’enquête auprès des ménages. Finalement, nous présentons des simu-
lations des e¤ets sur la pauvreté de changements du niveau de l’indice de prix et
de la variabilité des prix.
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1 Introduction

The structural adjustment plans in developing countries have raised misgiv-
ings associated with temporary rises in poverty (The World Bank (1990),
Bourguignon, De Melo, Morrisson (1991), Sahn and Sarris (1991)). The
implementation of these plans or other economic policy measures, are fre-
quently accompanied by large temporal and geographical movements of rel-
ative prices1, which may be one important channel of changes in living stan-
dards.

Moreover, geographical and seasonal di¤erences in prices that households
face is a typical feature of LDCs, much explained by agricultural ‡uctuations
of output, imperfect markets, high transport and commercialisation costs,
and information problems. As discussed by Sen (1981), particularly in pe-
riods of famines, di¤erences in prices that household face can dramatically
a¤ect their entitlements relations and their capacity to acquire food. The
World Bank (1992) presents seasonal price ratios for twenty rural developing
countries in the 1980s and …ve products (rice, maize, wheat, sorghum, mil-
let). These statistics show a generally high sensitivity of agricultural prices
to seasons. These variations imply serious consequences for poor peasants
that are often limited in their access to capital markets. In Africa, Baris and
Couty (1981) suggest that the seasonal price ‡uctuations may aggravate the
social di¤erentiation.

In these situations, the measured poverty index may incorporate substan-
tial errors caused by unaccounted large price di¤erences between households
or seasons (Jazairy, Alamgir and Panuccio (1992), Muller (1998)). Thus, the
knowledge of the contribution of the price distribution in the assessment of
poverty, is of outmost importance for welfare policies. Muller (1998) shows
for a large range of poverty indicators that local and seasonal price di¤er-
ences have a statistically signi…cant and large impact on the measurement of
poverty in Rwanda.

Atkinson (1987), Lipton and Ravallion (1993) and Ravallion (1994) among
others, insist on the use of accurate and axiomatically sound poverty indices.

1Sahn, Dorosh and Youngs (1997)) argue that in Ghana the market liberalisa-
tion during the adjustment program of the end 1980es has lead to price decreases
(or moderate increases) despite a devaluation of 100 percent. Between 1984 and
1990 the prices of major staple foods fell and the ratio of decline was more rapid
than in the 1970es and early 1980es. This was accompanied by substantial move-
ments of relative prices.
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One of the most popular axiomatically sound poverty index is the Watts’
index (Watts (1968)). We focus in the present paper on this indicator.

The theoretical literature about price indices is extensive2. It has been
notably used in applied welfare studies (Muellbauer (1974); Glewwe (1990),
Grootaert and Kanbur (1996)). Theoretical price indices are de…ned as ratios
of cost functions representing the preferences of households. In practice,
applied price indices are generally Laspeyres or Paasche price indices, much
ignoring the responses of households to price movements3.

Though, the role of price index variability in the estimation of poverty
indices has not been studied from a theoretical point of view, and there are
no explicit results about the contribution of price distribution4 to poverty.
The present paper attempts to …ll this lacuna by using a bivariate distribu-
tion model. In agricultural contexts, the prices of certain goods show large
seasonal price ‡uctuations5, and these ‡uctuations may have a substantial
local component. This suggests using local price indices rather than national
or regional in‡ation indicators, and to treat the seasonal variability of prices.

Finally, in many situations the only available information from publica-
tions about price indices and nominal living standards are means and stan-
dard deviations. A distribution model might help in dealing with poverty
analysis in these cases and we study in this paper three di¤erent estimators
of the Watts’ index that are based on very di¤erent requirements of empirical
information.

Can we derive an explicit formula of the Watts’ poverty indicator, using
a bivariate distribution model of price indices and nominal living standards?
Can we interpret systematic e¤ects induced by price level and variability in
this model? Are estimates of poverty based on this model reliable? Can
we extrapolate poverty from the sole observation of empirical means and
variances of nominal welfares and prices? Is it possible to simulate e¤ects

2Fisher and Shell (1972); Pollak (1978); Diewert (1981); Foss, Manser, Young
(1982), Baye (1985); Pollak (1989); Diewert (1990), Selvanathan and Rao (1995).

3Braitwaith (1980) found in U.S. that the bias of the Laspeyres index due to
di¤erences in tastes is very moderate (about 1.5 percent for 25 years). Diewert
(1998) provides an estimate of the upward bias of the Laspeyres index in the U.S
equal to 0.41 percent for one year. However, the situation may be quite di¤erent
in LDCs.

4Nonetheless, Muller (1998) provides a theoretical analysis in terms of directions
of the bias due to the non correction for prices for several poverty indices.

5That is also well known for industrial countries in general (Riley (1961)).
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on poverty of changes in prices? The aim of this article is to answer these
questions …rstly by analysing a distribution model, secondly by estimating
the model using data from Rwanda.

We de…ne in section 2 the Watts’ poverty index. Then, under lognor-
mality assumptions, we derive an expression of the Watts’ index in terms of
the parameters of the joint distribution of price indices and nominal living
standards. We decompose this index and we analyse its sensitivity. We de-
rive in section 3, theoretical estimators of the distribution parameters and of
the Watts’ index, as well as their asymptotic covariance matrices. In section
4, we describe the data used in the estimation. We test and estimate log-
normal distributions of nominal living standards and price indices in section
5. In section 6, we compare maximum likelihood estimates of Watts’ indices
calculated using the model, with estimates using the sampling scheme, cal-
culated directly from observed living standards, as well as poverty estimates
based only on observed empirical means and variances. We present simula-
tion results of e¤ects of changes in levels and variability of prices, in section
7. Finally, section 8 concludes.

2 Watts’ poverty index

The living standard indicator for household i at period t is

yit =
cit

esi Iit
=
wit
Iit

(1)

where cit is the value of the consumption of household i at period t ;
wit is the standard of living of household i at date t; esi is the equivalence
scale of household i and Iit is the price index associated with household i and
period t. We denote wit = cit/esi, the living standard indicator non corrected
for price variability (nominal living standard, or n.l.s.). This variable is of
…rst empirical importance, since it corresponds to what can be obtained from
most statistical reports of household surveys, therefore from o¢cial statistics
and from many articles.

The Watts’ poverty index (Watts (1968)) is de…ned as

W =

Z z

0

¡ ln(y=z) d¹(y) (2)
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where ¹ is the cumulative probability distribution of living standards y,
and z is the poverty line.

The Watts’ index satis…es the monotonicity, transfer and transfer sensi-
tivity axioms. It is the only poverty index de…ned under absolute form from a
social welfare function that satis…es monotonicity, continuity, decomposabil-
ity and scale invariance (Zheng (1993)). These attractive properties enhances
the interest of focusing on this index. In practice due to its axiomatic proper-
ties, it yields much better results than the head-count index (P0), or even the
poverty gap index (P1). For example, Muller (1998) using data from Rwanda
…nds that most axiomatically sound indices, allowing some importance to the
severity of poverty, lead to qualitatively similar results, by contrast with P0
and P1:

We now rewrite eq. 2 in terms of the joint distribution of w and I (denoted
by the joint cumulative distribution function, F).

W =

Z Z



¡ ln((w=I)=z) dF (w; I) (3)

where  = f(w; I)j w > 0; I > 0; w=I < zg:
For general price variability, the poverty index cannot be simply decom-

posed in contributions of non corrected living standards and prices6. How-
ever, we shall show that it is possible to obtain explicit expressions by ap-
proximating F with bivariate lognormal distributions.

The choice of the lognormal distribution is supported by the fact that his-
tograms of nominal living standards and price indices have unimodal asym-
metrical and leptokurtic shapes, and the observations of these variables are
always positive.

The lognormal approximation has been frequently used in applied eco-
nomics for living standards (e.g. Alaiz and Victoria-Feser (1990), Slesnick
(1993)). The assumption of lognormality of income has as well been ex-
ploited in theoretical economics (e.g. Hildenbrand (1998)). Log-wage or log-
price equations are frequently estimated, implicitly relying on error terms

6Eq. (3) implies that the poverty line, z, is de…ned independently of the distrib-
utions of nominal living standards and price indices. The methods for calculating
poverty lines are very varied, and the latter assumption may not always be satis…ed.
In that case, z should be replaced by an explicit function z(F) and complementary
terms are to be added to the expressions obtained in this paper. Since no general
result can be derived for these very varied speci…cations, we do not pursue this
direction in this paper.
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related to normality assumptions, sometimes asymptotically. Eaton (1980),
Deaton and Grimard (1992), for example, assume lognormality for price dis-
tributions. Other distribution models for living standards or incomes (Singh
and Maddala (1976), Hirschberg and Slottje (1989)), such that the Pareto
distribution or the Gamma distribution (Salem and Mount (1974)) or other
distribution models for prices (Creedy and Martin (1994)) can also be used,
but will not lead to an explicit expression for the Watts’ index.

The reason why we adopt a lognormal speci…cation is not that it cor-
responds to an almost perfect adequation to the data, but rather because
we search for a bivariate distribution model for nominal living standards and
price indices, which would have the well-behaved characteristics evoked above
and which will lead to an explicit expression of the poverty index. Thus, the
question of statistical adequation is here secondary in comparison with the
use of the distribution model as an analytical tool. Therefore, even in the
case of imperfect statistical adequation with the data, we would like to know
if poverty estimates using the model are statistically close to the best poverty
estimates without the model.

We present now the expression of the Watts’ index under lognormality
assumption.

Proposition 1

If the nominal living standards and the price indices follow a bivariate

lognormal distribution law, LN
�µ

m1

m2

¶
;

�
¾21 ½¾1¾2
½¾1¾2 ¾22

¸¸
, the Watts’ in-

dex is equal to:

W = (ln(z)¡m1 +m2):©

Ã
ln z ¡m1 +m2p
¾21 + ¾

2
2 ¡ 2½¾1¾2

!

+
q
¾21 + ¾

2
2 ¡ 2½¾1¾2: Á

Ã
ln z ¡m1 +m2p
¾21 + ¾

2
2 ¡ 2½¾1¾2

!
(4)

where Á and © are respectively the p.d.f. and c.d.f. of the standard
normal distribution. The knowledge of
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Z =
ln z ¡m1 +m2p
¾21 + ¾

2
2 ¡ 2½¾1¾2

(5)

and

S =
q
¾21 + ¾

2
2 ¡ 2½¾1¾2 (6)

is su¢cient for the knowledge of W.

W = S:[Z:©(Z) + Á(Z)] = S:G(Z) (7)

Proof: In appendix.

Eq. 4 shows that unless all price indices are very concentrated around 1,
they should not be neglected in the estimation of the Watts’ poverty index.
It is also clear that the parameters associated respectively with distributions

of w and I play similar roles. Note that m1 and ¾1 (resp. m2 and ¾2) are the
mean and the standard deviation of the logarithms of living standards (resp.
of price indices).

Eq. 7 shows that the Watts index can be decomposed in terms of two
su¢cient statistics, S, that is the standard deviation of the logarithm of the
real living standards, that we call ”global variability” ; and Z, which is the
standardised logarithm of the poverty line expressed in real terms.
©(Z) is equal to the probability of incidence of poverty (or head-count

index) under lognormality. Function G(Z) is a primitive function with re-
spect to Z of the head-count index (with value 1p

2¼
at Z = 0), that we call

”cumulating (lognormal) poverty incidence”. It is also the Watts’ poverty
at unitary global variability and can itself be considered as a poverty index.
Thus, eq. 7 provides an interpretation of the Watts’ index as the product
of the global variability and the cumulated poverty incidence. Consequently,
the elasticity of W with respect to any variable is the sum of the elasticity of
the global variability and the elasticity of the cumulative poverty incidence.

