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1. INTRODUCTION

The seminal work by Klette and Kortum (2004) provides a parsimonious model that is able to explain

several stylized facts about firm’s innovation behavior. In their model, they treat firms as collections

of knowledge and assume that past knowledge accumulation contributes to future innovation equally,

regardless of which sector it comes from and which sector it contributes to. This simplifying assump-

tion renders their model and the subsequent studies that have adopted the same framework silent on

questions like how innovations in different sectors are connected with each other; what is the re-

lationship between sectoral growth and aggregate economic growth; does industry-oriented policy

have impacts beyond its targeted sector? These questions are of contemporary relevance as many

governments, especially those of developing countries, have implemented ad hoc industrial policies

without overall evaluations.1 Unfortunately, little research has been done on these issues. In this

paper, we aim to bridge the gap by building a framework incorporating a technology network that

captures heterogeneous intersectoral technology dependence among sectors.

Figure 1 showcases an example of such a network constructed from patent citations.2 In the

graph, the economy is represented by a network. Each node is a sector in the economy and each

edge implies the existence of a technology connection between sectors.3 The thickness of an edge

captures the strength of knowledge flows from one sector to another. The size of each node represents

the strength of aggregate outward knowledge flows, measured by the cross-sector backward citation

ratio.

Three features of Figure 1 are noteworthy. First, the strength of knowledge spillovers differs

across sector pairs, as shown by the different thickness of the edges. Second, for a given sector pair,

the knowledge spillover from one sector to the other is not the same as the spillover in the other

direction, which implies that the network is asymmetric. Finally, knowledge spillovers do not exist

among some sector pairs, which is reflected in the sparsity of the network. The above features all

point to sector-pair-specific heterogeneity, one dimension of heterogeneity which is of interest in this

paper.

1For example, the Chinese government proposed to invest more than 161 billion dollars over 10 years to develop the

semiconductor industry in 2015.
2The patent citation data is from US Patent and Trademark Office and will be discussed in detail shortly. The figure is

drawn using all citation data available in the dataset between 1975 and 2006 .
3The definition of sectors here follows Hall et al. (2001), who assign all patents to 37 sectors.
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FIGURE 1

A TECHNOLOGY NETWORK REPRESENTATION OF ECONOMY

To further appreciate the magnitude of intersectoral knowledge flows, Figure 2 shows the kernel

density of cross-sector citation ratios corresponding to the sectors in Figure 1. The horizontal axis

measures the ratio of a sector’s intersectoral citations over its total citations, while the vertical axis

records the kernel density estimate, using a bandwidth of 0.02.4 It is clear that cross-sector knowledge

spillovers play a non-trivial role in the knowledge accumulation of all sectors, contributing from 17%

to about 67% of knowledge flows with a mean of 39%.5

The importance of the technology network for innovation is substantiated by empirical evidence

obtained from firm level data in this paper. First, intersectoral knowledge spillovers help firms to enter

new sectors where they have a comparative technology advantage. We refer to this as the “pro-entry

effect”. Second, intersectoral knowledge spillovers are positively correlated with the accumulation

of new patents, which we denote the “pro-innovation effect”. The pro-innovation effect implies that

a firm’s knowledge accumulation in one sector will contribute to its innovation in another sector

if there are knowledge spillovers from the former to the latter. These two empirical observations

highlight both the extensive and intensive margins of knowledge spillovers. Last, we show that the

pro-innovation effect is universal over all sectors, although the magnitudes differ substantially. This

4The intersectoral citations are calculated from all the other sectors to a given sector. The bandwidth is chosen to

produce a smooth kernel curve.
5Note that these values are calculated for 2-digit sectors.
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result indicates that firms in different sectors have heterogeneous efficiency in utilizing knowledge

from other sectors.

FIGURE 2

CROSS SECTOR CITATION RATIO

These empirical findings confirm the importance of intersectoral knowledge spillovers. However,

one critical question remains unaddressed: how do the interactions between sectors affect growth

at both the sector level and the aggregate level. To answer this question, we build a theoretical

model, which allows firms to endogenously choose their innovation efforts across sectors, taking

into account heterogeneous intersectoral knowledge spillover effects. The intersectoral knowledge

spillover is an important feature, which determines the potential benefit of knowledge accumulation

on cross-sector innovation. Motivated by the empirical analysis, we will assume that the technology

network, which contains pair-wise knowledge spillovers for all sectors in the economy, is asymmetric

and non-complete. The structure of the network is exogenous for individual firms.

Given the central role played by the technology network in our model, it is straightforward to

note that different network structures have a significant impact on firms’ cross-sector knowledge ac-

cumulation. To examine this impact, we study two types of networks in this paper: an irreducible

network and a reducible network. The former represents an economy where each sector has knowl-

edge spillovers to all the other sectors either directly or indirectly. In such an economy, knowledge

spillovers display a global impact, which implies that knowledge accumulation in any sector will
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benefit the whole economy eventually. In contrast, an economy denoted by a reducible network can

be thought of as a collection of multiple technology clusters. In this case, knowledge spillovers only

exist among sectors within each technology cluster but not across clusters. The difference between

the reducible and irreducible networks is determined by the sparseness of the network. When the

network is sufficiently sparse, it becomes a reducible network.

In the benchmark case of the irreducible network, firms choose the sector-specific innovation

rate, which depends on the average profitability of conducting innovation and the option value of

research in a sector. Despite different innovation rates across sectors, in the long run, all sectors

converge to the same growth rate due to the existence of global knowledge spillovers. However,

different sectors contribute to economic growth differently, depending on their innovation capacities

and their positions in the technology network to distribute knowledge. The interaction of these two

forces determines long-run growth. In particular, the long-run growth rate is equal to the dominant

eigenvalue of a matrix, Φ, that reflects the above interaction. A modified version of the matrix also

determines the share of each sector. Specifically, we show that the share of a sector is represented by

the sector’s corresponding generalized eigenvector centrality associated with a matrix, Ψ = Φ + I,6

which determines the dynamics of the sector share evolution. The generalized eigenvector centrality

of a sector captures the sector’s position in the downstream technology network.7 A more central

position implies higher knowledge spillovers from other sectors and thus a larger sector share. Lastly,

the interaction of the intersectoral knowledge spillovers and heterogeneous sectoral innovation rates

also plays a role in shaping the firm size distribution. The right tail of the firm size distribution is

shown to be a Pareto distribution, and the thickness of the tail is pinned down by the ratio of the

population growth rate and the long-run economic growth rate.

The previous theoretical results are established under the assumption that each sector displays

global spillover effects. This assumption is relaxed when the network structure is assumed to be

reducible. For a reducible network, the sectoral growth rate is driven by the local network structure

of technology clusters that each sector belongs to and the converging behavior of sectoral growth is

limited only within each technology cluster. As a result, different technology clusters demonstrate

heterogeneous growth and aggregate economic growth is determined by the cluster that grows fastest.

Given that sectors belong to different technology clusters may grow at different rates, their shares

diverge in the long run. Moreover, the firm size distribution is also technology cluster specific. For

6I is an identity matrix.
7Eigenvector centrality is a measure of the importance of a node in a network. A higher score is assigned to nodes

with connections to high score nodes. Generalized eigenvector centrality used in this paper takes into account the strength

and the direction of each connection in addition to the number of connections.
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firms that belong to different technology clusters, their size difference reflects the difference of those

technology clusters’ network structures.

We apply our framework to identify key sectors in the economy. A sector is a key sector if a small

shock to the sector’s innovation rate can lead to a large spillover effect. Many governments subsidize

specific sectors to promote growth. Our analysis provides potential guidance on such policies from

the perspective of knowledge spillovers. We find that there is substantial heterogeneity across sectors

in terms of the induced impacts of sectoral shocks. Specifically, a 1% increase of the innovation rate

for the most important sector can result in knowledge spillovers that are 10,000 times larger than in

the case of the least important sector.

The remainder of this paper is organized as follows. Section 2 reviews the past literature. Section

3 presents the empirical motivation of this paper. The formal model is developed in Section 4, while

policy analyses are provided in Section 5. Section 6 concludes.

2. Related Literature

This paper contributes to several strands of literature. Among others, it is closely related to the litera-

ture that studies R&D via endogenous innovation.8 In particular, the model is an extension of Klette

and Kortum (2004). In their paper, firms engage in a Schumpeterian-style innovation process and

expand their products via a Poisson birth and death process. New products arise at a rate that depends

on the knowledge accumulation embodied in past products, while some products of a firm are lost as

a result of competition from rivals making them obsolete. A large literature has subsequently adapted

their approach and applied it to different environments.9 A common feature of these models is that in-

novation is undirected: that is, knowledge accumulation in one sector will benefit innovation in other

sectors equally. In contrast, we construct a multi-sector model that focuses on the interdependency

of sectors and allows for heterogeneous innovation rates. These new characteristics make it possible

to think about the linkage between individual sectors and the aggregate economy and to evaluate the

aggregate effects of industrial policies.

There is a large literature trying to model various networks existing in the economy. Among

them, Jackson and Rogers (2007) are the first to present a general model of network formation in an

attempt to explain the salient features of various networks formed in the real world. They argue that

nodes in a network form links with each other either randomly or via local search using the existing

8See, for example,Romer (1986), Aghion and Howitt (1992), Aghion et al. (1997), Grossman and Helpman (1991)

and Kortum (1997).
9See, for example, Lentz and Mortensen (2005, 2008), Acemoglu et al. (2013) and Akcigit and Kerr (ming)
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network, the so-called meeting friends of friends. The technology network in this paper shares the

fundamental feature of the social network in Jackson and Rogers (2007). Firms enter sectors where

their existing patent portfolios have strong knowledge spillovers and innovate intensively in those

sectors. This is similar to the local search in the social network.

Another strand of literature studies the size distribution of firms and cities. Luttmer (2007, 2011)

describes a balanced growth model that features a Pareto distribution of firm size, which is consistent

with the observed size distribution of U.S. firms’ employment. In a different context, Gabaix (1999)

employs a model, underlying which is a geometric Brownian motion with a reflecting barrier, to

explain the city size distribution in the U.S.. The way in which these studies generate size differences

is assuming that entities experience random growth and have different sizes because of the realization

of different shocks.10 This paper provides an alternative way to think about the firm size difference.

