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Abstract

Recent research has proposed a method of detecting explosive processes that is based on

forward recursions of OLS, right-tailed, Dickey-Fuller [DF] unit root tests. In this paper

an alternative approach using GLS DF tests is considered. We derive limiting distributions

for both mean-invariant and trend-invariant versions of OLS and GLS-based Phillips, Wu

and Yu (2011, International Economic Review 52, 201–226) [PWY] test statistics under a

temporary, locally explosive alternative. These limits are shown to be dependent on both

the value of the initial condition and the start and end points of the temporary explosive

regime. Local asymptotic power simulations show that a GLS version of the PWY statistic

offers superior power when a large proportion of the data is explosive, but that the OLS

approach is preferred for explosive periods of short duration as a proportion of the total

sample. These power differences are magnified by the presence of an asymptotically non-

negligible initial condition. We propose a union of rejections procedure that capitalises on

the respective power advantages of both OLS and GLS-based approaches. This procedure

achieves power close to the effective envelope provided by the two individual PWY tests

across all settings of the initial condition and length of the explosive period considered in

this paper. These results are shown to be robust to the point in the sample at which the

temporary explosive regime occurs. An application of the union procedure to NASDAQ

prices confirms the empirical value of this testing strategy.
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1 Introduction

Detection of asset price bubbles in financial and macroeconomic time series data is
an increasingly prominent issue in economics. Recent events such as the Dot-Com
bubble of the late 1990s and the global financial crisis of 2007-2009 have highlighted
the detrimental and wide-ranging effect that a bubble in a single asset market can
have on the whole economy. A substantial body of literature has emerged which
attempts both to improve our theoretical modelling of asset price bubbles and to
design statistical tests which can detect these bubbles.

A key finding of this literature is that time series in which an asset price bubble is
present follows an explosive process and can therefore be modelled by a simple first
order autoregression [AR]. Consider the standard present value theory of finance
for stock market prices. Starting with the standard no arbitrage condition, the real
stock price, Pt, can be written as

Pt =
1

1 + r
Et (Pt+1 +Dt+1)

where r is the risk-free discount rate (r > 0), Dt is the real dividend and Et is the
expectation at time t. Through recursive substitution of this condition it is shown
that

Pt = P f
t +Bt

where P f
t denotes the market fundamentals component of prices, and Bt a bubble

component. The fundamentals component is given by the discounted sum of future
dividends

P f
t =

∞∑

t=1

(1 + r)−iEt(Dt+i).

If the stochastic difference equation

Bt+1 = (1 + r)Bt + ut

holds, where Et−i(ut) = 0 for all i ≥ 0 then a rational bubble is said to exist. In
the absence of bubbles, where Bt = 0, prices will be determined by expected future
dividends. However, if a bubble is present, such thatBt 6= 0, the explosive behaviour
of Bt dominates and prices will be explosive regardless of whether dividends follow
a stationary or unit root process. Rational bubbles therefore appear as explosive
behaviour in a price series.

In seminal work, Diba and Grossman (1988) propose a method of detecting
rational bubbles that examines the first difference of a price series. Given that
the first difference of an explosive series cannot be stationary, they apply unit root
tests to the first differenced price series where rejection of the null hypothesis of a
unit root implies that a rational bubble is not present in prices. Evans (1991) shows
that methods which rely on full sample test procedures are likely to have low power,
due to the typically temporary nature of explosive asset price bubbles. Price series
which contain these periodically collapsing bubbles may appear much like unit root
or even stationary processes across the full sample, such that full sample methods
which examine the stochastic properties of price series will likely have low power
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in detecting temporary explosiveness. In recent work, Phillips et al. (2011) [PWY]
propose a test for the presence of temporary explosive behaviour in time series that
is based on the supremum of recursive, right-tailed unit root tests. Applying this
test to monthly observations of the NASDAQ composite stock index with a sample
period of February 1973 - June 2005, they find evidence of explosiveness in real
prices but not in the real dividend series, and thus conclude that a rational bubble
occurred in the NASDAQ stock market in this sample period.