The gradient of W with respect to parameters can easily be calculated.
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Proposition 2 The marginal variations of W with respect to S and Z are

@ W

@ S
= Z:© (Z) + Á(Z) (8)

@ W

@ Z
= S:© (Z) > 0 (9)

The gradient of W with respect to distribution parameters has the follow-
ing components.

@W

@ m1

= ¡©(Z) < 0 (10)

@W

@ m2
= © (Z) > 0 (11)

@ W

@ ¾1
=

µ
¾1 ¡ ½¾2

S

¶
Á (Z) of the sign of ¾1 ¡ ½¾2 (12)

@ W

@ ¾2
=

µ
¾2 ¡ ½¾1

S

¶
Á (Z) of the sign of ¾2 ¡ ½¾1 (13)

@ W

@ ½
=

µ¡¾1¾2
S

¶
Á (Z) < 0 (14)

Proof: Elementary di¤erential calculus.

The marginal variations of W with respect to Z or G(Z) are positive. The
latter illustrates the consistent link between the two notions of poverty (W
and G). By contrast, an increase in the global variability S may be bene…cial
or noxious to poverty.

The gradient of W with respect to distribution parameters is shown, in
eqs. 10 through 14. Poverty measured using the Watts’ index decreases in
the mean level of the logarithm of nominal living standards, m1, and increases
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in the mean level of the logarithm of price indices, m2. The corresponding
gradients are respectively equal to minus and plus the incidence of poverty,
and are therefore bounded (respectively in [-1,0] and [0,1]). The marginal
rate of substitution of m2 to m1 is equal to -1, showing the perfect substi-
tutability in W of a decrease in the mean of logarithms of nominal living
standards (mean of ”l.n.l.s.”) and an increase in the mean of logarithms of
price indices (mean of ”l.p.i.”). These variations are caused by the variation
of the cumulated incidence of poverty, and not by the global variability that
remains constant.

The evolution of poverty with the variance of the l.n.l.s., ¾21, or the vari-
ance of the l.p.i., ¾22, is less elementary, these variations being associated both
with changes in the cumulated incidence of poverty and in the global vari-
ability. The change in Z is through the modi…cation of scale due to a change
in variability of the logarithm of real living standards. We …rst examine the
case of ½ positive (then ½ < 1=½), in which three regimes are possible, then
the case of ½ negative.

a) If ¾1=¾2 < ½, then poverty increases with the variance of l.p.i. and
decreases with the variance of the l.n.l.s. Under relatively high correlation
between l.p.i. and l.n.l.s., the e¤ects of the variances of logarithms of both
variables have the same direction than the e¤ects of the levels of logarithms.

b) If 1=½ > ¾1=¾2 > ½, then poverty increases with both variances. Under
relatively average positive correlation between l.p.i. and l.n.l.s., an increase
in variability of the logarithms of both variables increases poverty.

c) If ¾1=¾2 > 1=½, then poverty decreases with the variance of the l.p.i.
and increases with the variance of the l.n.l.s. Under relatively low positive
correlations, the e¤ects of levels and variances of the logarithms of variables
have opposite direction.

d) In the case of ½ negative, the order of ½ and 1/½ is reversed, and ¾1=¾2
is greater than ½ and 1/½: The poverty increases with both variances.

An increase in the correlation between l.n.l.s. and l.p.i., is associated
with a decrease in poverty. The marginal rate of substitution of ½ to ¾1
is equal to 1/¾2 - 1/(½¾1) and is negative for ¾1=¾2 < 1=½, i.e. for small
positive correlations. In that case, an increase in variability7 of l.n.l.s. (often
associated with an increase in inequality) can be compensated by higher
correlations between l.p.i. and l.n.l.s., for example with higher prices for rich

7To shorten, we call ”variabilities” the standard-deviation parameters ¾1 and
¾2:
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households.

3 Estimators of the bivariate distribution and the Watts’
index

3.1 MLE

We can estimate the parameters of the joint distribution, using samples of
price indices and living standards. This estimation is interesting on several
grounds. First, it informs about the shape of the considered distributions.
Second, it helps to quantify the respective e¤ects of both levels and variabili-
ties of the l.n.l.s. and of the l.p.i., directly or directly by using eq. 4. Finally,
the estimates can be incorporated in an estimator of W.

Proposition 3

If the distributions of w and I are jointly lognormal, then the maximum
likelihood estimators (MLE) of (mi , ¾i ), i = 1 and 2, and ½; are consistent,
e¢cient and invariant. They are:

m̂1 =
1

n
§i ln(wi) and m̂2 =

1

n
§i ln(Ii) (15)

¾̂21 =
1

n
§i (ln(wi) - m1)2 and ¾̂22 =

1

n
§i (ln(Ii) - m2)2 (16)

½̂ =
1
n
§i (ln(wi) - m1).(ln(Ii) - m2)

¾̂1 ¾̂2
(17)

The Fisher information matrix associated with (m̂1 , m̂2 , ¾̂1; ¾̂2; ½̂) cal-
culated from a sample of size n, is



13

IF =

2
66666664

n
¾21(1¡½2)

¡n:½
¾1¾2(1¡½2) 0 0 0

¡n:½
¾1¾2(1¡½2)

n
¾22(1¡½2)

0 0 0

0 0 n:(2¡½2)
¾21(1¡½2)

¡½2:n
¾1¾2(1¡½2)

n:½
¾21(1¡½2)

0 0 ¡½2:n
¾1¾2(1¡½2)

n:(2¡½2)
¾22(1¡½2)

n:½
¾22(1¡½2)

0 0 n:½
¾21(1¡½2)

n:½
¾22(1¡½2)

n:(1+½2)
(1¡½2)2

3
77777775

(18)

and the MLEs are asymptotically normal with

p
n

µ
m̂1 ¡m1

m̂2 ¡m2

¶
Ã N

µµ
0
0

¶
;

�
¾21 ½¾1¾2
½¾1¾2 ¾22

¸¶
(19)

and independently

p
n

0
@
¾̂1 ¡ ¾1
¾̂2 ¡ ¾2
½̂¡ ½

1
A Ã N

0
@

0
@

0
0
0

1
A ;

2
4
B11 B12 B13
B12 B22 B23
B13 B23 B33

3
5
1
A . (20)

where

B11 =
¾41:(2¾

2
2 + ½

2:(1¡ ½2):(¡1 + ¾22))
¢

B12 =
½2:¾21¾

2
2(1 + ¾1¾2 + ½

2:(¡1 + ¾1¾2)
¢

B13 =
½:(½2 ¡ 1):¾21¾2(2¾2 + ½2:(¾1 ¡ ¾2))

¢

B22 =
¾42:(2¾

2
1 + ½

2:(1¡ ½2):(¡1 + ¾21))
¢
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B23 =
½:(½2 ¡ 1):¾1¾22((¡2 + ½2):¾1 ¡ ½2¾2)

¢

B33 =
4:(½2 ¡ 1)2:¾21¾22

¢

with

¢ = ½4:(¾1 ¡ ¾2)2 + 4¾21¾22 + ½2
¡
4¾21¾

2
2 ¡ 2¾21 ¡ 2¾22

¢
(21)

We denote the corresponding covariance matrix of (m̂1 , m̂2 , ¾̂1; ¾̂2; ½̂) as
§L .

Moreover, the m̂1 and m̂2 are unbiased estimators.

Proof: in appendix.

The MLE of the means (®i; i = 1; 2), variances (°i; i = 1; 2), and the
correlation coe¢cient R of w and I (respectively with i=1,2), can be derived.

Proposition 4 :
For i = 1, 2 :

®̂i = e
m̂i+

¾̂2i
2 (22)

°̂i = ®̂
2
i :(e

¾̂2i ¡ 1) (23)

R̂ = ½̂(w; I) =
exp(½̂¾̂1¾̂2)¡ 1q

(exp(¾̂21)¡ 1):(exp(¾̂22)¡ 1)
(24)

and they are asymptotically normal with

p
n

0
BB@

®̂1 ¡ ®1
°̂1 ¡ °1
®̂2 ¡ ®2
°̂2 ¡ °2

1
CCA Ã N (0; C) (25)
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where C = rg0:P :rg ,
P
= N:§L is the asymptotic variance-covariance

matrix of
p
n:(m̂1; m̂2; ¾̂1; ¾̂2; ½̂)

0, and g the function vector de…ning ( ®̂1; °̂1; ®̂2; °̂2)
from (m̂1; m̂2; ¾̂1; ¾̂2; ½̂) using equations 22 and 23.

A corresponding limit central theorem can be stated with ( ®̂1; °̂1; ®̂2; °̂2; R̂).

Due to the invariance property of the MLE, the MLE of W, denoted WL

(for ”likelihood”), can be de…ned using eq. 4 and substituting the MLEs for
the distribution parameters.

WL = (ln(z)¡ m̂1 + m̂2):©

Ã
ln z ¡ m̂1 + m̂2p
¾̂21 + ¾̂

2
2 ¡ 2½̂¾̂1¾̂2

!

+
q
¾̂21 + ¾̂

2
2 ¡ 2½̂¾̂1¾̂2: Á

Ã
ln z ¡ m̂1 + m̂2p
¾̂21 + ¾̂

2
2 ¡ 2½̂¾̂1¾̂2

!
(26)

The asymptotic variance of WL, that is asymptotically normal, is V(WL)
= rWL0:P :rWL, where rWL denotes the gradient vector of WL with
respect to (m̂1; m̂2; ¾̂1; ¾̂2; ½̂).

Proof: See appendix.

The di¤erent asymptotic variance-covariance matrices can be consistently
estimated by replacing parameters mi, ¾2i (i = 1; 2) and ½ with consistent
estimates, for example with the MLEs. Then, con…dence regions of parameter
estimates can be easily derived.

3.2 MME

As we said above, poverty indicators are not systematically published in
household survey documents. Generally only the mean and standard devi-
ation of nominal living standards are available, accompanied sometimes of
price statistics. We propose to investigate the use of observed mean and

standard-deviations of w and I (denoted ~®1; ~°1; ~®2; ~°2) to produce an esti-
mator of poverty, denoted WM (for ”moments”). We have shown above that
eqs. 22 and 23 can be used to connect the MLE of parameters of the lognor-
mal distributions to the MLE of means and standard-deviations of the two
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univariate distributions of x and I. Similarly, we can de…ne estimators m̃i and
~¾2i of the distribution parameters, using the method of moments (MME), as:

De…nition 5 (MME) i = 1, 2

~¾i =

s
ln

µ
1 +

~°i
~®2i

¶
(27)

~mi = ln(~®i)¡ ~¾2i=2 (28)

Estimators (m̃1, m̃2, ~¾21; ~¾
2
2) and (m̂1, m̂2, ¾̂

2
1; ¾̂

2
2) are consistent, although

not asymptotically equivalent. (m̂1, m̂2, ¾̂
2
1; ¾̂

2
2) is e¢cient if the lognormal

assumption is valid, by contrast with the MME that is generally not e¢-
cient. (m̃1, m̃2, ~¾21; ~¾

2
2) can be as well considered as an asymptotic least

square estimator (Gouriéroux, Monfort, Trognon (1985)) using eqs. 27 and
28 to de…ne the link between the parameters of interest and a consistent and
asymptotically normal estimator.