In an economy represented by a sparse network, firms that belong to different technology clusters

have different growth potentials, which are reflected by their sizes.

This paper is not the first attempt to incorporate networks into macro analysis. Oberfield (2012)

develops a model of a business network through which firms form production chains and studies

the endogenously emerging network. Cai and Li (2012) study the impact of intersectoral knowledge

linkages on firms’ innovation intensity and the sequence of entry into different industries. My paper

treats the technology network as exogenous and explores how different structures of the network can

affect economic growth, sectoral shares and the firm size distribution.

Finally, this paper contributes to the literature on knowledge spillovers. Jaffe (1986) constructs an

empirical measure of technology spillovers to study the impact of the research of neighbouring firms

on the success of a firm’s R&D. He finds that high R&D firms tend to reap the benefit of knowledge

spillovers while firms with low R&D are worse off. Bloom et al. (2013) study two types of spillovers:

a positive technology spillover effect from other research firms and a negative business stealing effect

from product market rivals. They employ and extend the measure of technology spillovers from Jaffe

(1986) and conclude that the positive knowledge spillover effect dominates the negative business

stealing effect.11 Acemoglu et al. (2016) map the upstream technology network and sectoral patent

growth to predict future innovation after 1995 and find strong predictive power at the sector level.

10Gabaix (2009) surveys the theory and application of the power law in economics and finance.
11There is a large amount of research in the IO literature that studies the external knowledge spillover between firms

and their competition in the product market. A short list includes: D’Aspremont and Jacquemin (1988), Suzumura

(1992),Amir and Wooders (1999),Anbarci et al. (2002) and Erkal and Piccinin (2010). My paper abstracts away from

product market competition and external knowledge spillovers, and instead focuses on the internal knowledge spillovers.

This feature makes my model tractable and renders the relationship between the network structure and the economic

growth transparent.
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My paper serves as the complement to the previous studies by providing novel empirical evidence of

intersectoral knowledge spillovers at the firm level and new theoretical insights on the importance of

intersectoral technological linkages.

3. EMPIRICAL EVIDENCE OF TECHNOLOGY NETWORK

In this section, we present evidence on the spillover effects of firms’ past knowledge accumulation

on future innovation. We ask three questions here: (i) Does a firm’s existing patent portfolio affect its

entry to a new sector in the future? (ii) Does a firm’s current patent accumulation in a sector depends

on its past patent accumulation in other sectors? and (iii) If so, how does this relationship vary across

sectors? The first two questions present two margins of spillover effects: the former is what we term

the pro-entry effect, which is intended to capture the extensive margin of knowledge spillover effects

in expanding firms’ patent portfolios. The latter is the pro-innovation effect. The pro-innovation

effect captures whether past knowledge accumulation in one sector helps to promote innovation in

technologically related sectors, representing an intensive margin of knowledge spillover effects. The

third question deals with the heterogeneity of the efficiency of different sectors in absorbing and

applying intersectoral knowledge.

The backbone for our analysis here is the NBER Patent Database from the United States Patent

and Trademark Office (USPTO) from 1975 to 2006. The dataset contains patent records that provide

information on the unique assignee number of the inventor of each patent, the country the assignees

belong to, the date each patent is applied for and granted as well as the technology sector each patent

belongs to, etc. We use the field classification proposed by Hall et al. (2001), who assign all patents

into 37 technology sectors. Details of how each sector is defined can be found in Hall et al. (2001).

Here, for convenience, we label each technology sector by a number from 1 to 37. TABLE A.1 in

the Appendix shows the correspondence between the numeric label and the original field. We only

use patents granted to U.S. companies and drop observations for which the assignees are missing.

The patent database contains an associated dataset upon the citing-cited relationship of patents. The

citation data will be critical for us to empirically construct the technology network that captures

the strength of knowledge flows across sectors. Estimations in this paper will be based on the data

between 1990 and 2001. The 2001 end date is chosen to allow for a 5-year window for patent reviews.

The 1990 start date allows enough pre-sample data to implement the empirical strategy that will be

discussed in detail later. Estimations extending the range of data deliver qualitatively same results.

To address the first question, some idea about how close two technologies are, or more precisely,

how easily certain technology can be applied to others is required. Therefore, we introduce a measure
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of technology applicability based on the patent citation data. A citation may serve as an indicator of

knowledge spillovers. For instance, if patent A cites patent B, then the implication is that knowledge

flows from B to A. My measure of technology applicability from sector y to x, g(y, x), is constructed

using the following formula:

g(y, x) =
N(citation from x to y)

N(total citation to y)
. (1)

This measure is sector-pair specific and can be interpreted as the average spillover effect from sector

y to sector x. Using this measure, we can continue to construct the average proximity between a

firm’s current patent portfolio and any target technology sector. The measure of average proximity is

needed because firms can operate in multiple sectors, and our first measure cannot account for this.

We use the variable Mproximityx
f ,t to denote the average proximity, and it is calculated as

∑
y∈{y 6=x}

nyf,t
nf,t

g(y, x),

where nyf,t is the patent stock for firm f at time t in sector y and nf,t is total patent stock at t.12 Note

that the target sector x is excluded in the summation because we want to analyze the intersectoral

spillover effects. With the above measure, we run a Probit regression over a firm’s probability of

entering a given sector on its average proximity to this sector:

Pr(yxf,t) = α1Mproximityxf,t−1 + α2Controls
x
f,t−1 + µxf + ϑt + ζx + εxf,t, (2)

where the dependent variable yxf,t is a dummy variable that takes the value of 1 if the corresponding

firm f produces patents in technology sector x at time t and zero otherwise. We control for whether

firm f has previously operated in the same sector, yxf,t−1, as well as the total number of technology

sectors firm f operates in at t− 1, Nf,t−1. To deal with unobserved heterogeneity, it is assumed that

the error term is composed of µxf , a firm-sector fixed effect, a full set of year dummies, ϑt, sector

dummies, ζx, and an idiosyncratic component, εxf,t. We follow Wooldridge (2002) and instrument the

unobserved firm-sector fixed effect µxf with the time mean of all exogenous variables and the initial

value of the dependent variable yx0 . The key parameter that we are interested in is α1, which captures

the pro-entry effect. A positive α1 implies that a patent portfolio that is more technically related to

sector x contributes to the firm’s entry into sector x.

Estimation results are presented in TABLE 1. As shown in column (1), a firm is more likely to

enter a technology sector x when its patent portfolio contains technologies closer to that sector. The

estimates remain significant after controlling for various factors (column (2) to (4)). The additional

12ny
f,t can be zero if firm f does not hold any patent in sector y at time t.
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control variables behave as we would expect. In particular, a firm that currently owns patents in

sector x is more likely to continue innovation in the same sector (column(2)), and there is a higher

probability that a firm with a broad set of patents will expand into another sector (column(3)). The

magnitude and significance of the above variables are largely unaffected by adding time and sector

dummies to the regression as shown in column (4). The regression results taking account of un-

observed firm-sector fixed effects are provided in column (5). After controlling for the unobserved

firm-sector fixed effects, the coefficients of all controls decline significantly with Mproximityx
f ,t be-

ing the only exception. In fact, the estimate for Mproximityx
f ,t increases compared to its estimate in

column (4), demonstrating the robustness of our main results.

TABLE 1

PROBIT REGRESSIONS

(1) (2) (3) (4) (5)

Mproximityx
f ,t−1 14.75*** 13.55*** 14.16*** 11.89*** 14.57***

(0.17) (0.12) (0.13) (0.14) (0.24)
yxf,t−1 2.17*** 1.98*** 1.90*** 1.62***

(0.01) (0.01) (0.01) (0.01)
Nf,t−1 0.06*** 0.06*** 0.00

(0.00) (0.00) (0.00)
Y earDummy No No No Yes Yes

SectorDummy No No No Yes Yes

Firm-sector FE No No No No Yes

Constant -1.66*** -2.08*** -2.25*** -2.65*** -2.80***
(0.01) (0.01) (0.00) (0.02) (0.03)

Observations 2,042,178 2,042,178 2,042,178 2,042,178 2,042,178

A */**/*** next to the coefficient indicates significance at the 10/5/1% level. The variable

Mproximityy,t−1 is constructed using the data at time t − 1. Firm-sector fixed effect is in-

strumented using the method proposed by Wooldridge (2002). All standard errors are clustered

at firm level.

.

One concern with the above approach is that the positive relationship between technology prox-

imity and the probability of entering new sectors may be driven by a few sectors that demonstrate

strong positive effects instead of a universal phenomenon across all sectors. To address such a con-

cern, TABLE A.2 in the Appendix reports the results of Probit regressions for each technology sector.
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The conclusion drawn there is that the pro-entry effect is indeed observed in all sectors, though there

is some heterogeneity regarding how strong the effect is across sectors. In general, the probability of

entering a technology sector in the future is higher if a firm currently owns a patent portfolio that is

technically closer to the sector of interest.

We now turn to evaluate how much past knowledge accumulation contributes to the building of

new knowledge. We construct a new measure, Wpatentxf ,t , to capture the weighted patent stock with

the weights equal to g(y, x). Wpatentxf ,t for firm f at time t with respect to sector x is defines as∑
y∈{y 6=x}

I(yf,t = 1)g(y, x)nyf,t,

where nyf,t is the patent stock for firm f in the technology class y at time t and I(yf,t = 1) is a

dummy variable that takes the value of 1 if firm f does not hold a patent in sector y, and 0 otherwise.