The PWY test procedure is fundamentally based on sub-sample OLS Dickey-
Fuller [DF] unit root tests. When considering full sample explosiveness, Harvey
and Leybourne (2014) show that a DF unit root test based on Generalised Least
Squares [GLS] demeaning or detrending has a power advantage over OLS DF tests.
This result holds when the initial condition of the series, i.e. the deviation of the
first observation of the sample away from the deterministics of the process, is both
asymptotically negligible and non-negligible.

In this paper we consider a GLS version of the PWY test procedure and evaluate
the properties of both OLS and GLS-based PWY approaches in detecting temporary
explosiveness. Whilst PWY focus on mean-invariant tests only, we also consider a
trend-invariant test. Many time series that are potentially subject to asset price
bubbles, such as stock market prices or house prices, may follow a linear trend.
It is well known that the power of a demeaned (but not detrended) unit root test
is significantly affected by the presence of a trend. Therefore trend-invariant tests
for explosive processes are likely to be required in addition to mean-invariant tests.
We derive the limiting distributions of the two mean-invariant and the two trend-
invariant PWY-type statistics under a temporary, locally explosive alternative, in
the presence of an asymptotically non-negligible initial condition. These limits are
shown to be dependent on both the value of the initial condition and the start
and end points of the temporary explosive regime. We examine the asymptotic
and finite sample power of OLS and GLS PWY-type statistics under varying initial
conditions, lengths of the explosive period, and points in the sample at which the
explosive period occurs. Our results show that the GLS version of the PWY statistic
achieves higher power than its OLS counterpart when a long explosive period is
considered, in line with the full sample results of Harvey and Leybourne (2014).
However, when considering an explosive period of shorter length, we show that
the OLS version of the PWY statistic has superior power. The presence of an
asymptotically non-negligible initial condition does not affect the ranking of the
two procedures, in contrast to the results seen in the left-tailed unit root testing
context, but instead amplifies the power difference between OLS and GLS-based
procedures.

Given that the relative power performance of OLS and GLS-based PWY tests
depends on two factors which are likely to be unobserved in practice: the length
of the explosive regime as a proportion of the sample and the value of the initial
condition, we therefore propose a union of rejections procedure to capture the best
available power offered by the two tests under these different sources of uncertainty.
This union procedure displays power close to the effective envelope provided by
the OLS and GLS-based tests for all settings of the initial condition and bubble
length considered in this paper. An application of the union procedure to daily
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NASDAQ prices demonstrates the differing results that OLS and GLS-based PWY
tests can provide in practice and highlights the empirical value of our proposed
union procedure.

Throughout this paper, we refer to both the length of the explosive period and
the magnitude of the explosive process. The length of the explosive period describes
the proportion of the sample for which the data follows an explosive process, as
opposed to a unit root. The magnitude of the explosive process describes the growth
rate of the explosive series, which is affected by both the explosive parameter in
the AR model, as well as the value of the initial condition. We use the following

notation throughout: ⌊.⌋ to denote the integer part of the argument;
p→ and

d→ to
denote convergence in probability and weak convergence respectively as the sample
size diverges.

In the following section we discuss the role that the initial condition plays in
explosive processes. Section 3 outlines the PWY test procedure and discusses a
GLS variant. In Section 4 local asymptotic distributions of mean-invariant and
trend-invariant OLS and GLS tests are derived and results from asymptotic sim-
ulations are reported for differing values of the initial condition and length of the
explosive period. Section 5 proposes a union of rejections procedure and reports
the local asymptotic power of this procedure. Section 6 evaluates the finite sample
performance of all test statistics considered in this paper. An empirical application
of the test procedures in this paper to NASDAQ prices is considered in Section 7.
Section 8 concludes.

2 Initial conditions and explosive processes

Consider the following DGP

yt = µ+ ut (1)

ut = (1 + δ)ut−1 + vt t = 2, ..., T (2)

where vt is assumed to follow a martingale difference sequence. Suppose that yt
is a price index, which has been normalized at the first value, such that y1 =
100. Normalization of this form is standard when using macroeconomic or financial
data as the common starting value allows easier comparison of growth rates across
multiple series. PWY apply their testing procedure to monthly NASDAQ price
data from February 1973 - June 2005, with the starting value normalized to 100.
Phillips et al. (2015) consider a generalized version of the PWY bubble detection
procedure and apply this to the S&P 500 price-dividend ratio from January 1871
to December 2010, again with the first observation normalized to 100. To assess
the power of their proposed test procedures Phillips et al. (2015) consider Monte
Carlo simulations based on a DGP with parameters calibrated from this empirical
application, such that the simulated data series has to be initialised at a value of
100.