The MME can be substituted in eq. 4 under the hypothesis (½ = 0) to
de…ne the estimator WM. Note that the latter hypothesis, which is not nec-
essary to the de…nition of (m̃1, m̃2, ~¾21; ~¾

2
2) is important because …rstly it

may correspond to a plausible situation, secondly it eliminates the need for
estimates of ½ or of R, which are typically not available in usual survey pub-
lications.

De…nition 6

WM = (ln z ¡ ~m1 + ~m2):©

Ã
ln z ¡ ~m1 + ~m2p

~¾21 + ~¾
2
2

!

+
q
~¾21 + ~¾

2
2: Á

Ã
ln z ¡ ~m1 + ~m2p

~¾21 + ~¾
2
2

!
(29)

The associated moment conditions are
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F i(µ) =

0
BB@

f1 : wi ¡ em1+¾
2
1=2 = 0

f2 : w2i ¡ e2m1+2¾21 = 0

f3 : Ii ¡ em2+¾22=2 = 0

f4 : I2i ¡ e2m2+2¾22 = 0

1
CCA =

µ
F 1i (µ)
F 2i (µ)

¶

where i is the index of the observation.
F denotes the vector of the F i(µ).

Proposition 7

The asymptotic variance-covariance matrix of the MME (m̃j; ~¾j); j =
1; 2 is

~§j = [D
0
j ©

¡1
j Dj ]

¡1=N (30)

with M j =
plimf 1

N
F j0:eg

N ! +1 ; j = 1; 2; where e is a vector of ones, and

Dj=
@Mj

@(mj ¾j )0
=

"
¡ e(mj+¾

2
j=2) ¡¾je(mj+¾

2
j=2)

¡2e2mj+2¾
2
j ¡4¾je2(mj+¾

2
j )

#
, and

© =

�
©1
©2

¸
where ©kj=

p lim
©
1
N

Pn
i=1 f ik:f ij

ª

N ! +1 that can be estimated by

©̂kj=
1
N

Pn
i=1 f ik:f ij .

Then, the asymptotic variance-covariance matrix of (m̃1, ~¾1; ~m2;~¾2) un-
der the hypothesis ½ = 0 is

§0=

�
~§1 0

0 ~§2

¸

Moreover, the asymptotic variance-covariance matrix of (m̂1; ¾̂1; ~m2; ~¾2)
is, under the hypothesis ½ = 0 :

§3 =

�
1
N
IF¡11 0

0 ~§2

¸

where IF¡1
1 is the inverse of the bloc of IF corresponding to (m̂1; ¾̂1).

Note that IF is the total information matrix for the whole sample.
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Finally, V(WM) = rWM 0:§0:rWM , where rWM can be calculated
using the formula of the gradient of W.

Proof: It is clear that E[Fi] = 0, which de…nes the ”estimating equations”
for the MME. Formula 30 is the asymptotic covariance matrix of the MME
(Davidson and McKinnon (1993)). Matrices D and © are calculated in the
case considered using the estimating equations.

Moreover, under ½ = 0, the two distributions of w and I are indepen-
dent since those of lnw and lnI are. Then, cov(m̃1; ~m2) = cov(m̂1, ~¾2) =
cov(¾̂1; ~m2) = cov(¾̂1; ~¾2) = 0.

The variance of WM is obtained by application of the ”delta” operator
(See for example Gouriéroux and Monfort (1989)). []

3.3 Simulators

The simulated Watts’ poverty indices, WS and WMS, corresponding to
changes in price indices distribution, are de…ned as follows.

De…nition 8

WS = (ln z ¡ m̂1 + µ1m̂2):©

Ã
ln z ¡ m̂1 + µ1m̂2p
¾̂21 + µ

2
2¾̂
2
2 ¡ 2½̂¾̂1µ2¾̂2

!

+
q
¾̂21 + µ

2
2¾̂
2
2 ¡ 2½̂¾̂1µ2¾̂2: Á

Ã
ln z ¡ m̂1 + µ1m̂2p
¾̂21 + µ

2
2¾̂
2
2 ¡ 2½̂¾̂1µ2¾̂2

!
(31)

WMS = (ln z ¡ m̂1 + ~m2(µ
0
1®2; µ

0
2°2)):

©

0
@ ln z ¡ m̂1 + ~m2(µ

0
1®2; µ

0
2°2)q

¾̂21 + ~¾
2
2(µ

0
1®2; µ

0
2°2)¡ 2½̂¾̂1~¾2(µ01®2; µ02°2)

1
A (32)

+
q
¾̂21 + ~¾

2
2(µ

0
1®2; µ

0
2°2)¡ 2½̂¾̂1~¾2(µ01®2; µ02°2)

: Á

0
@ ln z ¡ m̂1 + ~m2(µ

0
1®2; µ

0
2°2)q

¾̂21 + ~¾
2
2(µ

0
1®2; µ

0
2°2)¡ 2½̂¾̂1~¾2(µ01®2; µ02°2)

1
A (33)
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where µ1 and µ2, µ
0
1 and µ02 are simulation parameters describing the

changes in the price distribution, and m̃2(µ
0
1®2; µ

0
2°2) and ~¾2(µ01®2; µ

0
2°2) are

the MME deduced from means and variances of price indices respectively equal
to µ01:®2 and µ2:°2 .

The asymptotic covariance matrices of WS and WMS are derived from
a combination of the asymptotic covariance matrices §L and § 3 using the
delta operator decomposed in several matrices of change in variables.

Proposition 9

V(WS) = rWS 0 PL rWS
where rWS can be deduced straightforwardly from the formula of the

gradient of W de…ned with the components in the order of proposition 2 and
including the e¤ects of parameters µ1 and µ2.

V(WMS) = G.§ 3.G’ where

G =
h

@W
@(m1 ¾1 m2 ¾2)0

i h
@(m1 ¾1 m2(µ

0
1®2;µ

0
2°2) ¾2(µ

0
1®2;µ

0
2°2))

0

@(m1 ¾1 µ
0
1®2 µ

0
2°2)

i
:

2
664

1 0 0 0
0 1 0 0
0 0 µ01 0
0 0 0 µ02

3
775 :

h
@(m1 ¾1m2 ¾2)0

@(m1 ¾1 ®2 °2)

i¡1

is the delta operator corresponding to the mapping (m̂1; ¾̂1; ~m2; ~¾2) 7!
WMS. Each Jacobian matrix corresponds to speci…c changes in variables and
is calculated using consistent estimators at appropriate values of parameters.

h
@(m1 ¾1m2 ¾2)0

@(m1 ¾1 ®2 °2)

i
=

2
664

1 0 0 0
0 1 0 0
0 0 @ m2

@®2

@ m2

@°2

0 0 @ ¾2
@®2

@ ¾2
@°2

3
775

where @ m2

@®2
= 1

®2

h
1 + °2

®22+°2

i

@ m2

@°2
= ¡ 1

2(®22+°2)
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@ ¾2
@®2

= ¡ 1s
ln

µ
1+

°2
®2
2

¶ : 1

(®22+°2)
: °2
®2

@ ¾2
@°2

= 1

2

s
ln

µ
1+

°2
®2
2

¶ : 1

(®22+°2)

Proof: The mapping g transforming (m̂1 ¾̂1 ~m2 ~¾2) whose covariance ma-
trix, §M , is known, into WMS can be decomposed into

(m̂1 ¾̂1 ~m2 ~¾2)
g1
7! (m̂1 ¾̂1 ~®2 ~°2)

g2
7! (m̂1 ¾̂1 µ

0
1~®2 µ

0
2~°2)

g3
7! (m̂1 ¾̂1 ~m2(µ

0
1~®2; µ

0
2~°2) ~¾2(µ

0
1~®2; µ

0
2~°2) )

g4
7! WMS .

Then, the covariance matrix to calculate is Jg:§M :(Jg)0 where g = g4 o g3 o g2 o g1,
and J denotes the ”Jacobian matrix of ”. This yields using the chain rule:
Jg4 Jg3 Jg2 Jg1:§M :(Jg1)

0(Jg2)0(Jg3)0(Jg4)0 .
Note that to simplify ½̂ in WMS has been assumed here non random,

which is for example the case when ½ = 0 is accepted from the above test
results. AV[]

The model developed so far for W is useful on several grounds. It …rst
clari…es the e¤ects of levels and variabilities in prices and nominal living
standards. It can be used to extrapolate the poverty measure, from the sole
observation of means and standard deviations of price indices and nominal
living standards. It can …nally be useful to simulate e¤ects of changes in
these variabilities and levels on the aggregate poverty. We investigate these
applications in the next sections.

4 The Data

Rwanda in 1983 is a small rural country in Central Africa. At this period, it
is relatively preserved from extreme economical, political or climatic shocks.
Its population is 5.7 million, nearly half under 15 years of age. Rwanda is
one of the poorest country in the world, with per capita GNP of US $ 270 per
annum. More than 95 percent of the population live in rural areas (Bureau
National du Recensement (1984)) and agriculture is the cornerstone of the
economy, accounting for 38 percent of GNP and most of the employment.

Data for the estimation is taken from the Rwandan national budget-
consumption survey, conducted by the Government of Rwanda and the French
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Cooperation and Development Ministry, in the rural part of the country
from November 1982 to December 1983 (Ministère du Plan (1986a))8. 270
households were surveyed about their budget and their consumption. The
consumption indicators are of very high quality9.

Agricultural year 1982-83 is a fairly normal year in terms of climatic
‡uctuations (Bulletin Climatique du Rwanda (1982, 1983, 1984)). The agri-
cultural year can be split up into four climatic seasons and two cultural sea-
sons. The collection of the consumption data was organised in four rounds,
corresponding to four quarters (A, B, C, D) of the agricultural year 1982-83.

The sampling scheme10 has four sampling levels (communes, sectors, dis-
tricts and households). The drawing of the communes was strati…ed by pre-
fectures, agro-climatic regions and altitude zones. One district was drawn in
each commune and one cluster of three neighbouring households was drawn
in each district. From this information, we have calculated sampling weights
that re‡ect the probabilities of drawings of units at every stage of the sample
scheme.

The average household size has 5.22 members, including 2.67 children or
adolescents (less than 18 years old), and 2.55 adults (18 years old and more).
The average land area is very small (1.24 ha). Table 1 shows that for the
sample used in estimations, it corresponds to an average production of 57
158 Frw (Rwandan Francs) of agricultural output, that is close to 51 176
Frw of average consumption (10613 Frw per capita).

Several studies of price surveys in Rwanda have revealed the existence of
8The main part of the collection has been designed with the help of INSEE

(French National Statistical Institute).
9Indeed, every household was visited at least once a day, during two weeks for

every quarter. Daily and retrospective interviews and food weighting were car-
ried out, and every household had also to register much information in a diary
between the quarterly survey rounds. This enabled a thorough cleaning of the
data, by more than thirty ex-enumerators after the collection, under our super-
vision. Sophisticated veri…cation algorithms have been designed using the many
redundancies present in the data. Finally, the consumption indicators are based
on algorithms reducing measurement errors, from the combination of several in-
formation sources. The quality of consumption indicators seems to us a crucial
requirement in poverty analysis, notably because of the non-robustness of some
poverty indicators to data contamination, which has been analysed by Cowell and
Victoria-Feser (1996).

10The sampling scheme has been modelled in Roy (1984) and completed by our
own investigations during our stay at the Direction Générale de la Statistique du
Rwanda)
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considerable both geographical and seasonal price variability (Niyonteze and
Nsengiyumva (1986), O.S.C.E. (1987), Ministère du Plan (1986b), Muller
(1988)).