This measure captures the intersectoral spillover effect of the current patent portfolio with respect

to sector x. Note that we do not include the patent stock in x. We follow Hall et al. (2005) and

construct the patent stock using a perpetual inventory method with a 15% depreciation rate.13 That

is, nyf,t = ∆nyf,t + (1− δ)nyf,t−1, where ∆nyf,t is the number of new patents firm f produces in sector

y at time t and δ = 0.15. We then run the following Negative Binomial model:

PatentCountsxf,t = β1Wpatentxf,t−1 + β2 Controls
x
f,t−1 + µ̃xf + ϑ̃t + ζ̃x + ε̃xf,t (3)

where PatentCountsxf ,t represents the number of new patents produced by firm f in technology sector

x from time t− 1 to time t and µ̃xf is the firm-sector fixed effect. ϑ̃t and ζ̃x are sets of time dummies

and sector dummies respectively. Due to the nonlinearity of the Negative Binomial model, we follow

Blundell et al. (1999) and use the pre-sample mean scaling method to control for fixed effects. The

idea is to use pre-sample data on patenting behavior to instrument for unobserved heterogeneity. The

long panel of patent data from USPTO allows me to construct the pre-sample average between 1970

and 1989. The controls used here are the same as those in (2) except that we include a dummy to

indicate whether a firm previously innovates in the target sector and the lag value of patent counts of

the firm in the target sector.

The coefficient of interest is β1. A positive sign for this coefficient implies the existence of a

pro-innovation effect. The estimates are shown in TABLE 2. From column (1), it is clear that a firm’s

production of new patents is positively related to the firm’s past patent accumulation in other sectors.

Adding variables that control for whether firm f owns a patent and how many patents firm f owns

decreases the coefficient for Wpatentxf ,t (column 2). Nonetheless, the inclusion of further controls

13Hall et al. (2005) use R&D to calculate knowledge capital while we use patents here.
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has little effect on it (column (3) to (4)). Finally, in column (5), we demonstrate the results using the

pre-sample mean scaling method to control for the firm-sector fixed effect, which changes neither the

magnitude nor the significance of the estimate for the weighted patent stock variable. As shown in

column (5), past knowledge accumulation has a substantial effect on the innovation of new patents.

A 1% increase of the weighted patent stock leads to a 0.4% increase in the production of new patents.

TABLE 2

NEGATIVE BINOMIAL REGRESSIONS

(1) (2) (3) (4) (5)

Wpatentxf,t−1 0.76*** 0.40*** 0.43*** 0.39*** 0.39***
(0.01) (0.01) (0.01) (0.01) (0.01)

I(xf,t−1 = 1) 2.87*** 2.88*** 2.82*** 2.66***
(0.04) (0.04) (0.04) (0.04)

PatentCountsxf,t−1 0.06*** 0.06*** 0.06*** 0.04***
(0.01) (0.01) (0.01) (0.01)

Nf,t−1 -0.02*** -0.01** -0.00
(0.00) (0.00) (0.00)

Y earDummy No No No Yes Yes

SectorDummy No No No Yes Yes

Firm-sector FE No No No No Yes

Constant -0.47*** -2.22*** -2.09*** -2.80*** -2.73***
(0.02) (0.02) (0.02) (0.07) (0.09)

lnα 2.20*** 0.73*** 0.72*** 0.72*** 0.55***
(0.03) (0.02) (0.03) (0.03) (0.03)

Observations 2,029,470 2,029,396 2,029,396 2,029,396 1,050,316

A */**/*** next to the coefficient indicates significance at the 10/5/1% level. I(xf,t−1 = 1) is

the indicator function that takes the value of 1 if firm f operates in sector x at time t − 1 and 0

otherwise. Wpatentxf,t−1 is in log form to make the interpretation more convenient. The firm-

sector fixed effect is instrumented using the method proposed by Blundell et al. (1999) and is

reported in column (5). All standard errors are clustered at the firm level.

The above analysis studies the average effect of intersectoral knowledge spillovers. In the rest

of this section, the focus will be on the heterogeneity of intersectoral knowledge spillovers. To this

end, we run the same regression as (3) but restrict the sample to each sector instead of pooling all

12



sectors together. The estimate β1 for each sector can be interpreted as the average efficiency of firms

in absorbing knowledge from other sectors to their own sectors.

FIGURE 3

ESTIMATES OF SECTOR INNOVATION INTENSITIES

Each sector’s estimate with one standard error is displayed in FIGURE 3.14 There is significant

heterogeneity across sectors with the parameter estimates, ranging from 0.09 to 0.72 with a mean of

approximately 0.3. The results reveal that intersectoral knowledge spillovers contribute significantly

to knowledge building for most sectors. However, each sector’s ability to absorb and use knowledge

to produce research output differs substantially.

To sum up, this section presents empirical evidence about the importance of intersectoral knowl-

edge spillovers on innovation at the firm level. In the next section, we will build a model that embeds

the features shown here. In particular, the model will include two layers of heterogeneity: intersec-

toral knowledge spillovers and the sector-specific innovation rate. The latter endogenously arises as

the option value of research is different across sectors.

4. THEORETICAL MODEL

4.1. Multi-sector Innovation Model with an Irreducible Technology Network

There are a finite number of technology sectors in the economy. Each sector is a collection of tech-

nologies that share similar features. Sectors differ in their technology spillovers to other sectors.
14Details of the regression results are shown in TABLE A.3 in the Appendix.
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The heterogeneous sector-pair technology spillovers (edges) along with all sectors (nodes) form a

technology network. Formally, the technology network is modeled as a M ×M weighted directed

adjacency matrix G, where each entry gij ≥ 0 denotes the knowledge flow from sector i to sector j,

and M is the number of sectors. There are intersectoral technology spillovers from i to j if gij > 0.

The implications of different network structures will be explored here. As a benchmark case, we will

study an irreducible technology network, whose definition is formalized as follows:

Definition 1. A network is irreducible if ∀i, j, there exists a sequence of indices l1, l2, · · · , ln such

that gil1gl1l2 · · · glnj > 0.

Loosely speaking, an irreducible technology network represents an economy where all sectors

have potential impacts on each other either directly or indirectly.

Entrepreneurs develop their knowledge portfolios based on their past knowledge accumulation.

The innovation activity is modeled as a Poisson process. A novel feature is that old knowledge not

only contributes to the building of new knowledge in the same sector but also in other sectors. In other

words, innovation in one sector demonstrates both intrasectoral and intersectoral knowledge spillover

effects. The strength of the intersectoral knowledge spillover effects is captured by the off-diagonal

elements of the adjacency matrix G.

Incumbents use patents to store new knowledge. Each patent possesses some value to the owner.

We will assume that the value of patents is randomly distributed with a sector-specific mean, π̄i. In

general, the average value of a patent can be different across sectors, meaning that π̄i 6= π̄j for i 6= j.

There are several ways to interpret the value of a patent. A firm can use its patent to design a new

product, and thus enjoy the monopoly profit of the product. Alternatively, a new patent may add

value to a firm’s current product and improve its quality. In an environment where quality matters

to consumers, the two can be equivalent. Here, we take the first interpretation. Now assume that a

firm at time t has ni patents in the technology sector i, and the associated values of these patents are

denoted by a vector π̃i = (πi1, πi2, · · · , πini). In addition, for a firm with a total of n patents, the

value of those patents is represented by a vector of vectors π̃n = ({π̃i}i∈T ), where n =
∑

i∈T ni

and T is the set of all sectors. Note that if a firm does not have any patent in a certain sector s, then

ns = 0.

Each firm can be regarded as a collection of research teams, each specializing in a certain technol-

ogy sector. Each research team pools knowledge of other teams together and devotes effort in order

to produce new patents. However, knowledge from different sectors will not contribute symmetri-

cally to innovation. In particular, it is assumed that 1 unit of knowledge stock (1 patent) in sector j

will serve as gji units of effective knowledge stock when used for innovation in sector i. Therefore,
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the total effective knowledge stock in sector i for a firm with the patent portfolio specified above is∑
j∈T njgji. This term can be interpreted as total knowledge spillovers to sector i.

All firms have access to a common production technology that allows them to innovate at the rate

λi per patent in sector i. The cost for a research team specializing in sector I is assumed to be a

function of the total innovation rate and the effective knowledge stock, and takes the following form:

C
(
λi
∑
j∈T

njgji,
∑
j∈T

njgji

)
.

C(., .) is assumed to be homogeneous of degree one and increases with both arguments. As a result,

the cost function can be written as:

C =
∑
j∈T

njgjic(λi),

where the variable cost function is specified as follows:

c(λi) = λεiθ
1−ε, ε > 1. (4)

θ is a technology parameter which is constant across sectors. The assumption ε > 1 ensures that the

cost function is a convex function of the flow innovation rate. In addition, c(.) is assumed to be twice

differentiable.

Given the previous setup, a firm takes as given its current portfolio of patents and decides the

optimal innovation rate for each sector by solving the following value function:

rV (π̃n)− V̇ (π̃n) = max
{λi}i∈T

{∑
i∈T

ni∑
s=1

πis −
∑
i∈T

c(λi)
∑
j∈T

njgji

+
∑
i∈T

λi
∑
j∈T

njgji(E[V (π̃n+1)|i]− V (π̃n)), (5)

where E[V (π̃n+1)|i] = E[V (π̃n ∪ πi(ni+1))] and r is the interest rate.

The first line on the right-hand side captures net flow profits generated by the firm’s current patent

portfolio over the total cost incurred for innovation. The second line represents the expected change of

the firm’s value resulting from the arrival of new patents across sectors. The expected value change

is the sum of all sectoral changes. For a given sector, say i, in which the firm currently operate,

λi
∑

j∈T njgji is the sector-specific aggregate innovation rate, while E[V (π̃n+1)|i] − V (π̃n) is the

expected increase in a firm’s value conditional on the arrival of a new patent in sector i.

The next proposition characterizes the solution to the value function and the associated optimal

innovation choices.

Proposition 1. The value function for the firm’s problem has a solution as follows:

V (π̃n) =
∑
i∈T

ni∑
s=1

πis
r

+
∑
j∈T

njRj, (6)
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where (R1 · · ·RM) are the solutions to a system of M nonlinear equations:

rRj =
∑
i

θ(
π̄i
r

+Ri

ε
)

1
ε−1 gji[(1−

1

ε
)(
π̄i
r

+Ri)] ∀j ∈ T , (7)

and the optimal innovation choices are given by:

λi = θ(
π̄i
r

+Ri

ε
)

1
ε−1 . (8)

Proof. See Appendix.