Consider using the DGP in (1) - (2) to generate an explosive process initialised
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at y1 = 100. By back-substitution in (2), we can show that

ut = (1 + δ)t−1u1 +

t∑

j=2

(1 + δ)j−2vt−(j−2)

such that

yt = µ+ (1 + δ)t−1u1 +

t∑

j=2

(1 + δ)j−2vt−(j−2). (3)

We can therefore write the initial observation y1 as

y1 = µ+ u1.

It is clear then that there are two observationally equivalent ways of initialising the
process at y1 = 100. Either we set µ = 100 and u1 = 0, or we could set µ = 0 and
u1 = 100, such that the process ut is initialised at a non-zero value. Of course, some
combination of non-zero µ and u1 is also possible, such that µ+u1 = 100. If ut is a
stationary series (δ < 0), the process is mean-reverting and there should be a clear
sense of the value of the underlying mean of the process. However, in an explosive
context (δ > 0), the distinction between the value of the underlying mean and the
value of u1 is less clear cut. In practice, it may be difficult to determine which of
these set-ups is appropriate for an explosive process with non-zero initial value.

The initial condition of a process is defined as the deviation of the first obser-
vation of the series from the deterministics of that series. Setting u1 6= 0 implies
that the process has a non-zero initial condition. For an explosive process with a
non-zero first observation, it is therefore unclear whether the process has a non-zero
initial condition, or indeed what size such an initial condition would be. The effect
of the initial condition on the performance of unit root tests is well-documented in
both the stationary and explosive contexts. When examining the null hypothesis
of a unit root against an alternative of stationarity, Elliott (1999) considers a ran-
dom initial condition drawn from its unconditional distribution and highlights the
strong dependence of power functions of unit root tests on the value of this initial
condition. Elliott et al. (1996) show that a GLS version of the DF test has superior
power to its OLS counterpart if the initial condition is asymptotically negligible.
However, as demonstrated by Muller and Elliott (2003), this power advantage does
not hold in the presence of non-negligible, fixed initial conditions, such that for
large values of the initial condition the OLS DF test has superior power to the GLS
variant. Harvey et al. (2009) show that the relative power performance of these two
tests is qualitatively similar under both random and fixed initial conditions.

Harvey and Leybourne (2014) examine whether the results found in the sta-
tionary case extend to the explosive, right-tailed context. Focusing on full-sample
explosiveness, they find that GLS DF unit root tests retain superior power over
OLS DF tests in the case of negligible initial conditions, although this power ad-
vantage is smaller than that exhibited in the left-tailed context. Interestingly, DF
GLS tests are shown to maintain this power advantage over OLS DF tests for non-
negligible, fixed initial conditions, in contrast to the results seen for left-tailed unit
root tests. The difficulty in distinguishing between non-zero means and non-zero
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initial conditions in an explosive context motivates us to examine the effect that
the presence of an asymptotically non-negligible initial condition has on the PWY
test for detecting temporary explosiveness.

3 Right-tailed unit root tests

Consider a time series yt where t = 1, .., T. We are interested in testing the null
that yt follows a unit root AR(1) process for the full sample, against the alternative
that yt is temporarily explosive, that is yt follows an explosive AR(1) process for
some sub-period of the full sample. In order to detect this temporary explosiveness,
PWY propose a supremum test based on forward recursions of right-tailed, OLS
DF unit root tests. Choosing some initial value τ0 where τ0 ∈ [0, 1], a right-tailed,
OLS DF test is calculated over the first ⌊τ0T ⌋ observations. The sample size is
then increased by an additional observation, the DF test re-estimated, and so on
for T − ⌊τ0T ⌋+ 1 recursions. Whilst PWY focus on the mean case only, we extend
the analysis by considering a DF statistic which is both demeaned and detrended
in addition to the original PWY approach.