We have calculated elementary price indicators of the main categories of
goods, for every season and every cluster of the sample. The prices of each
category of goods are represented by the price of the main product, which
enables us to compare prices across seasons and clusters with little quality
bias.

True price indices could be derived from estimating a complete agricul-
tural household model, from which shadow prices could be calculated. How-
ever, such procedure would incorporate much noise due to the inaccuracy of
the estimates with small sample size. Muller (1998) discusses the type and the
sample of prices used, the price index and the di¢culty of the shadow prices
approach (See also Singh, Squire and Strauss (1986), de Janvry, Sadoulet,
Fafchamps (1991)). Nonetheless, the methods of the present paper can be
applied to welfare indicators based on estimated price indices and estimated
adult-equivalent scales.

We approximate the theoretical price index with a Laspeyres price index
(Iit) speci…c to each household and each period, in which the basis is the
annual national average consumption.

Iit = §j !
j
pjgt
pj::

where !j =
§i§t p

j
itq

j
itPONDit

§j§i§t p
j
itq

j
itPONDit

(34)

where pjit (resp. pjgt) is the price of good j at date t for household i (resp.
in cluster g where is observed household i), qjit is the consumed quantity of
good j at date t by household i in cluster g, PONDit is the sampling weight
of household i at date t, corrected for missing values.

The annual national prices are calculated as follows:

pj:: =
§i§t p

j
itq

j
itPONDit

§i§t q
j
it PONDit

(35)

We therefore consider simultaneously geographical and seasonal price
variability, although without modelling temporal and spatial autocorrela-
tions of prices.
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5 Tests and Estimates of Distributions

5.1 Tests of Lognormality

The lognormal assumptions of section 2 constitute practical approximations.
It is likely that these approximations are consistent with results of statis-
tical tests of the distribution shapes only in some cases. If the considered
distributions are very close to lognormality, the derived formula WL will
clearly be adequate. However, it is also interesting to explore its useful-
ness for distributions not statistically equal to lognormal distributions, and
to compare poverty estimates derived from our model to estimates directly
using the sampling scheme. In these cases, WL is merely a …rst-order ap-
proximation of W. To clarify these points, we conduct tests of lognormality
assumptions: Skewness-Kurtosis tests; Shapiro-Wilk tests (Shapiro and Wilk
(1965), Royston (1982)); Shapiro-Francia tests (Shapiro and Francia (1972));
and Kolmogorov-Smirnov tests. These tests are implemented for quarterly
and annual per capita consumption distributions, and for quarterly and an-
nual price indices distributions. The P-values are shown in table 2.

Skewness-Kurtosis tests are known to be sometimes unsatisfactory, though
rather against multimodal distributions, which does not seem to be the case
here. Despite the rough de…nition of the null hypothesis associated with this
type of test, their results are not too distant from the results of other tests,
except for living standards in period A or annually, for which they would
lead to wrong inferences at 10 percent level.

The Kolmogorov-Smirnov test has generally low power, and it cannot
reject the lognormality of price indices at 5 percent level for quarters A and
D, nor the lognormality of living standards for quarters A, B, C.

The Shapiro-Wilk W and Shapiro-Francia W’ tests yield generally close
results, though the W’ approximation is probably more accurate with a sam-
ple size above 40. Observed di¤erences between estimated P-values of W and
W’ invites to caution. However, at 5 percent and 10 percent levels, these two
tests are always in agreement11.

11The Shapiro-Wilk test for the 3-parameters lognormal hypothesis occupies
clearly a distinctive position, since the null hypothesis is di¤erent. The ”3-
parameters lognormality” is nonetheless always rejected at usual levels for price
indices, although that is never the case for nominal living standards. To extend
the model to this type of distribution will therefore not eliminate the rejection of
the lognormality of price indices.
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One might believe that the rejection of the lognormality of price indice
distributions comes from the clustering of observations. At the cluster level
the lognormality of price indices is not rejected by the W’ test in periods
A and B at 10 percent level, although these features are obtained mostly
because considering small sample sizes. For other quarters, the lognormal
approximation for prices is always rejected, even with the cluster sample.

We give greater importance to the W’ test with complete sample for
its better statistical properties in this context. Then, the lognormality of
the price index distributions is rejected in this data set. By contrast, the
lognormality of the living standard distribution is never rejected by this test
at 5 percent level, neither in quarters A and C, nor for the year.

Since we want to compare further on several estimators of the Watts’
index, some relying on the lognormality, it is interesting to dispose of a
benchmark data that does not overly determine the results of comparisons
with a too good adequation to lognormality. The present data seems to be
suitable to this aim12.

5.2 Tests of independence

Table 3 shows the correlation coe¢cients between price indices and nominal
living standards, and the correlation coe¢cients between the same variables
in logarithms, at several periods and for several equivalence scales. Most of
the correlation coe¢cients are not signi…cant even at 10 percent level. How-
ever, the results may be partly driven by the linear link between variables,
which is implicitly assumed when considering these coe¢cients.

Table 4 shows the results of tests of independence between nominal living
standards and price indices, based on deciles of these variables13. Â2, °
(di¤erence between conditional probabilities of like and unlike order) and
Kendall’s ¿ b test statistics have been calculated, as well as the Cramer’s V
association measure. Goodman and Kruskal (1954, 1959, 1963, 1972) discuss

12Using di¤erent equivalent scales do not change the results of these tests.
13Of course, deciles of variables in levels and in logarithms are identical.
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measures of association for cross classi…cation14.
The results of Â2; ° and ¿ b tests indicate that there is independence be-

tween price indices and nominal living standards. The measure of association
V is between 0.17 and 0.20, implying that the non-rejection of the indepen-
dence hypothesis might be attributed to the small sample size.

5.3 Estimation of Distributions

Table 5 shows the maximum likelihood estimates of the parameters of log-
normal distributions for price indices and per capita consumption, in each of
the four quarters and the whole year. The estimated quarterly distributions
of price indices are very close whether they are calculated from the sample of
households or the sample of clusters. By contrast, there exist strong di¤er-
ences between the characteristics of distributions for di¤erent quarters, more
in the case of prices than for nominal living standards.

The distributions of living standards show substantial di¤erences across
quarters. The estimated means of the l.n.l.s. are high in quarters A and in
C, and are not signi…cantly di¤erent. They are signi…cantly lower in quarter
D during a general poverty crisis. The estimated variabilities of l.n.l.s. are
low in quarter B, high in quarter D, and intermediate in quarters A and C
that are not signi…cantly di¤erent.

The characteristics of price indices distributions vary also with seasons.
The estimated means of the l.p.i. are low in quarter B, moderate in C, high
during the poverty crisis in D and in quarter A that are not signi…cantly
di¤erent. The estimated variabilities of l.p.i. are low in quarter D, moderate
in quarters A and B (not statistically di¤erent), and high in quarter C.

In all periods the estimates correspond to the case ¾1=¾2 greater than
1=½ and ½; since ½̂ is negative in all periods, although it is not signi…cantly
di¤erent from zero at the 5 percent level. Then, poverty increases with both

14Let be P, the number of concordances of the two classi…cation variables, and
Q, the number of discordances, then

De…nition 10 ° = (P-Q)/(P+Q);

¿ b = (P-Q)/((n2 - ni:)(n2 - n:j ))1
2

and Cramer’s V = ( Â2/(n.Min(I-1,J-1)))
1
2 .



26

variances of logarithms15.
The estimates of the parameters describing the mean and the variance of

lognormal distributions, denoted respectively ®̂ and °̂, show an ordering of
quarters that is consistent with what has been found for means and variances
of logarithms in the case of the prices, whereas this is not totally true for
nominal living standards. The estimated mean of nominal living standards
are lower in quarters B and D and are not signi…cantly di¤erent. They are
higher in quarters A and C that are not signi…cantly di¤erent. The estimated
variance of the nominal living standards is smaller in period B, while it is
not signi…cantly di¤erent in other quarters.

The estimated mean of price indices is lower in quarter B and higher in
periods A and D that are not signi…cantly di¤erent. The estimated variance
of price indices is smaller in periods B and D that are not signi…cantly di¤er-
ent in comparison with estimates in A and in C, that are as well statistically
identical.

6 Estimation of Watts Indices

6.1 Basic Estimates and Comparative Statics

Six poverty lines are used and expressed in terms of Rwandan Francs (Frw).
z03 is the …rst quintile of the annual living standards;
z02 is the sum of the …rst quintiles of the quarterly living standards;
z01 is four times the minimum of the …rst quintiles of the quarterly living

standards. Three remaining poverty lines are calculated similarly from the
second quintiles of the living standard distributions, and respectively denoted
z06 , z05 , z04.

16

We …rst estimate the Watts poverty indices at period t, directly using
ratios of Horwitz-Thompson estimators (see Gouriéroux (1981)). These esti-
mates are denoted WDt (for ”direct”) at quarter t:

15However, Wald tests show that for all periods, ¾1=¾2 is always signi…cantly
greater than 1/½, but never signi…cantly greater than ½.

16These poverty lines have been calculated from the price corrected living stan-
dard distributions. However, our concern in this paper is not to enter in the
possible endogeneity in the de…nition of poverty lines. Their values should there-
fore be considered as …xed once for all , and as a mere benchmark for a convenient
analysis of the distributions.



27

WDt =
Pn
s=1

ln(yst;=z)1[yst<z]
¼stPn

s=1
1
¼st

where ¼st is the inclusion probability (in the

sample) of household s at date t (s = 1,...,n).
The estimation of sampling standard errors of the poverty indicators is

delicate because of the complexity of the actual sampling scheme17. Indeed,
only one sector was drawn at the second stage of the sampling plan in every
primary unit, which does not allow the direct calculus of the inter-strata
variance. Another di¢culty is the small sample size at several stages of the
sampling scheme, which hampers a robust use of classical sampling variance
formulae that are based on usual asymptotic properties. We use an estimator
for sampling standard errors inspired from the method of balanced repeated
replications18, that is adapted to the actual survey (see appendix). Note that
because of the sophisticated strati…cation involved in the sampling scheme,
one expects relatively accurate estimates despite the small sample size, which
besides can be veri…ed with the size of the sampling errors in the tables. In
fact, a survey of several thousands households based on simple random draws
might well yield less precise estimates.

Table 6 shows estimates WD, WL, WM, together with sampling errors
of WD and standard errors of WL and WM, for all quarters and the whole
year. The poverty measured with WD is unambiguously higher in quarter D
(after the dry season), and lower in period B (after bean harvests). Of course,
measured poverty increases with the poverty line. The comparison with WD
indicators without correction by the price index (Muller (1998)) shows that
the correction for price variability entails a substantial increase in poverty
such as estimated with WD, in periods A (from 40.4 percent to 51.8 percent
depending on the poverty line), C (14.7 percent through 24.8 percent) and
D (19.6 through 20.4 percent), and a notable reduction in period B (-11.2
through -12.0 percent). Over the whole year, for which solely the e¤ect of
the variability of prices mostly remains, the correction for prices augments
considerably the poverty measure (12.4 through 19.4 percent).

We examine now the sensitivity of WL to values of parameters. Table 7
presents the ratios of WL estimated under constraints (respectively: m2 =
0; ¾2 = 0; m2 = 0 and ¾2 = 0) on the price distribution, over WL estimated

17Gouriéroux (1981) discusses usual sampling estimators. Kakwani (1993) pro-
vides an estimator for sampling standard errors of poverty indices, although only
valid for simple random frame, which is not the case here.