From the proposition, we can see that the value function of a firm with a patent portfolio π̃n is

equal to the discounted additive sum of random profits generated from the firm’s whole portfolio plus

the aggregation of the sector-specific option value of research,
∑

i niRi. It is interesting to note that

the option value of research in each sector is itself a function of the option value of research of all the

other sectors. This is an intrinsic feature of the model because each piece of knowledge created in one

sector will be useful for innovation in other sectors. They are interconnected with each other through

the channel of intersectoral knowledge spillovers, which is captured by the off-diagonal elements in

G. If we shut down the channel of intersectoral knowledge spillovers, the option value of research

for different sectors becomes independent of each other.

The optimal innovation rate for each sector depends on both the average profit and the research

value of patents in the sector. A higher average profit or a higher option value of research induces

firms to increase their effort and thus results in a higher innovation rate.

To complete our analysis, it is necessary to specify the entry of new firms. Suppose that the pop-

ulation is growing at a constant rate η in the economy. There is a fixed proportion of each generation

that has the potential to become entrepreneurs. The proportion of potential entrepreneurs is constant

over time. As a result, the number of firms grows at the same rate as the population. Further assume

that for a firm to obtain an entry rate of 1, it must pay a fixed cost f . We specify the following free

entry condition:

E[V (π)] = f,

where E[V (π)] is the expected value of an entrant. Upon entry, firms draw from a common proba-

bility distribution function that determines which sector they will enter. Specifically, let pi denote the

probability of entering sector i. The expected value of an entrant is therefore:

E[V (π)] =
∑
i

piV (πi).

The probability distribution function of entry is assumed to be exogenous. This assumption is in-

nocuous for the main results in this paper.
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4.2. Dynamics of Firms’ Innovation

As shown in the previous section, for a firm with patent portfolio {ni,t}i∈T , the increase of the patent

stock in sector i for a small time interval ∆t is:

ni,t+∆t − ni,t = λi∆t
∑
j∈T

nj,t gji ∀i ∈ T (9)

where nit − nit+∆t is the accumulation of new patents in technology sector i for the time interval ∆t.

The above equation reveals that the evolution of a firm’s patent portfolio is a nested function of the

technology network and sectoral innovation rates. To see this, rewrite equation (9) in matrix form:
n1,t+∆t − n1,t

n2,t+∆t − n2,t

...
nM,t+∆t − nM,t

 =


λ1g11 λ1g21 · · · λ1gM1

λ2g12 λ2g22 · · · λ2gM2

...
... . . . ...

λMg1M λMg2M · · · λMgMM




n1,t

n2,t

...
nM,t

∆t

or more compactly in a continuous form:

ṅt = Φnt

where

ṅt =

 ṅ1,t

...
ṅM,t

 Φ =


λ1g11 λ1g21 · · · λ1gM1

λ2g12 λ2g22 · · · λ2gM2

...
... . . . ...

λMg1M λMg2M · · · λMgMM


Matrix Φ captures a modified technology network which is adjusted by sectoral innovation rates.

A firm’s patent accumulation in the past affects its future patent accumulation through knowledge

spillovers, the strength of which is captured by matrix Φ. A higher innovation rate in the ith sector

leads to faster accumulation of patents in sector i and also contributes to patent accumulation in sector

j since ni,tgij enters the expression for nj,t+∆t−nj,t given that gij 6= 0. Even if gij = 0, as long as the

network is irreducible, then there exists a path (i, l1, l2, · · · , ln, j) so that ni,t impacts nj,t+∆t − nj,t
indirectly. The existence of an irreducible network guarantees that each sector communicates with

each other.

It is interesting to compare the technology network here and the social development network

in Jackson and Rogers (2007). In their paper, the main way for a person to make new friends is by

meeting friends of friends. In particular, if a person has a well-connected friend, it will be much easier

for the person to make new friends through the local search of her well-connected friend’s social

network. In our case, new firms enter a certain sector of the economy and accumulate knowledge
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in that sector. They are more likely to subsequently enter new sectors where they can apply their

existing knowledge more efficiently. This is analogous to the local search in the social networks.

Due to the fact that the arrival of new patents is random, the evolution of a firm’s patent portfolio

is history dependent which makes it a daunting job to track the dynamics of patent accumulation

across sectors. In order to proceed with the analytical analysis, the rest of the paper adopts the

mean-field approximation, popularized by Jackson and Rogers (2007). The mean-field approximation

assumes that all innovations happen deterministically at the expected rate. Under the mean-field

approximation, aggregating individual firms’ patent accumulation and taking into account entrants’

innovation, we obtain the sectoral patent accumulation as follows:

Ni,t+∆t −Ni,t = piLtη∆t+ λi∆t
∑
j∈T

Nj,tgji ∀i ∈ T , (10)

where Ni,t is the total number of patents in sector i, Lt is the population of firms at time t and pi is

the probability that a new entrant will enter sector i. The increase of the number of patents in sector i

for a short time interval ∆t is the result of both entrants’ and incumbents’ innovation. We are free to

aggregate individual firms’ knowledge stocks, ni,t, to the sectoral level because of the constant return

to scale of the innovation function. The next proposition characterizes growth at both the aggregate

and sectoral level, where growth is defined as the increase in the stock of knowledge.

Proposition 2. In the long run, different sectors converge to the same growth rate, which is equal to

the aggregate growth rate of the economy:

Ṅt/Nt = Ṅi,t/Ni,t = τ ∗ if η < τ ∗

Ṅt/Nt = Ṅi,t/Ni,t = η if η > τ ∗

where τ ∗ is the dominant eigenvalue of the matrix Φ.

Proof. See Appendix.

In an economy where each sector is connected with each other, it is no surprise that all sectors

eventually grow at the same rate. There are two sources of growth in the economy: both entrants

and incumbents contribute to the accumulation of knowledge. On one hand, the dominant eigenvalue

of Φ determines how fast knowledge in every sector grows due to incumbents’ innovation. On the

other hand, entrants in every period bring new ideas to the economy at the rate of population growth.

Ultimately, the magnitude of economic growth depends on whether the former dominates the latter

or not. The rest of the paper will focus on the theoretical interesting case of τ ∗ > η, namely, the

incumbents’ contribution to innovation outweighs the entrants’ contribution.
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Proposition 2 sheds light on our understanding of growth in an economy where intersectoral

knowledge spillovers prevail. It highlights the role of the innovation-adjusted technology network in

determining economic growth. For an economy without intersectoral knowledge spillovers, economic

growth is simply determined by the fastest growing sector. Here every sector contributes to the

knowledge accumulation in the economy in two ways. First, each sector applies both intrasectoral

and intersectoral knowledge to conduct innovation. Their innovation capacities determine how much

knowledge they can produce. Second, knowledge produced by each sector can be used for innovation

by other sectors. The position of a sector in the technology network determines how far this sector’s

knowledge spreads in the economy. It is the interplay of these two forces that determines the growth

rate of the economy.

Given the equal growth rate of all sectors in our economy, it naturally gives rise to a station-

ary patent distribution over sectors. To characterize this feature, we first define a vector Qt =

(Q1,t, Q2,t, · · · , QM,t), whereQi,t =
Ni,t
Nt

is sector i’s share of total patent stock at time t. Let ∆t = 1,

and rewrite equation (10) as follows:

Ni,t+1 = piLtη +Ni,t + λi
∑
j∈T

Nj,tgji ∀i ∈ T (11)

Define

Ψ =


1 + λ1g11 λ1g21 · · · λ1gM1

λ2g12 1 + λ2g22 · · · λ2gM2

...
... . . . ...

λMg1M · · · · · · 1 + λMgMM


Now equation (11) can be written in matrix form:

Ñt+1 = Ltηp̃+ ΨÑt (12)

where p̃ = (p1, p2, · · · , pM) and Ñt = (N1,t, N2,t, · · · , NM,t)
′ . Matrix Ψ determines the evolution of

each sector’s share. The next proposition summarizes the main findings.

Proposition 3. The sector sharesQt approach to a limitQ in the long run, which satisfy the following

system of equations:

ψ∗Q = ΨQ

where ψ∗ = τ ∗ + 1.

Proof. See Appendix.
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The above proposition provides new insights on the share of each sector. Note that Q is the

eigenvector associated with the dominant eigenvalue ψ∗ of the matrix Ψ. The share of each sector

is equal to the corresponding entry of the eigenvector. In the network literature, Q is called the

generalized eigenvector centrality. This is a measure of the importance of nodes in the network. It

assigns scores to each node. A higher score implies a more central position of a node. A node gets

higher scores if it is connected with other high score nodes. In the context of this paper, a sector’s

share in the long run is determined by its position in the network, represented by the matrix Ψ. A

sector that receives strong knowledge spillovers from other sectors is located in a central position of

the network.

Note that a sector’s share here is very different from that in a model without intersectoral knowl-

edge spillovers. For the latter, the largest sector is always the one with the highest innovation rate.

In contrast, with intersectoral knowledge spillovers, that may not be the case. A sector that innovates

at a slow rate may turn out to have a large size if it enjoys strong knowledge spillovers from other

sectors. The following example illustrates this point. Suppose there are 4 sectors in the economy, and

the network structure of the economy is represented by a weighted adjacency matrix as follows:

G
′
=


1 0.3 0.3 0.3

0.1 1 0.1 0.1

0.1 0.1 1 0.1

0.1 0.1 0.1 1


The network structure in the above matrix is such that sector 1 receives the strongest knowledge

spillovers from other sectors in the economy. Now let’s assume that the innovation rates for each

sector are:

λ1 = 0.01, λ2 = 0.011, λ3 = 0.012, λ4 = 0.013,

where sector 1 has the lowest innovation rate. Given this information, the long-run sector shares can

be easily calculated according to Proposition 3:

Q1 = 0.3236, Q2 = 0.1727, Q3 = 0.2193, Q4 = 0.2844.

From the above results, sector 1 is the largest sector in the economy. This simple numerical

example showcases a possibility that a sector can become the dominant sector even if it does not

innovate as fast as the other sectors do. Sectors that are capable of using resources from other sectors

efficiently can grow large.