The PWY-type statistics are therefore given by

PWY µ
OLS = sup

τ∈[τ0,1]

DF τ,µ
OLS

PWY β
OLS = sup

τ∈[τ0,1]

DF τ,β
OLS

where DF τ,µ
OLS and DF τ,β

OLS denote the right-tailed demeaned, and demeaned and
detrended OLS DF tests respectively. The DF test is the standard t-test

DF τ,i
OLS =

δ̂τ

s.e.
(
δ̂τ

)

where i = {µ, β} and δ̂τ is the OLS estimate from the auxiliary regression

∆ûτ,t = δτ ûτ,t−1 + vτ,t (4)

where ûτ,t = yt − z′tθ̂ are the residuals from the OLS regression of yt on zt = 1,

θ = µ in the case of DF τ,µ
OLS and zt = (1, t)′, θ = (µ, β)′ in the case of DF τ,β

OLSover the

subsample period t = 1, ..., ⌊τT ⌋, with the standard error of δ̂τ given by s.e.
(
δ̂τ

)
.

To explore whether a GLS variant of the PWY test can provide power gains
in testing for temporary explosiveness, we modify the PWY statistic such that it
is based on forward recursions of right-tailed, GLS demeaned, or demeaned and
detrended DF tests. These tests are given by

PWY µ
GLS = sup

τ∈[τ0,1]

DF τ,µ
GLS

PWY β
GLS = sup

τ∈[τ0,1]

DF τ,β
GLS
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where DF τ,µ
GLS and DF τ,β

GLS denote the right-tailed, GLS demeaned, and demeaned
and detrended DF tests respectively. The DF test is the standard t-test

DF τ,i
GLS =

δ̃τ

s.e.
(
δ̃τ

)

where i = {µ, β} and δ̃τ is the GLS estimate from the auxiliary regression

∆ũτ,t = δ̃τ ũτ,t−1 + ṽτ,t, (5)

where on setting ρ = 1+ c/T for some chosen constant c, ũτ,t = yt − z′tθ̃ where θ̃ is
obtained from the GLS regression of yc = (y1, y2−ρy1, ..., yτT−ρyτT−1)

′ on zc = (z1,
z2− ρz1, ..., zτT − ρzτT−1)

′ where zt = 1 in the case of DF τ,µ
GLS and zt = (1, t)′ in the

case of DF τ,β
GLS, with the standard error of δ̃τ given by s.e.

(
δ̃τ

)
.

4 Asymptotic behaviour of tests

To examine the behaviour of the four tests discussed in Section 3 we consider the
following DGP

yt = µ+ βt+ ut (6)

ut =





T 1/2σα t = 1
ut−1 + vt t = 2, ..., ⌊τ1T ⌋
(1 + δ)ut−1 + vt t = ⌊τ1T ⌋+ 1, ..., ⌊τ2T ⌋
ut−1 + vt t = ⌊τ2T ⌋+ 1, ..., T

(7)

where vt is assumed to follow a martingale difference sequence with conditional
variance σ2 and suptE(v

4
t ) < ∞. A unit root is imposed on yt up to time ⌊τ1T ⌋.

We set δ ≥ 0 such that yt follows an explosive process when δ > 0 between time
⌊τ1T ⌋ + 1 and ⌊τ2T ⌋. In the third regime, the series reverts back to a unit root
process. We assume that on reversion back to a unit root there is no crash, such that
the observation u⌊τ2T ⌋+1 = u⌊τ2T ⌋+v⌊τ2T ⌋+1. As Evans (1991) argues, this assumption
may be unrealistic in that an empirically plausible rational bubble must have a
significant chance of collapsing. They examine a class of rational bubble which
has a probability of collapsing in each period of 1 − π where 0 < π ≤ 1. When
the bubble collapses, the process falls to a mean value before potentially ‘erupting’
again. Periodically collapsing bubbles of this type therefore follow more complex
AR(1) processes than the DGP in (7). One simple solution would be to model
an instantaneous crash by re-initialising ut when it reverts back to a unit root.
PWY discuss doing this by setting the first observation of the new unit root regime
to be equal to the last observation before the explosive regime began plus some
stochastic element, such that u⌊τ2T ⌋+1 = u⌊τ1T ⌋+ v⌊τ2T ⌋+1. Harvey et al. (2015) note
that the supremum of forward recursions of DF unit root tests will tend to occur
when the sub-sample of observations used contains only the pre-collapse period of
the data. As a result, PWY-type tests are unlikely to be affected by the inclusion
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of an instantaneous crash in the DGP, and our analysis is therefore unlikely to be
limited by this no-crash assumption.