18See Krewski and Rao (1981), Roy (1984) for discussions of the properties of
this type of estimator.
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without constraints. These ratios are respectively denoted r1, r2, r3, and are
calculated for every quarter and for the year, and using each poverty line. In
the present data set, …xing the level of l.p.i. at 0 has a much stronger in‡uence
(r1 is between 0.731 and 1.219 for the di¤erent quarters and the di¤erent
poverty lines) on WL than …xing the variability of l.p.i. at 0 (r2 is between
0.909 and 0.989). Both restrictions lead to biased estimates of W, although
if the e¤ect of l.p.i. variability at constant level is important, the e¤ect of
the l.p.i. level at di¤erent seasons clearly dominates the impact of prices on
poverty. There are slight di¤erences in the value of the ri (i=1,2,3) following
the poverty line, although these are much smaller than the di¤erences caused
by a change in the quarter. At the annual level, both e¤ects of variability and
level of logarithms of price indices are reduced by averaging living standards
over four quarters. The complete omission of price e¤ects (m2 = 0 and ¾2
= 0) shown with r3, is associated with a strong underestimation of poverty
in quarters: A (only 66 to 76 percent of poverty is retained), C (80 to 87
percent), D (80 to 85 percent), and for the year (75 to 84 percent); and
with a notable overestimation in quarter B (111 to 130 percent). Clearly,
accounting for geographical and seasonal price di¤erences is of considerable
importance when estimating the Watts’ index, with and without using the
distribution model.

We have also calculated elasticities and relative variations of WL with
respect to the parameters of the model. The parameters of the marginal
distribution n.l.s. are the most in‡uential. The impact on WL of a marginal
change in the mean of the l.n.l.s. (m1) is always very strongly negative
(elasticity e1 from -28.90 through -13.95 for the di¤erent quarters and poverty
lines). The elasticity of WL with respect to the variability of the l.n.l.s. (¾1)
is generally substantial (e3 = 0.967 through 6.478).

Nonetheless, the parameters of the marginal distribution of the price in-
dex still play important roles. The elasticities of WL with respect to the mean
of the l.p.i. or the poverty line are generally non negligible (respectively, e2
= -0.202 to 0.290, and e6 = -0.146 to 2.124), as well as the elasticity of WL
with respect to the variability of the l.p.i. (e4 = 0.226 to 0.182). Finally, the
elasticity of WL with respect to the correlation between the l.p.i. and l.n.l.s.
is almost null (e5 = 0.0054 to 0.0623) in the observed sample.

The orders of magnitude of e1, e2, e4 and e5 change little when one consid-
ers di¤erent poverty lines in the same period, in contrast with the elasticity
with respect to variability parameters, e3 and e6 (respectively elasticities
with respect to ¾1 and z). Similarly, the orders of magnitude of e1, e3, e4
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and e5 show little variation in di¤erent periods with the same poverty line,
in contrast with e2 and e6 (respectively elasticities with respect to m2 and
z). On the whole, even if the strong e¤ects of the nominal living standard
distribution dominate other marginal variations, the elasticities with respect
to price characteristics are clearly not negligible.

The decomposition of elasticities in two additive terms shows that both
elasticities of the global variability and elasticities of the cumulating incidence
of poverty play generally important roles with occasionally di¤erent signs.
The role of the global variability is sometimes dominant.

Figures 1 and 2 show graphics of univariate variations in W with respect to
distribution parameters, at values of parameters about annual estimates and
using line z03. The directions of variation are consistent with the theoretical
signs derived in proposition 2. The main nonlinearities occur for the variation
in W with m1, and more moderately with ¾2 and ½. Curves W(m1) and W(¾2)
are convex, while the curve W(½) is concave. Figure 3 illustrates the e¤ects
of bivariate variations in parameters of the global variability (¾1, ¾2, ½). The
variations of ½ and especially ¾1 have more impact on W than the variations
of the l.p.i. variability, ¾2:

6.2 Comparison of Estimators

For each line and each period, WD and WL are generally very close and
never signi…cantly di¤erent at the 5 percent level when sampling errors of
WD are considered in the test19. This is as well the case when standard
errors of WL, ¾̂WL , are used in the comparison20. The di¤erences between
WD and WL are larger in absolute value in the quarter D during the annual
poverty crisis (-12.0 percent through -5.4 percent), although they are still non
signi…cant. In other quarters they are depending on the poverty line: -5.8

19Of course, and this is also true for comparisons of WD and WM, or of WL and
WM, it would be possible to combine standard errors associated to both estimators
in the comparison. In that case, all estimators appear clearly not signi…cantly
di¤erent, although such approach is inaccurate in the sense that the covariance
between estimators should be also accounted for. We prefer to consider …xed the
value of one estimate and check if the other estimate is signi…cantly di¤erent.

20Interestingly enough, the corresponding sampling standard errors are always
larger than the standard errors of WL, derived from the model. Of course, this
must not be interpreted as an argument in favour of WL instead of WD, since
when the lognormality assumptions are not satis…ed, WL and ¾̂W L are generally
non consitent.
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percent through -3.5 percent in A, -5.4 percent through -6.1 percent in B, -8.6
percen t through -5.4 percent in C. WL slightly overestimates poverty when
compared with WM, even if the di¤erence is not signi…cant. This may be
caused by a too thick left tail of the distribution of real living standards when
lognormality is imposed. Note that the relative absolute deviation between
WD and WL is not a monotonous function of the poverty line.

The distribution model therefore provides a good approximation of poverty
in our context, when the MLE of the parameters of distributions are available,
and even if the lognormality of distributions is rejected in several periods.
These results justify the use of the model as an analytical tool and simulation
device.

Let us turn now to the last estimator of the Watts’ index. Using WM un-
derestimates poverty in periods A, C, D and year, and overestimates poverty
in period B. These underestimations and overestimations may be substantial
(-23.4 through -11.4 percent in quarter D following the poverty line when
compared with WL; -4.2 through -8.6 in quarter A; 9.8 through 21.0 in B;
-3.6 through -7.3 in C; 13.31 through 34.1 percent for the year). The lower
the poverty line, the greater the relative absolute deviation. However for all
quarters, deviations of WM with respect to WD or WL are never signi…cant
at the 5 percent level. At the annual level, WM and WL are never signi…-
cantly di¤erent, although WM and WD appear to be signi…cantly di¤erent
at the 5 percent level, when using the sampling error of WD in the compar-
ison, and for two lines out of six when using the standard error of WM. The
di¤erences between WM or WL arise from the gap between MLE and MME
of the parameters of distributions and from the fact that a null correlation
has been assumed for WM. The fact that the di¤erences between WM and
WD are often not signi…cant indicates that the model can be used for pre-
dictions of poverty in situations where only empirical means and standard
deviations of price indices and nominal living standards are known, and with
small sample sizes of magnitude common in LDC household surveys.

The relative variations between WD or WM, and WL, provide indications
about the extent of the approximation involved in the model. Clearly, the dif-
ferences caused by the approximation slightly change the estimated poverty,
but the estimates remain close enough to provide useful and meaningful in-
formation, especially when direct sampling estimates are not available.

The distance of WD and WM from WL is generally larger for quarters in
which lognormality of n.l.s. has been rejected (B and D). This is consistent
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with the restrictions imposed by the model, although the result was not
obvious a priori since the lognormality of prices has been rejected at any
quarters.

Finally, since WL is generally closer to WD than WM (except in quarter
C), the use of WM is justi…ed only in presence of sparse information. The
available information is one major criterion for choosing between estimators
WD, WL and WM. WD requires the observation of the survey sample and
the accurate knowledge of the sampling scheme (not only the weights). WL
requires the observation of the survey sample, without knowledge of the
sampling scheme. WM requires only the knowledge of mean and standard
deviation of n.l.s. and p.i.

7 Simulations of shocks in distribution of price indices

We examine now the consequences on poverty of non marginal shocks on the
distribution of price indices. For all these simulations we do not incorporate
the responses of households to changes in prices that they face, nor the change
of the equilibrium of the economy that is possibly caused by price shocks.
An approach followed by Ravallion and van de Valle (1991) is to estimate
equivalent income functions using a demand model and simulate the new
value of each household’s equivalent income after the speci…c price changes.
Here, we focus on the very short term e¤ects neglecting all these responses.
From table 5, showing the estimated mean and standard deviation of p.i.
and l.p.i. at every quarter, we have calculated the larger absolute deviation
between two successive quarters. These variations are used as a benchmark
for the simulation of price variation. The calculus yields approximately 15
percent of variation for ®2; 61 percent for °2 ; 17 percent for ¾2 ; 300 percent
for m2 .

Four di¤erent simulation hypothesis have been examined: m2 changed
into 4 m2; ¾2 into 1.2 ¾2; ®2 into 1.15 ®2; °2 into 1.6 °2. The simulated
poverty indices are shown in table 8, along with the relative deviations with
respect to WL, and their standard errors..

The absolute magnitude of the poverty change is a decreasing function
of the poverty line. This is consistent with the gradient derived in section 2
and calculated with observed and simulated distribution parameters.

We …rst examine the results of the simulation of WL, with m2 replaced
by 4 m2 (increase in the mean of l.p.i.). Both level and variability of prices
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augment in this scenario. The examination of standard errors of WS shows
that all variations of W are signi…cant at 5 percent level. Relative changes
in poverty vary from a decrease of 47 percent to an increase of 70 percent
depending on the period and the poverty line and are always considerable.
For each simulation, the quarter considered corresponds to speci…c distribu-
tion parameters, which explains the massive di¤erences in relative variation
of poverty for di¤erent quarters. Quarter B is characterised by a large de-
crease in poverty (-47 through -37 percent, following the poverty line), while
considerable increases in poverty occur at other quarters (82 through 129
percent in A; 28 through 40 percent in C; 48 through 70 percent in D).

The second series of simulations corresponds to a 20 percent increase in
¾2 (increase in the variance of l.p.i.). The change in ¾2 causes only very small
increases in poverty at all quarters (1.4 through 3.0 percent in A; 1.4 through
3.5 percent in B; 1.6 through 3.4 percent in C; 0.4 through 1.0 percent in D).

The third series of simulations corresponds to 15 percent increase in ®2
(increase in the mean of p.i.). Substantial and always signi…cant increase
in poverty occur in quarters A (35 through 49 percent); B (41 through 63
percent); C (35 through 49 percent); D (28 through 40 percent). Quarters A
and C show particularly similar evolutions whatever the chosen poverty line.

Finally, the third series of simulations describes the e¤ect of 60 percent
increase in °2 (increase in the variance of p.i.). The e¤ects on poverty are
very moderate and non signi…cant in all quarters (-0.2 through +0.3 percent
in A; 0.8 through 2.7 in B; 1.1 through 3.1 in C; 0.7 through 1.9 in D).

The fact that the choice of the poverty line can a¤ect substantially the
result of the relative variation in poverty shows the importance of considering
a broad range of lines in this type of analysis.

If we are interested in shocks on price distributions of magnitude similar
to changes in price distributions from one season to another, the simulations
show that the change in variances of p.i. or l.p.i. can be neglected in a …rst
order approximation since they have very small impact on poverty measure-
ment. This implies that very large shocks in variances of p.i. and l.p.i. are
necessary to perturb poverty measured with the Watts’ index in Rwanda. By
contrast, variations in means of p.i. and l.p.i. always entail strong variations
in W.
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8 Conclusion

Large geographical and temporal di¤erences or changes in prices are likely
to exist in agricultural developing countries due to market imperfections and
seasonality. They may also occur during structural adjustment periods, or
due to weather, economic or political shocks that are frequent in LDCs. The
knowledge of their impact on living standards and poverty is therefore of the
outmost importance.