We have shown how heterogeneous intersectoral knowledge spillovers together with sectoral in-

novation rates affect growth and sector shares. Next, we will demonstrate that the same forces also

play a role in affecting the size distribution of firms.
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The size of a firm is measured by the number of patents it holds. Aggregating equation (9) across

all sectors gives the dynamics of firm size:

nt+∆t − nt =
∑
i∈T

λi∆t
∑
j∈T

nj,tgji (13)

In the economy, the number of firms grows at the rate η. At time t, the number of firms in the

age cohort a is proportional to eη(t−a). As a result, the age distribution of firms is an exponential

distribution. At the same time, as firms grow large, their growth rate converge. Therefore the size of

a firm is a deterministic function of age, which gives rise to a Pareto distribution. The proposition

below summarizes the details.

Proposition 4. The right tail of the accumulative firm size distribution F (n) is given by:

F (n) = 1− αn−
η
τ∗

where α is a constant.

Proof. See Appendix.

The firm size distribution displays a heavy tail. The thickness of the right tail depends on the

shape parameter, η/τ ∗. A higher growth rate of the firm population, η, holding the firm growth rate

τ ∗ constant, leads to smaller firm size differences across time and thus a thinner right tail. On the

other hand, a higher firm growth rate, τ ∗, given the population growth rate η fixed, results in a higher

proportion of large firms and therefore a thicker right tail.

The firm size distribution found in this paper is consistent with the literature (Gabaix (2009)),

but with a different economic mechanism. In this paper, firms grow over time at the same rate. The

growing population of firms gives rise to different age cohorts, which, combined with firm growth,

generate different size cohorts of firms. The relative size of the firm growth rate and the population

growth rate determines the shape of the firm size distribution. A special case where τ ∗ = η will

deliver Zipf’s distribution. The fundamental linkage between economic growth and the firm size

distribution makes the latter subject to the impacts of the same forces that influence the former.

4.3. Reducible Network

We have so far established an innovation model under an irreducible network and explored several

implications of this network structure. In this section, the assumption that the technology network

is irreducible will be relaxed. The key difference between an irreducible network and a reducible

network is that, for the latter, technologies in one area need not communicate with technologies in all
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other areas. In terms of the network structure, this means that the network is more sparse than it was

before. Knowledge spillovers in such a network display local effects instead of global effects. The

definition below formally defines a reducible network.

Definition 2. A network is reducible if it can be partitioned exclusively into different subnetworks

that are irreducible.

A reducible network represents an economy formed of multiple technology clusters. Each tech-

nology cluster is comprised of several sectors that are technically related to each other. Denote the

ith technology cluster by G̃i as follows:

G̃i =

 g̃i11 · · · g̃i1Mi

... . . . ...
g̃iMi1 · · · g̃iMiMi


Every technology cluster is an irreducible subnetwork. Let the number of clusters be N , then

NMi = M , where M is the total number of sectors in the economy. The whole reducible network

can be expressed as a matrix:

G̃ =


G̃1 0 · · · 0

0 G̃2 · · · ...
...

... . . . ...
0 · · · · · · G̃N


where 0 is a zero matrix. Also define the sectoral innovation-adjusted cluster network as:

Φ̃i =

 λi1g̃
i
11 · · · λi1g̃

i
1Mi

... . . . ...
λiMig̃

i
Mi1 · · · λiMig̃

i
MiMi


Within each technology cluster, most of the intuition developed previously in the case of an

irreducible networks is retained. In particular, economic growth is determined by the subnetwork

structure of each technology cluster as well as sectoral innovation rates. At the aggregate level,

however, different clusters may experience different growth rates and economic growth is driven by

the cluster that grows fastest. These findings are summarized by the following proposition.

Proposition 5. If an economy is represented by a reducible technology network, G̃, then the long-run

growth rates of each technology cluster and the economy are given by:

Ṅ i
t/N

i
t = τ ∗i

Ṅt/Nt = τmax = max
i
{τ ∗i }
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where τ ∗i is the dominant eigenvalue of Φ̃i.

The reducible network structure allows sectors to grow at different rates across clusters but retain

convergence within clusters. Note that it is possible for different clusters to grow at the same rate.

Nonetheless, the observation that two clusters show the same growth rate does not necessarily imply

that their underlying network structures are the same. It could be the case that one cluster has limited

knowledge spillovers but higher sectoral innovation rates while the other cluster has strong knowledge

spillovers but lower sectoral innovation rates. As an illustration, suppose that there are two technology

clusters in the economy. These two technology clusters are represented by two 4 × 4 matrices as

follows:

G1 =


1 0.01 0.01 0.01

0.01 1 0.01 0.01

0.01 0.01 1 0.01

0.01 0.01 0.01 1

 G2 =


1 0.5 0.5 0.5

0.5 1 0.5 0.5

0.5 0.5 1 0.5

0.5 0.5 0.5 1


As a result, the network structure of the economy can be expressed as:

G =



1 0.01 0.01 0.01 0 0 0 0

0.01 1 0.01 0.01 0 0 0 0

0.01 0.01 1 0.01 0 0 0 0

0.01 0.01 0.01 1 0 0 0 0

0 0 0 0 1 0.5 0.5 0.5

0 0 0 0 0.5 1 0.5 0.5

0 0 0 0 0.5 0.5 1 0.5

0 0 0 0 0.5 0.5 0.5 1


Let λ1 = 0.1 be the innovation rate for all sectors in cluster 1, and λ2 = 0.0412 be the innovation rate

for all sectors in cluster 2. It is easy to show that the dominant eigenvalues for both clusters are the

same (0.1030), which means that the long-run growth rates for both clusters are the same.

In this example, sectors in cluster 1 are technologically isolated while those in cluster 2 are well

connected. However, sectors in both clusters grow at the same rate. They grow due to different rea-

sons. Sectors in cluster 1 grow mainly because they have a high innovation rate, while sectors in

cluster 2 grow because they benefit from intersectoral knowledge spillovers. This also has implica-

tions for individual firms’ growth dynamics. Firms initially rooted in some sector of cluster 1 are

more likely to specialize in one area because the benefits of intersectoral knowledge spillovers are

limited and firms have less incentive to internalize these benefits by expanding their portfolios. This

is not the case for firms entering the second cluster. In this case, there is a higher probability that a

firm will develop a more diversified portfolio.
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The fact that clusters grow at different rates has natural implications for the dynamics of sector

shares. The discrepancy of cluster growth rates leads to the shrinking of the shares of all clusters

except the fastest growing cluster.15 Therefore, there is no stationary sector shares. The shares of all

sectors, other than those belong to the fastest growing cluster, vanish in the long run. However, the

relative sector sizes within each cluster still approach constant in the long run.

To show the above results formally, we must first introduce some new notations. Define the

vector of sector shares in cluster i at time t as Qi
t = (Qi

1,t, Q
i
2,t, · · · , Qi

Mi,t). The aggregate share of

a cluster at time t is thus Q̂i
t =

∑
h(Q

i
h,t), and the relative share of sector h within cluster i at time

t is Πt(h|i) =
Qih,t

Q̂it
. Denote the vector that contains the conditional sector shares within cluster i as

Πi
t = (Πt(1|i),Πt(2|i), · · · ,Πt(Mi|i)). The next proposition shows that the conditional sector shares

within cluster i converge to Πi = limt→∞Πi
t in the long run.

Proposition 6. The conditional sector shares within cluster i, Πi, satisfy the following system of

equations:

ψ∗i Π
i = ΨiΠi ∀i ∈ (1, 2, · · · ,N ),

where ψ∗i is the dominant eigenvalue of Ψi. Except the fastest growing cluster, the shares of all other

clusters shrink and eventually vanish:

lim
t→∞

Q̂i
t → 0, ∀i 6= imax.

Comparing Proposition 6 with Proposition 3, the predictions of sector shares differ substantially

under different assumptions of the network structure. When the economy is represented by a re-

ducible network, the model predicts divergent sector shares, some of which become negligible. How-

ever, within each technology clusters, the conditional sector shares tend to remain non-negligible and

stay constant over time. This is because sectors belong to the same technology cluster grow at the

same rate in the long run. Therefore, although the absolute shares of sectors in the slow-growing clus-

ters shrink over time compared to the absolute sector shares in the fast-growing clusters, the relative

shares of sectors remain stable within each cluster in the long run.

The features of the reducible network also play an important role in shaping the distribution of

firm sizes. To see this, note that in a reducible technology network, firms innovate locally within a

cluster. They stochastically enter a sector and accumulate knowledge in that sector. They then apply

their knowledge to other sectors where they have a comparative advantage. However, they will not be

able to expand their portfolios in an unlimited fashion, because knowledge in one technology cluster

may not be useful in others. In addition, the network structure of a cluster imposes some restrictions

15To simplify the analysis here, it is assumed that the fastest growing cluster is unique.

24



on how valuable each piece of knowledge is on average, thus providing a limit upon how fast a firm

can innovate.

Given the impact of network structures on firm growth, the firm size distribution should be con-

sidered conditional on clusters. In particular, there are different firm size distributions over different

clusters. Denote the accumulative firm size distribution in cluster i as Fi(n). The following proposi-

tion characterizes the tail behavior of these distributions.

Proposition 7. The right tail of the accumulative firm size distribution Fi(n) for cluster i is given by:

Fi(n) = 1− αin−η/τ
∗
i ∀i ∈ (1, 2, · · · ,N )

where τ ∗i is the dominant eigenvalue of Φ̃i and αi is a cluster specific constant.

As shown in Proposition 7, the cluster-specific growth rate determines the thickness of the right

tail of the firm size distribution for each technology cluster. Proposition 7 provides a new angle to

think about firm size differences compared to the traditional literature.16 In the traditional literature,

the main mechanism to generate a Pareto-type distribution is the assumption that firms follow a

random growth process. In this case, firms in the same age cohort have different sizes due to different

realizations of innovation shocks. Firms with good luck may expand and grow, while firms with bad

luck shrink over time. In contrast, in our model, firms in the same age cohort can have different

sizes if the underlying technologies that sustain their growth are different. Put differently, the fact

that firms specialize in different technology clusters creates a fundamental difference in their growth

potential, which, in turn, has an impact on their sizes.