The null hypothesis that yt follows a unit root throughout is given by H0 : δ = 0,
and the alternative that yt exhibits temporary explosiveness is given by H1 : δ > 0.
We focus on local alternative hypotheses of the form δ = c/T where c ≥ 0. Fol-
lowing Harvey and Leybourne (2014), we consider two possibilities for the initial
condition, u1: it is either asymptotically negligible, u1 = op

(
T 1/2

)
, or asymptot-

ically non-negligible, where u1 = T 1/2σα and α 6= 0 is a finite constant. Under
the null hypothesis, α acts as a mean shift, such that increasing α or increasing
µ both increase the mean of yt. Under the alternative, when δ > 0, we can note
from (3) that the presence of a non-zero initial condition adds a deterministic ex-
plosive component to the data. In this sense, both α and the explosive parameter
c contribute to the magnitude of the explosive process. Note that to illustrate the
results, our analysis assumes that vt is not serially correlated. Following PWY,
serial correlation is permitted to enter the model provided that the usual ADF lag
augmentation is applied to the DF tests by including lags of ∆ûτ,t and ∆ũτ,t in
the auxiliary regressions (4) and (5) respectively. The asymptotic distributions of
PWY i

OLS and PWY i
GLS where i = {µ, β} are given in the following theorem.

Theorem 1 Let yt be generated according to (6)-(7) where we assume β = 0 in the
case of the two demeaned tests. For c ≥ 0,

PWY µ
OLS

d→ sup
τ∈[τ0,1]

Kµ
c,α(τ, τ, τ1, τ2)

2 −Kµ
c,α(0, τ, τ1, τ2)

2 − τ

2
√∫ τ

0
Kµ
c,α(r, τ, τ1, τ2)2dr

≡ LOLS
µ

c,τ1,τ2

PWY µ
GLS

d→ sup
τ∈[τ0,1]

Kµ,G
c,α (τ, τ1, τ2)

2 − τ

2
√∫ τ

0
Kµ,G
c,α (r, τ1, τ2)2dr

≡ LGLS
µ

c,τ1,τ2

PWY β
OLS

d→ sup
τ∈[τ0,1]

Kβ
c,α(τ, τ, τ1, τ2)

2 −Kβ
c,α(0, τ, τ1, τ2)

2 − τ

2
√∫ τ

0
Kβ
c,α(r, τ, τ1, τ2)2dr

≡ LOLS
β

c,τ1,τ2

PWY β
GLS

d→ sup
τ∈[τ0,1]

Kβ,G
c,c̄,α(τ, τ, τ1, τ2)

2 − τ

2
√∫ τ

0
Kβ,G
c,c̄,α(r, τ, τ1, τ2)2dr

≡ LGLS
β

c,τ1,τ2
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where

Kµ
c,α(r, τ, τ1, τ2) = Kc,α(r, τ1, τ2)− τ−1

∫ τ

0

Kc,α(s, τ1, τ2)ds

Kµ,G
c,α (r, τ1, τ2) = Kc,α(r, τ1, τ2)− α

Kβ
c,α(r, τ, τ1, τ2) = Kc,α(r, τ1, τ2)−

2

τ

(
2− 3

τ
r

)∫ τ

0

Kc,α(s, τ1, τ2)ds

+
6

τ 2

(
1− 2

τ
r

)∫ τ

0

sKc,α(s, τ1, τ2)ds

Kβ,G
c,c̄,α(r, τ, τ1, τ2) = Kc,α(r, τ1, τ2)− α−[

(τ − c̄τ 2 + c̄2τ 3/3)−1{(1− c̄τ)Kc,α(τ, τ1, τ2)

+c̄2
∫ τ
0
sKc,α(s, τ1, τ2)ds} − 1−c̄τ+c̄2τ2/2

τ−c̄τ2+c̄2τ3/3
α

]
r

with

Kc,α(r, τ1, τ2) =





α r = 0
α +W (r) r < τ1
ec(r−τ1)α+ ec(r−τ1)W (τ1) +

∫ r
τ1
ec(r−s)dW (s) τ1 < r < τ2

W (r)−W (τ2) + ec(τ2−τ1)α
+ec(τ2−τ1)W (τ1) +

∫ τ2
τ1
ec(τ2−s)dW (s) r > τ2

and W (r) a standard Brownian motion process.