We show in this article that using bivariate lognormal models of the dis-
tributions of price indices and nominal living standards, leads to an explicit
formula of the Watts’ poverty index, in terms of …ve parameters to estimate.

Using data from Rwanda for four quarters, we test and estimate the dis-
tribution model and we deduce a MLE of the poverty index. The comparison,
based on sampling and standard errors, of this indirect estimator with direct
estimates based on the sampling scheme, reveals that even when lognormal-
ity models are rejected, the MLE are often not statistically di¤erent from
direct estimates.

Finally, estimates of the Watts’ index, based on MME of parameters of the
distribution, exploiting only the knowledge of empirical mean and variance of
price indices and nominal living standards are often not signi…cantly di¤erent
from direct estimates. This implies that it is possible to generate credible
and axiomatically valid estimates of poverty, from the sparse information
usually available in o¢cial publications.

Finally, simulation using the model of changes in levels and variability of
the prices and nominal living standards, show that if considerable changes
in poverty may occur caused by changes in levels of prices (or logarithms of
prices) similar to what is observed from one season to another, it is not the
case for similarly common increases in the variance of price indices (or their
logarithms).

The methods developed in this paper are associated with functional forms
of distributions that are deliberately simple so as to be easy to implement
in any organisation. However, they could be generalised with hypotheses
relying on formulae expressed in terms of multiple integrals and estimation
based on simulation methods.
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Table 1: Mean and standard deviation of the main variables

Annual A B C D
Total
Consumption
(corrected)

51176:15
(24985:80)

13521:52
(9527:40)

13232:20
(8192:52)

13452:85
(8249:68)

10969:57
(6092:44)

Total
Production
(corrected)

57158:02
(24985:80)

13240:50
(12178:27)

15548:30
(16610:28)

15416:63
(18171:03)

12952:59
(10662:06)

Per Capita
Consumption
(corrected)

10613:27
(5428:08)

2750:173
(1701:169)

2702:944
(1620:898)

2850:082
(1968:637)

2310:075
(1511:553)

Price Index 1:0487
(0:0634)

1:1087
(0:1294)

0:9534
(0:1015)

1:0476
(0:1316)

1:0847
(0:0978)

Per Capita
Consumption
(non corrected)

10905:18
(5355:731)

2995:399
(1826:006)

2539:347
(1475:742)

2902:023
(1834:125)

2468:417
(1524:948)

Standard deviations in parentheses.
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Table 2: P-values of lognormality tests

Variab le 1 2 3 4

price index in A 0.0030 0 .00008 0 .00062 0.00015

price index in B 0.0001 0 .00000 0 .00001 0.00000

price index in C 0.0000 0 .00000 0 .00001 0.00001

price index in D 0.0064 0 .00016 0 .00051 0.00162

annual p er capita consum ption 0.0916 0 .32117 0 .20879 0.90100

p er cap ita consum ption in A 0.0861 0 .21209 0 .11655 0.90100

p er cap ita consum ption in B 0.0431 0 .01719 0 .00868 0.90095

p er cap ita consum ption in C 0.5249 0 .84615 0 .52032 0.90100

p er cap ita consum ption in D 0.0000 0 .0000 0 .00001 0.90099

Variab le 5 6 7 8 9

price index in A 0.364 0.0644 0.06862 0.10313 0.09022

price index in B 0.000 0.0207 0.00029 0.00113 0.00060

price index in C 0.011 0.0129 0.00073 0.00768 0.00940

price index in D 0.155 0.1431 0.06970 0.12212 0.12331

p er cap ita consum ption in A 0.816

p er cap ita consum ption in B 0.163

p er cap ita consum ption in C 0.934

p er cap ita consum ption in D 0.028

Tests:

1: 256 households. Skewness-Kurtosis of logarithm
2: 256 households. Shapiro-Wilk W of logarithm
3: 256 households. Shapiro-Francia W’ of logarithm
4: 256 households. Shapiro-Wilk W for 3-parameters lognormal
5: 256 households. Kolmogorov-Smirnov of logarithm for N(m̂,¾̂2)

6: 90 clusters. Skewness-Kurtosis of logarithm

7: 90 clusters. Shapiro-Wilk W of logarithm

8: 90 clusters. Shapiro-Francia W’ of logarithm
9: 90 clusters. Shapiro-Wilk W for 3-parameters lognormal
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Table 3: Correlation coe¢cients between w and I, and between
Lnw and lnI

Quarter levels

A
¡0:0448
(0:48)

B
¡0:0442
(0:48)

C
¡0:1103
(0:0782)

D
¡0:1124
(0:0726)

Quarter Logarithms

A
¡0:1170
(0:0617)

B
¡0:0371
(0:5547)

C
¡0:0945
(0:1315)

D
¡0:0471
(0:4529)

Table 4: Independence tests
Quarternscale
A 0:340 0:1928 A A
B 0:701 0:1784 A A
C 0:304 0:1943 A A
D 0:287 0:1951 A A

In each line, are shown successively: P-value of Â2 test; Cramer’s V association

measure; Result of ° test at 5 percent level (A = not rejected, R= rejected); Result
of ¿ b test at 5 percent level (A = not rejected, R= rejected).
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Table 5 : MLE of distribution parameters
(standard errors in parentheses)
Living standards (256 obs.)
Parameter annual A B C D

m̂1
9:19964
(0:0270)

7:84461
(0:0356)

7:70622
(0:0318)

7:80331
(0:03659)

7:64110
(0:03998)

¾̂21
0:43235
(0:0191)

0:57239
(0:0253)

0:50957
(0:0225)

0:58779
(0:02598)

0:64130
(0:02830)

®̂1
10862:79
(306:05)

3006:19
(115:44)

2530:20
(85:402)

2910:42
(115:29)

2557:37
(112:17)

°̂1
24253352:50
(3032089)

3503484:78
(525243)

1898086:20
(261748)

3495744:18
(534119)

3327186:65
(544500)

½̂1 0.74799 0.87526 0.82491 0.88607 0.91940

Prices (256 obs.)
Parameter annual A B C D

m̂2
0:045651
(0:00565)

0:096362
(0:01096)

¡0:053677
(0:0104)

0:038192
(0:0123)

0:077123
(0:00863)

¾̂22
0:060308
(0:00415)

0:11814
(0:00817)

0:11104
(0:00737)

0:13135
(0:00892)

0:091994
(0:00617)

®̂2
1:04861
(0:00737)

1:10887
(0:01529)

0:95360
(0:0122)

1:04793
(0:01608)

1:08476
(0:01157)

°̂2
:004006
(0:000850)

0:017283
(0:00392)

0:011282
(0:00244)

0:019110
(0:00439)

0:010000
(0:00214)

½̂2 0.10501 0.20602 0.18927 0.22656 0.1605

Prices (90 clusters)
Parameter annual A B C D
m̂2 0.046366 0.097465 -0.052346 0.039100 0.076197
¾̂22 0.060084 0.11890 0.11255 0.13308 0.093792
®̂2 1.04935 1.11019 0.95503 1.04912 1.08393
°̂2 .0039823 0.017547 0.011628 0.019666 0.010381
½̂2 0.10463 0.20735 0.19185 0.22952 0.16358

The ½̂i are the correlations between estimators ®̂i and °̂i , i = 1,2.

½̂ : correlation coe¢cient of the bivariate lognormal law.(256 ob-
servations)

Annual A B C D

½̂
¡0:05222
(0:0649)

¡0:1179
(0:0656)

¡0:03964
(0:06288)

¡0:09437
(0:06397)

¡0:04531
(0:06321)
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Table 6 : Watts Poverty indices
(with correction for price variability)

z06 > z05 > z04 > z03 > z02 > z01

A

0:1804
(0:0228)
0:1870
(0:0191)
[¡0:0353]
0:1790
[¡0:0416]
(0:0209)

0:1502
(0:0200)
0:1572
(0:0174)
[¡0:0445]
0:1500
[¡0:0474]
(0:0185)

0:1118
(0:0161)
0:1186
(0:0149)
[¡0:0573]
0:112

[¡0:0572]
(0:0150)

0:1025
(0:0154)
0:1088
(0:0142)
[¡0:0579]
0:1022
[¡0:0603]
(0:0141)

0:0657
(0:0116)
0:0691
(0:0108)
[¡0:0492]
0:0638
[¡0:0772]
(0:0099)

0:05288
(0:0101)
0:05519
(0:00937)
[¡0:0419]
0:0504
[¡0:0859]
(0:0082)

B

0:1446
(0:0227)
0:1556
(0:0160)
[¡0:0707]
0:1708
[0:0978]
(0:0198)

0:1182
(0:0198)
0:1274
(0:0144)
[¡0:0722]
0:1416
[0:1116]
(0:0175)

0:08585
(0:0155)
0:09177
(0:0119)
[¡0:0645]
0:1042
[0:1356]
(0:0141)

0:07783
(0:0143)
0:0829
(0:0112)
[¡0:0612]
0:0948
[0:1434]
(0:0131)

0:04499
(0:0101)
0:0486
(0:00803)
[¡0:0743]
0:0577
[0:1870]
(0:00901)

0:03369
(:00909)
0:0372
(0:0067)
[¡0:0944]
0:0450
[0:2104]
(0:0074)

C

0:1764
(0:0179)
0:1864
(0:0191)
[¡0:0536]
0:1798
[¡0:0357]
(0:0259)

0:1472
(0:0152)
0:1573
(0:0174)
[¡0:0642]
0:1509
[¡0:0406]
(0:0230)

0:1118
(0:0129)
0:1194
(0:0149)
[¡0:0637]
0:1136
[¡0:0488]
(0:0188)

0:1027
(0:0125)
0:1098
(0:0142)
[¡0:0647]
0:1041
[¡0:0515]
(0:0176)

0:06482
(:00947)
0:0706
(0:0109)
[¡0:0819]
0:0659
[¡0:0656]
(0:0125)

0:05171
(:00779)
0:0566
(0:0094)
[¡0:0864]
0:0525
[¡0:0729]
(0:0105)
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D

0:2846
(0:0447)
0:3008
(0:0250)
[¡0:0539]
0:2665
[¡0:114]
(0:0311)

0:2427
(0:0413)
0:2622
(0:0234)
[¡0:0744]
0:2282
[¡0:129]
(0:0283)

0:1898
(0:0364)
0:2099
(0:0209)
[¡0:0958]
0:1760
[¡0:157]
(0:0239)

0:1764
(0:0352)
0:1960
(0:0202)
[¡0:100]
0:1636
[¡0:165]
(0:0227)

0:1208
(0:0299)
0:1372
(0:0166)
[¡0:1195]
0:1080
[¡0:211]
(0:0169)

0:1023
(0:0278)
0:1150
(0:0150)
[¡0:1104]
0:0881
[¡0:234]
(0:0145)

Y

0:11300
( :007923)
0:1196
(0:0129)
[¡0:0552]
0:1355
[0:1331]
(0:0189)

0:08599
(:00675)
0:0934
(0:0113)
[¡0:0793]
0:1081
[0:1568]
(0:0161)

0:05417
( :00568)
0:0620
(0:0088)
[¡0:1263]
0:07434
[0:1995]
(0:0123)

0:04696
(:00549)
0:05454
(0:0082)
[¡0:1390]
0:06619
[0:2137]
(0:0112)