To sum up, this section demonstrates that different network structures have important implications

on the long term behaviors of the economy. In next section, a simple numerical analysis is conducted

to highlight these differences. The purpose of such an exercise is to offer a visual comparison of the

irreducible and reducible network structures.

4.4. Irreducible v.s. Reducible Network: A Numerical Analysis

Two network structures are constructed, an irreducible network and a reducible network. The irre-

ducible network is represented by a 8× 8 matrix, whose off-diagonal entries are generated randomly

16See, among others, Luttmer (2007, 2011).
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from a uniform distribution with support (0,0.2), while the diagonal entries are normalized to 1.

G =



1 0.0844 0.1357 0.0554 0.0877 0.1419 0.1919 0.1782

0.1930 1 0.1515 0.0092 0.0763 0.1509 0.0681 0.1919

0.0315 0.1584 1 0.0194 0.1531 0.0552 0.1171 0.1094

0.1941 0.1919 0.0784 1 0.1590 0.1359 0.0448 0.0277

0.1914 0.1311 0.1311 0.1390 1 0.1310 0.1503 0.0299

0.0971 0.0071 0.0342 0.0634 0.0980 1 0.0510 0.0515

0.1601 0.1698 0.1412 0.1900 0.0891 0.0238 1 0.1681

0.0284 0.1868 0.0064 0.0069 0.1293 0.0997 0.1398 1


The sector-specific innovation rates are drawn from a uniform distribution with support (0,0.2),

and the realization is:

λ = (0.1629, 0.1812, 0.0254, 0.1827, 0.1265, 0.0195, 0.0557, 0.1094)

An initial population of 4000 firms, 500 for each sector, are simulated, following the process

specified by equation (9), for a total of 300 periods to generate the dynamics of firm development. In

addition, a 4% growth rate of the population is assumed, and every entrant enters a sector following

a constant probability distribution function p̃. p̃ is constructed to be equal to the equilibrium sector

size distribution, which, in our example, is:

p̃ = (0.2695, 0.3127, 0.0140, 0.1436, 0.1059, 0.0119, 0.0350, 0.1075)

The results below are not dependent on this assumption, which is simply employed to speed up

the convergence. The simulation is applied to every generation of firms. The construction of an

economy represented by a reducible network is similar. Assume that the economy now contains two

4 × 4 subnetworks in the diagonal blocks, each of which represents a technology cluster. The off-

diagonal blocks are replaced with zero matrices. The intersectoral knowledge spillovers within each

cluster of the reducible network are assumed to be the same as those in the irreducible network.

G
′
=



1 0.0844 0.1357 0.0554 0 0 0 0

0.1930 1 0.1515 0.0092 0 0 0 0

0.0315 0.1584 1 0.0194 0 0 0 0

0.1941 0.1919 0.0784 1 0 0 0 0

0 0 0 0 1 0.1310 0.1503 0.0299

0 0 0 0 0.0980 1 0.0510 0.0515

0 0 0 0 0.0891 0.0238 1 0.1681

0 0 0 0 0.1293 0.0997 0.1398 1


To facilitate a fair comparison, all other parameters are equal to those used before. The simulation

is done with the new network structure to generate a panel of firms for the reducible network.
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Our first exercise here is to compare the long-run growth rate under these two different network

structures. Using the simulated panel of firms, we are able to calculate the time series of sectoral

growth rates. The results are shown in the figure below.

(a) IRREDUCIBLE

(b) REDUCIBLE

FIGURE 4

IRREDUCIBLE V.S. REDUCIBLE TECHNOLOGY NETWORK: SECTORAL GROWTH

The top panel of the Figure 4 depicts the dynamics of sectoral growth in the irreducible network.

All sectors grow at the same rate in the long run, as predicted by Proposition 2. In contrast, sectors in

the reducible network are divided into two clusters, as shown in the bottom panel of Figure 4. Sectors

converge to the same growth rate in the long run within each cluster but diverge across clusters. As

explained in Proposition 5, the divergence of sectoral growth rate in different clusters is driven by
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the facts that different technology clusters do not communicate with each other and that the network

structures of different clusters are not the same.

Next, we analyze the change of sector shares over time in Figure 5. The comparison of the two

panels in the figure reveals the significant difference of the sector share evolution. In the irreducible

network, each sector’s share share approaches a fixed number and stays constant in the long run.

(a) IRREDUCIBLE

(b) REDUCIBLE

FIGURE 5

IRREDUCIBLE V.S. REDUCIBLE TECHNOLOGY NETWORK: SECTOR SHARE DISTRIBUTION

Nonetheless, in the reducible network, the shares of some sectors asymptotically approach zero, while

others remain positive. The discrepancy of the dynamics of the sector shares for the two network

structures is a direct result of heterogeneous sectoral growth. Sectors in the slow-growing cluster

28



shrink over time relative to those in the fast-growing cluster.

Highlighted by Proposition 6, the relative sector shares within each technology cluster are con-

stant in the reducible network in the long run. This feature is shown in FIGURE 6. Panel (a) and (b)

in the figure corresponds to the top left and the bottom right blocks of the matrix G′ respectively. In

both panels of this figure, sectors start with the same share, and then change rapidly in their relative

sizes, before converging to a stable state.

(a) CLUSTER 1

(b) CLUSTER 2

FIGURE 6

WITHIN CLUSTER SECTOR SHARE DISTRIBUTIONS

Lastly, we compare the firm size distributions in the irreducible and reducible networks in FIG-

URE 7. Note that the horizontal axis and the vertical axis are both in log scale. The firm size
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distributions in both cases are clearly log-linear, one notable feature of the Pareto distribution. For

the reducible network, the firm size distribution in the two technology clusters differs in terms of the

thickness of the right tails. As shown in Proposition 7, the thickness of the right tail is determined by

the ratio of the population growth rate and the long-run growth rate of each technology cluster. For

a given population growth rate, the technology cluster that grows faster displays a flatter firm size

distribution, as is clearly the case in panel (b) of FIGURE 7.

(a) IRREDUCIBLE

(b) REDUCIBLE

FIGURE 7

IRREDUCIBLE V.S. REDUCIBLE TECHNOLOGY NETWORK: FIRM SIZE DISTRIBUTION
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5. POLICY ANALYSIS

The theoretical framework established above reveals that different sectors contribute to economic

growth differently. The higher a sector’s innovation rate is, the more central the sector’s position is

in the technology network, the stronger its knowledge spillovers are and thus the more it contributes

to economic growth. The aim of this section is to identify the importance of different sectors in

terms of their ability to generate knowledge spillovers and stimulate economic growth. Towards this

aim, we introduce a policy shock to a sector, holding everything else constant, so that the innovation

rate of the sector increases by 1%. We then examine the impact of this policy on economic growth.

Specifically, we consider two types of shocks: temporary and permanent policy shocks. The former

lasts only for one period while the latter is permanent once implemented.

In order to proceed with the policy exercise, estimates for the parameters that determine the evo-

lution of knowledge accumulation are needed. As a start point, we use the patent citation network as

a proxy for the underlying technology network. The backward citation ratio is calculated to represent

the strength of knowledge spillovers from the cited sector to the citing sector. We then proceed to

calculate the sector-specific entry rate ηpi. We first calculate the average annual growth rate of firm

population from the NBER Patent Citation Data. The average growth rate is for the 11-year period

between 1990 and 2000 where the data is most complete. The average probability of sector entry is

derived for the same period. We exclude sector 33, Genetics, from the sample because this is a new

sector that entered the dataset in 1977 and experienced volatile growth.17

The last set of parameters required are the sectoral innovation rates. They are constructed follow-

ing equation (10). We calculate the increase in the number of patents per year due to the innovation

of incumbents, and subtract that from the total annual increase of patent to get the number of patents

from incumbents. Using the technology network, we infer the effective knowledge stocks for each

sector which, combined with the previous results, gives rise to the sectoral innovation rate. The

detailed parameter values are shown in TABLE A.4 in the Appendix.

With these parameters, we then simulate the dynamics of the economy, starting with 500 firms

for each sector, for 800 periods. The temporary policy shock is introduced at period 400. The results

are shown in FIGURE 8. The figure depicts the percentage increase in output for each sector shock

relative to the status quo case. The horizontal axis represents the sector index. The figure shows

significant heterogeneity across sectors. Policy shocks to most sectors have negligible impacts on

aggregate output, with only a few exceptions.

17Including Genetics in the sample does not alter the results qualitatively.
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FIGURE 8

THE IMPACTS OF TEMPORARY POLICY SHOCKS AFFECTING EACH SECTOR

We list the top 4 and bottom 4 sectors in TABLE 3. The ranking is consistent with our expectation

on which sector is important and which sector is not. For example, Information Storage is the most

effective sector to target. A one-period 1% increase of the innovation rate in this sector leads to an

increase in output of 0.27%. By contrast, sectors such as Gas and Agriculture are in the bottom of the

ranking. It is no surprise that innovations in the Agriculture sector have little impact on other sectors

since there are limited knowledge spillovers originating from this sector.

TABLE 3

SECTOR RESPONSES TO TEMPORARY POLICY SHOCKS: TOP 4 V.S. BOTTOM 4

Top 4 Sectors Bottom 4 Sectors

Sector Name Output Increase (%) Sector Name Output Increase (%)

Information Storage 0.027 Apparel & Textile 0.0000089

Communication 0.016 Earth Working & Wells 0.0000073

Computer Hardware & Software 0.015 Gas 0.0000039

Semiconductor Devices 0.0093 Agriculture, Food & Textiles 0.0000023

We now turn to the case of permanent policy shocks. FIGURE 9 shows the effects of permanent

policy shocks on economic growth in the long run. The vertical axis represents the growth rate change

due to policy shocks. The values shown in the figure are calculated when the economy converges to a
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constant growth rate. Again, policy shocks to different sectors demonstrate considerable differences

in their effects on economic growth. Depending on which sector is targeted, the impacts of a 1%

increase of sectoral innovation rate on additional economic growth range from almost zero up to

about 0.32%.