0:02201
(:00402)
0:02755
(0:0052)
[¡0:2011]
0:03569
[0:2957]
(0:0069)

0:0153
(:00341)
0:01947
(0:0041)
[¡0:2142]
0:02612
[0:3414]
(0:0054)

The lines in each cell for the quarters correspond respectively to WD, the
sampling error of WD (in parentheses), WL, ¾̂WL (in parentheses), (WD-
WL)/WL (in brackets),WM,(WM-WL)/WL (in brackets), ¾̂WM (in paren-
theses).
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Table 7: Sentivity analysis of the Watts’ index

Lines : z03 and z02
A B C D A B C D

r1 0.765 1.181 0.903 0.845 0.742 1.207 0.893 0.830
r2 0.941 0.945 0.937 0.983 0.924 0.927 0.918 0.977
r3 0.712 1.123 0.842 0.829 0.676 1.127 0.816 0.809

line z01:

r1
r2
r3

A B C D
0.731 1.219 0.888 0.822
0.915 0.917 0.909 0.975
0.659 1.127 0.803 0.799

Lines z06and z05
A B C D A B C D

r1 0.795 1.149 0.916 0.865 0.785 1.160 0.912 0.859
r2 0.961 0.965 0.957 0.989 0.955 0.959 0.951 0.987
r3 0.757 1.114 0.874 0.854 0.742 1.117 0.864 0.846

Line z04

r1
r2
r3

A B C D
0.769 1.176 0.905 0.848
0.945 0.949 0.940 0.984
0.719 1.122 0.847 0.833

Year
z03 z02 z01 z06 z05 z04

r1 0.830 0.807 0.797 0.859 0.849 0.834
r2 0.969 0.957 0.951 0.982 0.978 0.971
r3 0.802 0.769 0.754 0.841 0.828 0.808

r1 is the ratio of the Watts’ index under (m2 = 0), over the Watts index without
restriction; r2 is the ratio of the Watts’ index under (¾2 = 0), over the Watts index
without restriction; r3 is the ratio of the Watts’ index under (m2 = 0 and ¾2 =
0), over the Watts index without restriction.
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Table 8: Simulations
4m2 :

z06 > z05 > z04 > z03 > z02 > z01

A
0:339
[0:815]
(0:0282)

0:295
[0:879]
(0:0266)

0:2355
[0:986]
(0:0240)

0:2196
[1:019]
(0:0232)

0:1520
[1:198]
(0:0193)

0:1264
[0:1290]
(0:0174)

B
0:0985
[¡0:367]
(0:0151)

0:0784
[¡0:384]
(0:0133)

0:0541
[¡0:411]
(0:0106)

0:0482
[¡0:419]
(0:0098)

0:0264
[¡0:456]
(0:0066)

0:0196
[¡0:474]
(0:0054)

C
0:2388
[0:281]
(0:0266)

0:2043
[0:299]
(0:0247)

0:1585
[0:327]
(0:0217)

0:1466
[0:335]
(0:0208)

0:0974
[0:380]
(0:0165)

0:0795
[0:402]
(0:0147)

D
0:4436
[0:475]
(0:0237)

0:3950
[0:507]
(0:0226)

0:3271
[0:558]
(0:0209)

0:3086
[0:574]
(0:0203)

0:2276
[0:658]
(0:0176)

0:1956
[0:701]
(0:0163)

1.2 ¾2 :
z06 > z05 > z04 > z03 > z02 > z01

A
0:1894
[0:014]
(0:0065)

0:1596
[0:015]
(0:0059)

0:1209
[0:019]
(0:0051)

0:1110
[0:020]
(0:0049)

0:0710
[0:0267]
(0:0038)

0:0568
[0:0301]
(0:0033)

B
0:1578
[0:0138]
(0:0043)

0:1295
[0:0162]
(0:0038)

0:0936
[0:0204]
(0:0032)

0:0847
[0:0218]
(0:00303)

0:0500
[0:0293]
(0:0022)

0:0384
[0:0333]
(0:00185)

C
0:1893
[0:0155]
(0:0058)

0:1601
[0:0178]
(0:0053)

0:1220
[0:0218]
(0:0046)

0:1123
[0:0230]
(0:0044)

0:0727
[0:0300]
(0:0034)

0:0586
[0:0336]
(0:0030)

D
0:3021
[0:0043]
(0:0045)

0:2635
[0:0050]
(0:0043)

0:2112
[0:0061]
(0:0038)

0:1973
[0:0065]
(0:0037)

0:1384
[0:0086]
(0:0031)

0:1161
[0:0097]
(0:0028)

1.15 ®2 :
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z06 > z05 > z04 > z03 > z02 > z01

A
0:2515
[0:346]
(0:0233)

0:2149
[0:367]
(0:0211)

0:1661
[0:401]
(0:0178)

0:1535
[0:411]
(0:0169)

0:1012
[0:464]
(0:0126)

0:0822
[0:489]
(0:0108)

B
0:2201
[0:414]
(0:0210)

0:1841
[0:445]
(0:0187)

0:1372
[0:495]
(0:0153)

0:1252
[0:510]
(0:0143)

0:0773
[0:590]
(0:0100)

0:0606
[0:630]
(0:0083)

C
0:2512
[0:348]
(0:0234)

0:2154
[0:369]
(0:0212)

0:1676
[0:403]
(0:0179)

0:1552
[0:414]
(0:0170)

0:1036
[0:468]
(0:0127)

0:0847
[0:494]
(0:0110)

D
0:3844
[0:278]
(0:0302)

0:3397
[0:295]
(0:0281)

0:2777
[0:323]
(0:0248)

0:2611
[0:332]
(0:0239)

0:1889
[0:377]
(0:0192)

0:1608
[0:399]
(0:0172)

1.60°2 :
z06 > z05 > z04 > z03 > z02 > z01

A
0:1865
[¡0:0021]
(0:0162)

0:1569
[¡0:0016]
(0:0145)

0:1185
[¡0:00058]
(0:0120)

0:1088
[¡0:0002]
(0:0113)

0:0693
[0:00167]
(0:0082)

0:0553
[0:0027]
(0:0070)

B
0:1569
[0:0080]
(0:0137)

0:1287
[0:0103]
(0:0120)

0:0931
[0:0143]
(0:0096)

0:0842
[0:0156]
(0:0089)

0:0497
[0:0229]
(0:0060)

0:0382
[0:0269]
(0:0049)

C
0:1884
[0:0107]
(0:0163)

0:1594
[0:0132]
(0:0146)

0:1215
[0:017]
(0:0121)

0:1118
[0:0118]
(0:0114)

0:0724
[0:0265]
(0:0083)

0:0584
[0:0306]
(0:0071)

D
0:3028
[0:0068]
(0:0223)

0:2644
[0:0083]
(0:0205)

0:2122
[0:0109]
(0:0178)

0:1983
[0:0117]
(0:0170)

0:1395
[0:0164]
(0:0133)

0:1171
[0:0189]
(0:0117)

The …rst line of each cell is W simulated with the model. The second line
in brackets is the proportion of variation compared with WL without change
in parameters. The third line, in parentheses, is the standard error of the
estimates, ¾̂WS or ¾̂WMS: The tables of simulations correspond successively
to the following changes in parameters : 4m2 instead of m2; 1:2¾2 instead of
¾2; 1:15®2 instead of ®2; 1:60°2 instead of °2.
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Proof of proposition 1:
ln(y) = ln(w) - ln(I) is the sum of two normal random variables, of law

N(m1 - m2, ¾21 + ¾22 ¡ 2½¾1¾2), whose c.d.f. is denoted H. The Watts’ index
can be decomposed as follows

W (z) =

Z z

o

¡ ln(y) + ln(z) d¹(y) (36)

which yields, using the transfer theorem (see Monfort (1980)) with u =
ln(y))

W (z) = ln(z):H(ln(z))¡
Z ln z

¡1
u dH(u) (37)

and again with normalization of u with t = u¡m1+m2p
¾21+¾

2
2¡2½¾1¾2

W (z) = ln(z):©

"
ln(z) ¡m1 +m2p
¾21 + ¾

2
2 ¡ 2½¾1¾2

#

¡
Z ln z¡m1+m2p

¾21+¾
2
2¡2½¾1¾2

¡1

q
¾21 + ¾

2
2 ¡ 2½¾1¾2 t

+m1 ¡m2 d©(t) (38)

where © is the cumulative distribution function of the standard normal
law, N(0,1). Then,

W (z) = (ln(z) ¡m1 +m2):©

"
ln(z) ¡m1 +m2p
¾21 + ¾

2
2 ¡ 2½¾1¾2

#

¡
q
¾21 + ¾

2
2 ¡ 2½¾1¾2 :J(z) (39)

where

J(z) =

Z ln z¡m1+m2p
¾21+¾

2
2¡2½¾1¾2

¡1
t d©(t) (40)
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Integration of eq. 40 yields

J(z) = ¡ 1p
2 ¼
e
¡

Ã
ln(z)¡m1+m2p
¾2
1
+¾2

2
¡2½¾1¾2

!2

=2

(41)

W = (ln(z)¡m1 +m2):©

Ã
ln z ¡m1 +m2p
¾21 + ¾

2
2 ¡ 2½¾1¾2

!
(42)

+
1p
2 ¼

q
¾21 + ¾

2
2 ¡ 2½¾1¾2 e

¡( ln(z)¡m1+m2p
¾21+¾

2
2¡2½¾1¾2

)2=2

QED.

proof of proposition 3

The density of the couple (ln(w), ln(I)) = (x1, x2) with respect to ¸2 is
(when ½ 6= 1) :

f =
1

2¼¾1¾2
p
1¡ ½2

exp

(
¡1

2(1¡ ½2)

"
(x1¡m1)2

¾21
+ (x2¡m2)2

¾22

¡2½(x1¡m1)(x2¡m2)
¾1¾2

#)
(43)

Using the theorem of change in variables, we obtain the density of our
variables of interest (w,I) and we derive the log-likelihood of the sample:

LL =
nX

i=1

¡ ln(2¼) ¡ ln(¾1)¡ ln(¾2)¡
1

2
ln(1¡ ½2) ¡ ln(w)¡ ln(I)

¡ 1

2(1¡ ½2)

"
(x1¡m1)2

¾21
+ (x2 ¡m2)2

¾22

¡2 ½ (x1¡m1)(x2¡m2)
¾1¾2

#
(44)
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Under the usual regularity conditions (e.g. Gouriéroux and Monfort
(1989)), the MLE exist are unique, consistent and e¢cient.