FIGURE 9

THE IMPACTS OF PERMANENT POLICY SHOCKS AFFECTING EACH SECTOR

TABLE 4 provides a counterpart of TABLE 3 for the permanent policy shocks. It is worthy to

note that the ranking of the top 4 and the bottom 4 sectors here are the same as the ranking in TABLE

3. This result suggests that the importance of different sectors remains unchanged regardless of what

type of policy is concerned.

TABLE 4

SECTOR RESPONSES TO PERMANENT POLICY SHOCKS: TOP 4 V.S. BOTTOM 4

Top 4 Sectors Bottom 4 Sectors

Sector Name Growth Rate Change (%) Sector Name Growth Rate Change (%)

Information Storage 0.32 Apparel & Textile 0.00010

Communication 0.19 Earth Working & Wells 0.000085

Computer Hardware & Software 0.17 Gas 0.000045

Semiconductor Devices 0.11 Agriculture, Food & Textiles 0.000027

For the top 4 sectors in the table, permanent policy shocks have non-trivial effects on stimulating
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economic growth. For instance, the policy shock to Information Storage increases the economic

growth rate by 0.32%, followed by 0.19% for Communication. As a comparison, the policy shock

to the least responsive sector, Agriculture, Food & Textiles, contributes a 0.000027% increase of the

economic growth rate. Thus, the most effective industry policy can generate an impact which is more

than 10,000 times larger than the least effective industry policy, implying a strict hierarchy among

sectors.

6. CONCLUSION

The paper provides novel empirical evidence on the importance of intersectoral knowledge spillovers

for innovation using the patent citation data from U.S. Patent and Trademark Office. In particular,

the paper documents that cross-sector knowledge spillovers are important for an individual firm’s

innovation in both the intensive margin as well as the extensive margin. In addition, the empirical

evidence reveals that sectors differ in their efficiencies in utilizing cross-sector knowledge, reflecting

significant sectoral heterogeneity.

Motivated by the empirical evidence documented in the paper, we construct a model of endoge-

nous innovation on multiple technology sectors, where firms takes into account heterogeneous inter-

sectoral knowledge spillovers when conducting innovation. The economy as a whole is modeled as

a technology network that captures both intrasectoral and intersectoral knowledge spillovers. Firms

enter the economy by producing a new patent in a particular sector and then accumulate knowledge

to expand their patent portfolios to other sectors. The paper makes theoretical contributions to the

understanding of the relationship between the technology network and a range of important eco-

nomic issues, including economic growth, sector shares and the firm size distribution. Moreover, the

paper demonstrates that a more sparse network structure limits the impacts of intersectoral knowl-

edge spillovers, and shows how changes in the network structure affect the aggregate behavior of the

economy.

The framework proposed in the paper offers a potential toolkit to identify key sectors in the econ-

omy. We evaluate a sector’s importance by imposing an industry-oriented policy shock and simulate

its impact on economic growth. The policy exercises show that there are enormous differences across

sectors in regard to their contributions to economic growth. A marginal increase of the innovation rate

for the most important sector can generate knowledge spillovers that result in additional economic

growth which is 10,000 times larger than in the case of the least important sector.
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Appendix

Proposition 1. The value function for the firm’s problem has a solution as follows:

V (π̃n) =
∑
i∈T

ni∑
s=1

πis
r

+
∑
j∈T

njRj

where (R1 · · ·RM) are the solutions to a system of M nonlinear equations:

rRj =
∑
i

θ(
π̄i
r

+Ri

ε
)

1
ε−1 gji[(1−

1

ε
)(
π̄i
r

+Ri)] ∀j ∈ T

And the optimal innovation choices are given by:

λi = θ(
π̄i
r

+Ri

ε
)

1
ε−1 ∀i ∈ T

Proof. Guess the value function V (π̃n) =
∑

i∈T
∑ni

s=1 aπis +
∑

j∈T njRj . Substitute the guessing

value function form into the Bellman equation, then we have:

r(
∑
i∈T

ni∑
s=1

aπis +
∑
j∈T

njRj) = max
{∑
i∈T

n∑
s=1

πis −
∑
i∈T

c(λi)
∑
j

njgji

+
∑
i∈T

λi
∑
j∈T

njgji(aπ̄i +Ri)
}

The above equation holds if and only if:

a =
1

r
(14)

r
∑
j∈T

njRj = max
{λi}i

{∑
i∈T

λi
∑
j∈T

njgji(aπ̄i +Ri)−
∑
i∈T

c(λi)
∑
j

njgji

}
(15)

First order condition with respect to λi gives:

c
′
(λi)

∑
j

njgji =
∑
j

njgji(aπ̄i +Ri), ∀i ∈ T

which can be simplified to be:

c
′
(λi) = aπ̄i +Ri

Combined with a = 1/r and the cost function, we have the optimal innovation rate for each sector as

follows::

λ∗i = θ(
π̄i/r +Ri

ε
)

1
ε−1

Substitute the optimal innovation rates into (15)

r
∑
j∈T

njRj =
∑
i∈T

λ∗i
∑
j∈T

njgji(aπ̄i +Ri)−
∑
i∈T

c(λ∗i )
∑
j

njgji
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which holds if:

rnjRj =
∑
i

λ∗injgji(aπ̄i +Ri)−
∑
i

c(λ∗i )njgji

After some algebra, we have:

rRj =
∑
i

λ∗i gji(π̄i/r +Ri)−
∑
i

λ∗i
εθ1−εgji

=
∑
i

θ(
π̄i/r +Ri

ε
)

1
ε−1 gji(π̄i/r +Ri)−

∑
i

θε(
π̄i/r +Ri

ε
)

ε
ε−1 θ1−εgji

= θ
∑
i

(
π̄i/r +Ri

ε
)

1
ε−1 gji

[
π̄i/r +Ri −

π̄i/r +Ri

ε

]
= θ

∑
i

(
π̄i/r +Ri

ε
)

1
ε−1 gji

[
(1− 1/ε)(

π̄i
r

+Ri)
]
∀j

This is what is required by the proposition.

Proposition 2. In the long run, different sectors converge to the same growth rate, which is equal

to the aggregate growth rate of the economy:

Ṅt/Nt = Ṅi,t/Ni,t = τ ∗ if η < τ ∗

Ṅt/Nt = Ṅi,t/Ni,t = η if η > τ ∗

where τ ∗ is the dominant eigenvalue of the matrix Φ.

Proof. Take the limit of ∆t→ 0 of equation (10):

Ṅi,t = Ltηpi + λi
∑
j∈T

Nj,tgji

= L0e
ηtηpi + λi

∑
j∈T

Nj,tgji ∀i

Normalize L0 = 1 and the above equations in matrix form:
Ṅ1,t

Ṅ2,t

...
ṄM,t

 = ηeηt


p1

p2

...
pM

+


λ1g11 λ1g21 · · · λ1gM1

λ2g12 λ2g22 · · · λ2gM2

...
... . . . ...

λMg1M λMg2M · · · λ1gMM




N1,t

N2,t

...
NM,t


Rewrite the equations in a compact form:

˙̃
N t = ηeηtp̃+ ΦÑt
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where

˙̃
N t =


Ṅ1,t

Ṅ2,t

...
ṄM,t

 , p̃ =


p1

p2

...
pM

 , Ñt =


N1,t

N2,t

...
NM,t


By the fundamental theorem of Picard and Lindelof, the above system admits a solution as fol-

lows:

Ñt = eΦtÑ0 +

∫ t

0

e(t−s)Φηeηsp̃ds

Assume that Φ has distinct real eigenpairs (τ1, V1), · · · , (τM ,VM ), then eΦt can be decomposed to

be as follows:

eΦt = V eTtV −1

where

T =


τ1 0 · · · 0

0 τ2 · · · 0
... . . . ...
0 0 · · · τM

 , V = aug(V1, V2, · · · , VM)

With the new notation, we have:

Ñt = V eTtV −1Ñ0 +

∫ t

0

V e(t−s)TV −1ηeηsp̃ds

Define Γ = V −1Ñ0, H = ηV −1p̃, we have for each sector:

Ni,t = Vi1e
τ1tΓ1 + · · ·+ ViMe

τM tΓM +

∫ t

0

eηs[Vi1e
τ1(t−s)H1 + · · ·+ ViMe

τM (t−s)HM ]ds

= Vi1e
τ1tΓ1 + · · ·+ ViMe

τM tΓM +
M∑
j=1

∫ t

0

Vije
τjt+(η−τi)sHjds

= Vi1e
τ1tΓ1 + · · ·+ ViMe

τM tΓM +
M∑
j=1

1

η − τj
Vije

τjt[e(η−τj)t − 1]Hj

= Vi1e
τ1tΓ1 + · · ·+ ViMe

τM tΓM +
M∑
j=1

1

η − τj
Vij(e

ηt − eτjt)Hj

Define τ ∗ = maxi{τi}i. If η > τ ∗:

lim
t→∞

Ni,t = lim
t→∞

eηt
∑
j

Vije
(τj−η)tΓj +

M∑
j=1

1

η − τj
Vije

ηt[1− e(τj−η)t]Hj

= eηt
M∑
j=1

Vij
η − τj

Hj

From which we have:
Ṅi,t

Ni,t

= η, ∀i
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If η < τ ∗:

lim
t→∞

= lim
t→∞

eτ
∗t

M∑
j=1

Vije
(τj−τ∗)tΓj +

M∑
j=1

1

η − τj
Vije

τ∗t[e(η−τ∗)t − e(τj−τ∗)t]Hj

= eτ
∗tVii∗(Γi∗ +

Vi∗

τ ∗ − η
Hi∗)

and
Ṅi,t

Ni,t

= τi∗ , ∀i

Since all sectors grow at the same rate, so does the aggregate growth rate of the economy:

Ṅt

Nt

= η, if η > τ ∗

Ṅt

Nt

= τ ∗, if η < τ ∗

Proposition 3. The sector shares Qt approach to a limit Q in the long run, which satisfy the

following system of equations:

ψ∗Q = ΨQ

where ψ∗ = τ ∗ + 1.

Proof.

Ñt+1 = Ltηp̃+ ΨÑt

Divide both sides of the equation by Nt:

1

Nt

Ñt+1 =
Ltη

Nt

p̃+ ΨQt

Which can be rewritten as:
1

Nt+1

Nt+1

Nt

Ñt+1 =
Ltη

Nt

p̃+ ΨQt

Note that:

Nt+1

Nt

= 1 +
Ltη +

∑
i λi
∑

j Nj,tgji

Nt

= 1 +
Ltη

Nt

+

∑
i λi
∑

j Nj,tgji

Nt

As shown in Proposition 2, as t→∞, the innovation from the existing knowledge stocks dominates

the innovation from the entrants so we have:

lim
t→∞

∑
i λi
∑

j Nj,tgji

Nt

= τ ∗
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Plug the above result to the previous equation:

Nt+1

Nt

= 1 +
Ltη

Nt

+ τ ∗

With the result and note the fact that 1
Nt+1

Ñt+1 = Qt+1, we have:

(1 +
Ltη

Nt

+ τ ∗)Qt+1 =
Ltη

Nt

p̃+ ΨQt

Rearrange the above equation to get:

(1 + τ ∗)Qt+1 =
Ltη

Nt

(p̃−Qt+1) + ΨQt

Take the limit of t→∞ for the above equation:

lim
t→∞

(1 + τ ∗)Qt+1 = lim
t→∞

Ltη

Nt

(p̃−Qt+1) + lim
t→∞

ΨQt

Note that limt→∞
Ltη
Nt

= 0 when τ ∗ > η, so we have:

ψ∗Q = ΨQ

Where ψ∗ = 1 + τ ∗.

Proposition 4. The right tail of the accumulative firm size distribution F (n) is given by:

F (n) = 1− αn−
η
τ∗

where α is a constant.

Proof. Conditional on a firm entering sector i at the beginning, start from equation (13) and take the

limit of ∆t→ 0,

ṅt =
∑
i

λi
∑
j

nj,tgji

where ni,0 = 1 and nj,0 = 0 ∀j 6= i. We already know from Proposition 2 that the aggregate number

of patents Nt grows a rate τ ∗ in the long run. This will be true for individual firms as well because of

the constant return to scale of production function.

lim
t→∞

ṅt = τ ∗nt

The above equation implies that firm size for the same cohort of firms that enter the same sector at

the beginning is a deterministic function of age:

nt = αie
τ∗t
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where αi is a constant specific to initial sector that firms enter. Revert the above equation to express

a firm’s age in terms of size:

t =
1

τ ∗
log

nt
αi

Recall the population of firms grows at the rate η, so the distribution of firm age is an exponential

distribution. The proportion of firms older than a is thus:

Prob(firms older than a) = e−ηa

Substitute firm age a in terms of firm size n, we have:

Prob(firms larger than n) = e
− η
τ∗ log n

αi = (
n

αi
)−

η
τ∗

The accumulative firm size distribution, conditional on firms entering sector i at the beginning, is

thus:

Fi(n) = 1− (
n

αi
)−

η
τ∗

The unconditional firm size distribution is therefore:

F (n) =
∑
i

piFi(n)

=
∑
i

pi(1− (
n

αi
)−

η
τ∗ )

= 1−
∑
i

pi(
1

αi
)−

η
τ∗ n−

η
τ∗

= 1− αn−
η
τ∗

where α =
∑

i pi(
1
αi

)−
η
τ∗

Proposition 5. If an economy is represented by a reducible technology network, G̃, then the

long-run growth rates of each technology cluster and the economy are given by:

Ṅ i
t/N

i
t = τ ∗i

Ṅt/Nt = τmax = max
i
{τ ∗i }

where τ ∗i is the dominant eigenvalue of Φ̃i.

Proof. Within each cluster, the proof is the same as the proof of Proposition 2. Since each cluster is

a irreducible network, all sectors within a cluster grow at the same rate, which is determined by the

eigenvalue τ ∗i of the network of every cluster Φi.

Since different clusters grow at different rate, as time passes on, the fastest growing cluster will

dominate and the aggregate growth of the economy is thus determined by the growth of the dominant

cluster.
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Proposition 6. The conditional sector shares within cluster i, Πi, satisfy the following system of

equations:

ψ∗i Π
i = ΨiΠi ∀i ∈ (1, 2, · · · ,N ),

where ψ∗i is the dominant eigenvalue of Ψi. Except the fastest growing cluster, the shares of all other

clusters shrink and eventually vanish:

lim
t→∞

Q̂i
t → 0, ∀i 6= imax.

Proof. From results in Proposition 5, we know that:

N i
t = cie

τ∗i t ∀i ∈ (1, · · · ,N )

Nt = ceτ
maxt

where ci and c are constants specific to cluster i and the whole economy respectively. Since τ ∗i <

τmax, we have:

lim
t→∞

N i
t

Nt

= lim
t→∞

ci
c
e(τ∗i −τmax)t = 0

so

lim
t→∞

Q̂i
t = lim

t→∞

∑
hN

i
h,t

Nt

= lim
t→∞

N i
t

Nt

= 0 ∀i 6= imax

It is easy to see from the above results that sectors other than those in the fastest growing cluster

shrink in terms of the relative size. However, we can still explore the relative size distribution of

sectors within each cluster. Due to the fact that each cluster consists of an irreducible network, we

can examine the within cluster sector size distribution separately for each cluster. Specifically, for

cluster i:

Ñ i
t+1 = Ltηp̃

i + ΨiÑ i
t

Following the similar procedure in the proof of Proposition 3, we have:

(1 +
Ltη

∑Mi

h=1 p
i
h

N i
t

+ τ ∗i )Πi
t+1 =

Ltη

Nt

p̃i + ΨiΠi
t

Note that:

lim
t→∞

Ltη

Nt

= 0

Therefore, when t→∞, the above system of equations simplify to:

ψ∗i Π
i = ΨiΠi

where ψ∗ = 1 + τ ∗.
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Proposition 7. The right tail of the accumulative firm size distribution Fi(n) for cluster i is given

by:

Fi(n) = 1− αin−η/τ
∗
i ∀i ∈ (1, 2, · · · ,N )

where τ ∗i is the dominant eigenvalue of Φ̃i and αi is a cluster specific constant.

Proof. The proof here follows that in Proposition 4. The population growth rate of firms is the same

across clusters, so we have the same firm age distribution over different clusters. The only difference

is that we have cluster specific growth rate, so firms in the same age cohort can have different sizes

depending on which cluster they belong to. This feature determines the distribution of firm sizes in

different clusters. In particular, η
τ∗i

is the shape parameter for the firm size distribution of each cluster,

which give rises to our results in the proposition.
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TABLE A.1

SUMMARY OF TECHNOLOGY CATEGORIES

Category by HJB Relabel Name Number

11 1 Agriculture,Food,Textiles 7808
12 2 Coating 21257
13 3 Gas 6733
14 4 Organic Compounds 49041
15 5 Resins 53567
19 6 Miscellaneous-Chemical 141561
21 7 Communications 101276
22 8 Computer Hardware & Software 86433
23 9 Computer Peripherials 30084
24 10 Information Storage 44174
25 11 Electronic business methods and software 13882
31 12 Drugs 97507
32 13 Surgery & Med Inst. 53455
33 14 Genetics 4480
39 15 Miscellaneous-Drug& Med 9035
41 16 Electrical Devices 52782
42 17 Electrical Lighting 23333
43 18 Measuring & Testing 46449
44 19 Nuclear & X-rays 22562
45 20 Power Systems 51666
46 21 Semiconductor Devices 55702
49 22 Miscellaneous-Elec 32256
51 23 Mat. Proc & Handling 56574
52 24 Metal Working 35482
53 25 Motors & Engines + Parts 36162
54 26 Optics 16837
55 27 Transportation 30674
59 28 Miscellaneous-Mechanical 49743
61 29 Agriculture,Husbandry,Food 21358
62 30 Amusement Devices 8817
63 31 Apparel & Textile 11825
64 32 Earth Working & Wells 21464
65 33 Furniture,House Fixtures 18616
66 34 Heating 13527
67 35 Pipes & Joints 10707
68 36 Receptacles 20888
69 37 Miscellaneous-Others 98724

The first column corresponds to the original numeric technology category defined by Hall, Jaffe and Trajjtenberg(HJT).
The second column is the relabelled category number in the paper and the last column shows the number of patents in
each technology category.
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TABLE A.4

SECTORAL ENTRY PROBABILITY AND INNOVATION INTENSITY

Name Entry Probability Innovation Intensity

Agriculture,Food,Textiles 0.001078 0.056423
Coating 0.003607 0.069459
Gas 0.001191 0.044832
Organic Compounds 0.002537 0.076724
Resins 0.003671 0.069619
Miscellaneous-Chemical 0.020506 0.062229
Communications 0.012182 0.105481
Computer Hardware & Software 0.010279 0.095151
Computer Peripherials 0.002868 0.108225
Information Storage 0.003202 0.121202
Electronic business methods and software 0.004119 0.097338
Drugs 0.014888 0.088518
Surgery & Med Inst. 0.011166 0.076118
Miscellaneous-Drug& Med 0.00267 0.65657
Electrical Devices 0.004401 0.08409
Electrical Lighting 0.003373 0.083668
Measuring & Testing 0.006807 0.072112
Nuclear & X-rays 0.002453 0.078219
Power Systems 0.005826 0.074447
Semiconductor Devices 0.00184 0.10364
Miscellaneous-Elec 0.005005 0.086706
Mat. Proc & Handling 0.013088 0.058572
Metal Working 0.006256 0.067428
Motors & Engines + Parts 0.005509 0.063773
Optics 0.002104 0.081174
Transportation 0.006851 0.062832
Miscellaneous-Mechanical 0.011863 0.065531
Agriculture,Husbandry,Food 0.006891 0.054318
Amusement Devices 0.00407 0.072859
Apparel & Textile 0.00418 0.057728
Earth Working & Wells 0.004055 0.039236
Furniture,House Fixtures 0.006618 0.063958
Heating 0.003005 0.048228
Pipes & Joints 0.00248 0.061579
Receptacles 0.006259 0.06207
Miscellaneous-Others 0.026874 0.066039
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