Then, the components of the score vector are:

@LL

@m1

=
nX

i=1

(x1 ¡m1)

(1¡ ½2)¾21
¡ ½(x2 ¡m2)

(1¡ ½2)¾1¾2
(45)

@LL

@m2
=

nX

i=1

(x2 ¡m2)

(1¡ ½2)¾22
¡ ½(x1 ¡m1)

(1¡ ½2)¾1¾2
(46)

@LL

@¾1
= ¡ n

¾1
+

nX

i=1

(x1 ¡m1)2

¾31(1¡ ½2) ¡ ½

1¡ ½2
(x1 ¡m1)(x2 ¡m2)

¾21¾2
(47)

@LL

@¾2
= ¡ n

¾2
+

nX

i=1

(x2 ¡m2)
2

¾32(1¡ ½2) ¡ ½

1¡ ½2
(x1 ¡m1)(x2 ¡m2)

¾22¾1
(48)

@LL

@½
=

n:½

1¡ ½2 +
1

1¡ ½2
nX

i=1

(x1 ¡m1)(x2 ¡m2)

¾2¾1
(49)

¡ ½

(1¡ ½2)2
nX

i=1

"
(x1¡m1)2

¾21
+ (x2¡m2)2

¾22

¡2½ (x1¡m1)(x2¡m2)
¾2¾1

#
(50)

The MLE are obtained by cancelling eqs. 45 to 49 and solving.

m̂1 =
1

n

nX

i=1

lnwi (51)

m̂2 =
1

n

nX

i=1

ln Ii (52)
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¾̂1 =

vuut1

n

nX

i=1

(lnx1 ¡ m̂1)2 (53)

¾̂2 =

vuut1

n

nX

i=1

(lnx2 ¡ m̂2)2 (54)

½̂ =
1
n

Pn
i=1(lnw ¡ m̂1)(ln I ¡ m̂2)

¾̂1¾̂2
(55)

The Fisher information matrix of one observation on (m1, m2,¾1; ¾2; ½) is

IF =

2
6666666664

¡E
³
@2 ln f
@m2

1

´
¡E

³
@2 ln f
@m1@m2

´
¡E

³
@2 ln f
@m1@¾1

´
¡E

³
@2 ln f
@m1@¾2

´
¡E

³
@2 ln f
@m1@½

´

¡E
³

@2 ln f
@m2@m1

´
¡E

³
@2 ln f
@m2

2

´
¡E

³
@2 ln f
@m2@¾1

´
¡E

³
@2 ln f
@m2@¾2

´
¡E

³
@2 ln f
@m2@½

´

¡E
³
@2 ln f
@¾1@m1

´
¡E

³
@2 ln f
@¾1@m2

´
¡E

³
@2 ln f
@¾21

´
¡E

³
@2 ln f
@¾1@¾2

´
¡E

³
@2 ln f
@¾1@½

´

¡E
³
@2 ln f
@¾2@m1

´
¡E

³
@2 ln f
@¾2@m2

´
¡E

³
@2 ln f
@¾2@¾1

´
¡E

³
@2 ln f
@¾22

´
¡E

³
@2 ln f
@¾2@½

´

¡E
³
@2 ln f
@½@m1

´
¡E

³
@2 ln f
@½@m2

´
¡E

³
@2 ln f
@½@¾1

´
¡E

³
@2 ln f
@½@¾2

´
¡E

³
@2 ln f
@½2

´

3
7777777775

(

We derive the coordinates of the gradient of ln(f) to obtain

@2 ln f

@(m1)2
= ¡ 1

¾21(1¡ ½2) (57)

@2 ln f

@(m2)2
= ¡ 1

¾22(1¡ ½2) (58)

@2 ln f

@(¾1)2
=
1

¾21
¡ 1

1¡ ½2
�
3
(lnw ¡m1)

2

¾41
¡ 2½(lnw ¡m1)(ln I ¡m2)

¾31¾2

¸
(59)
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@2 ln f

@(¾2)2
=
1

¾22
¡ 1

1¡ ½2
�
3
(ln I ¡m2)2

¾42
¡ 2½(lnw ¡m1)(ln I ¡m2)

¾32¾1

¸
(60)

@2 ln f

@(½)2
=

1

(1¡ ½2)2

"
1 + ½2 + 6½ (lnw¡m1)(ln I¡m2)

¾2¾1

¡ (lnw¡m1)2

¾21
¡ (ln I ¡m2)2

¾22

#

¡ 4½2

(1¡ ½2)3

"
¡2½ (lnw¡m1)(ln I¡m2)

¾2¾1

+ (lnw¡m1)
2

¾21
+ (ln I ¡m2)

2

¾22

#
(61)

@2 ln f

@m1@m2

=
@2 ln f

@m2@m1

=
½

¾1¾2(1¡ ½2) (62)

@2 ln f

@m1@¾1
=

@2 ln f

@¾1@m1

=
1

(1¡ ½2)¾21

�
¡2(lnw ¡m1)

¾1
+ ½

(ln I ¡m2)

¾2

¸
(63)

@2 ln f

@m2@¾2
=

@2 ln f

@¾2@m2
=

1

(1¡ ½2)¾22

�
¡2(ln I ¡m2)

¾2
+ ½

(lnw ¡m1)

¾1

¸
(64)

@2 ln f

@m1@¾2
=

@2 ln f

@¾2@m1

=
½

(1¡ ½2)
(ln I ¡m2)

¾1¾22
(65)

@2 ln f

@m2@¾1
=

@2 ln f

@¾1@m2

=
½

(1¡ ½2)
(lnw ¡m1)

¾2¾21
(66)

@2 ln f

@m1@½
=
@2 ln f

@½@m1

=
1

(1¡ ½2)2
�
¡(1 + ½2)(ln I ¡m2)

¾1¾2
+ 2½

(lnw ¡m1)

¾21

¸
(67)

@2 ln f

@m2@½
=
@2 ln f

@½@m2
=

1

(1¡ ½2)2
�
¡(1 + ½2)(lnw ¡m1)

¾1¾2
+ 2½

(ln I ¡m2)

¾22

¸
(68)
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@2 ln f

@¾1@¾2
=
@2 ln f

@¾2@¾1
=

½

1¡ ½2
(lnw ¡m1)(ln I ¡m2)

¾22¾
2
1

(69)

@2 ln f

@¾1@½
=
@2 ln f

@½@¾1
=

1

(1¡ ½2)2¾1

"
2½ (lnw¡m1)2

¾21

¡(1 + ½2) (lnw¡m1)(ln I¡m2)
¾1¾2

#
(70)

@2 ln f

@¾2@½
=
@2 ln f

@½@¾2
=

1

(1¡ ½2)2¾2

"
2½ (ln I¡m2)2

¾22

¡(1 + ½2) (lnw¡m1)(ln I¡m2)
¾1¾2

#
(71)

Then, taking minus expectations and averaging on the observations, the
average Fisher information matrix is

I ¹F =

2
66666664

1
¾21(1¡½2)

¡½
¾1¾2(1¡½2) 0 0 0

¡½
¾1¾2(1¡½2)

1
¾22(1¡½2)

0 0 0

0 0 (2¡½2)
¾21(1¡½2)

¡½2
¾1¾2(1¡½2)

½
¾21(1¡½2)

0 0 ¡½2
¾1¾2(1¡½2)

(2¡½2)
¾22(1¡½2)

½
¾22(1¡½2)

0 0 ½
¾21(1¡½2)

½
¾22(1¡½2)

(1+½2)
(1¡½2)2

3
77777775

(72)

From eq. 51, we have E(m̂i) = mi and m̂i is unbiased, i = 1, 2. The MLE
are convergent and asymptotically normal with asymptotic variance deduced
from the inverse of the Fisher information matrix.

Then, under usual regularity conditions for the MLE, using central limit
theorems, we can derive the asymptotic variance-covariance matrices by in-
verting IF̄.

This yields

p
n

µ
m̂1 ¡m1

m̂2 ¡m2

¶
Ã N

µµ
0
0

¶
;

�
¾21 ½¾1¾2
½¾1¾2 ¾22

¸¶
(73)

and independently

p
n

0
@
¾̂1 ¡ ¾1
¾̂2 ¡ ¾2
½̂¡ ½

1
A Ã N

0
@

0
@

0
0
0

1
A ;

2
4
B11 B12 B13
B12 B22 B23
B13 B23 B33

3
5
1
A (74)
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where the Bij are given in the proposition.

Proof of proposition 4:

The characteristic function of the binomial normale law ¹, (i.e. N(m,
P
));

is the following (Johnson and Kotz (1973)).

G(t1; t2) =

Z
ei:(u1t1+u2t2)d¹(u1; u2)

= ei:(t1m1+t2m2)¡ 1
2
(t21¾

2
1+t

2
2¾

2
2¡2t1t2½¾1¾2) (75)

Eq. 75 gives for t1 = ¡i:r1 and t2 = ¡i:r2 , u1 = ln(v1) and u2 = ln(v2):

Z
vr11 v

r2
2 :dLN (v1; v2) = e

r1m1+r2m2+
1
2
(r21¾

2
1+r

2
2¾

2
2¡2r1r2½¾1¾2) (76)

In particular, we have for (X1, X2 ) = (w, I) following a joint lognormal
distribution

EXi = e
mi+¾

2
i =2; i = 1; 2 (77)

E(X2
i ) = e

2mi+2¾
2
i ; i = 1; 2 (78)

V Xi = e
2mi+¾

2
i :(e¾

2
i ¡ 1); i = 1; 2 (79)

Cov(X1; X2) = fe½¾1¾2 ¡ 1g:em1+m2+
¾21+¾

2
2

2 (80)

R = ½(X1; X2) =
e½¾1¾2 ¡ 1q

(e¾
2
1 ¡ 1):(e¾22 ¡ 1)

(81)

Eqs. 77 and 79 enable us to de…ne the MME (m̃1, m̃2, ~¾1; ~¾2)’ that does
not depend on the value of ½.

A MME for ½ can as well be de…ned as a solution of eq. 81 :

~½ =
ln

�
1+R:

q
(e¾

2
1¡1):(e¾22¡1)

¸

¾1:¾2
and replacing R, ¾1; ¾2 with their empirical

equivalent.



50

Sampling errors:
The poverty indicator of a sub-population is estimated by a ratio of the

type ȳx’ = z’/x’ where ’ denotes the Horwitz-Thompson estimator for a total
(sum of values for the variable of interest weighted by the inverse of inclusion
probability). z is the sum of the poverty in the sub-population and x is the
size of the sub-population. The variance associated with the sampling error
is then approximated by:

V (¹y0x) =
£
V (z0)¡ 2¹y0xCov(z0; x0) + (¹y0x)2V (x0)

¤
=(x0)2 (82)

which can be obtained from a Taylor expansion at the …rst order from
function Y = f(Z/X) around (E y’, Ex’ ) and because E z’ 6= 0 and x’ does
not cancel, where the appropriate expectancies are estimated by x’ and ȳx’.

We divide the sample of communes (…rst actual stage of the sampling
since all the prefectures are drawn) in …ve super-strata ( ®= 1 to 5) so as to
group together the communes sharing similar characteristics. Several sectors
are assumed to have been drawn in each strata. This allows the estimation of
the variance intra-strata, while the calculation of the variance intra-commune
was impossible since in fact only one sector had been drawn in each commune.
Then, the Horwitz-Thompson formula for superstrata ® is:

z0® =
X

h

Mh

mh®

mh®X

i=1

Nhi
nhi

nhiX

j=1

Qhij
qhij

qhijX

k=1

zhijk (83)

and

x0® =
X

h

Mh

mh®

mh®X

i=1

Nhi
nhi

nhiX

j=1

Qhij
qhij

qhijX

k=1

xhijk (84)

where Mh is the number of communes in prefecture h; mh® is the number
of communes in prefecture h and drawn in superstrata ®; Nhi is the number
of sectors in commune i of prefecture h and superstrata ®; nhi is the number
of sectors drawn in commune i of prefecture h and superstrata ®; Qhij is
the number of households in sector j of commune i of prefecture h; qhij is
the number of households drawn in sector j of commune i of prefecture h
and superstrata ®. A similar formula can also be used to account for the
intermediary drawing of several districts in every sector.
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Cov(z’,x’) is estimated by:

Cov̂(z0; x0) =
1

20

5X

®=1

(z0® ¡ z0):(x0® ¡ x0)

and similar formula for V(x) and V(z) are obtained by making x = z.
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