Proof: See Appendix.

The limit distributions of PWY µ
OLS, PWY β

OLS, PWY µ
GLS and PWY β

GLS under the

null hypothesis are given by LOLS
µ

0,τ1,τ2, L
OLSβ

0,τ1,τ2 , L
GLSµ

0,τ1,τ2 and LGLS
β

0,τ1,τ2 respectively. These
are the limit distributions obtained from Theorem 1, with c = 0.

Elliott et al. (1996) choose c such that when testing the null of a unit root
against the alternative of stationarity, the Gaussian point optimal invariant test of
c = 0 against c = c, which forms the asymptotic Gaussian local power envelope,
has a power of 0.50. Using a nominal 0.05 level test, Harvey and Leybourne (2014)
repeat the exercise in the context of testing the unit root null against an explosive
alternative, yielding approximate values of cµ = 1.6 and cτ = 2.4 for the demeaned
and detrended DF tests respectively. In the context of temporary explosiveness,
the optimal choice of cµ and cτ will change depending on the bubble start and end
points, τ1 and τ2, as well as the length of the bubble, τ2−τ1. Of course, these bubbles
start and end points are likely to be unknown in practice, making it impossible to
know the ideal setting of cµ and cτ . For simplicity, we therefore choose to adopt
the full sample values employed by Harvey and Leybourne (2014) in what follows.

The value of τ0, the length of the first sub-sample, should be chosen such that it
gives a sufficiently large number of observations to ensure that the initial estimation
of the sub-sample DF statistic is satisfactory, but not too large that a temporary
explosive period early in the sample is missed. In practice, the choice of τ0 is likely
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to be driven by the sample size T , with smaller values of τ0 being possible for larger
sample sizes. Throughout this paper, we set τ0 = 0.1 so that our work is in line
with that of PWY. Asymptotic null critical values, given in Table 1, are generated
by direct simulation of the limit distributions using IID N(0, 1) random variates,
with the integrals approximated by normalised sums of 1,000 steps. Simulations
are conducted using 10,000 Monte Carlo replications throughout the paper.

To evaluate the performance of the tests for different lengths of the explosive
interval, we consider two [τ1, τ2] pairs: [0.45, 0.55] and [0.2, 0.8]. We therefore have
a short bubble where 10% of the data is explosive, and a longer bubble where the
explosive interval covers 60% of the data. Both of these non-collapsing bubbles
are centred within the sample, although we extend our analysis to consider non-
centered bubbles in Section 6. To consider the effect of the initial condition on the
performance of the tests, we set α = {0, 2, 10}. Figures 1 and 2 plot local asymptotic
power curves of nominal 0.05-level PWY µ

OLS, PWY β
OLS, PWY µ

GLS and PWY β
GLS tests

for different values of c, obtained via direct simulation of the limiting distributions
above.

Figure 1 reports asymptotic power for the short explosive regime, [τ1, τ2] =
[0.45, 0.55]. Figures 1(a) and 1(b) consider power where α = 0, with 1(a) con-
sidering the two mean-invariant tests and 1(b) considering the two trend-invariant
tests. Figures 1(c) and 1(d) report powers in the mean and trend case respectively,
where α = 2, and Figures 1(e) and 1(f) examine α = 10. Consider first Figure
1(a) where the initial condition is asymptotically negligible. Asymptotic power of
both PWY µ

OLS and PWY µ
GLS increases as the magnitude of the explosive bubble, c,

increases. For small values of c, PWY µ
GLS has slightly higher power than PWY µ

OLS,
but this power ranking is reversed at approximately c = 14, beyond which PWY µ

OLS

retains a small power advantage. The difference in power between the two tests is
always very small, with a maximum disparity of 0.033 observed at c = 16.8. In
Figure 1(b), PWY β

OLS has a power advantage over PWY β
GLS across all values of

c. These power differences are larger than those observed in the mean case. For
c = 11.2, PWY β

OLS has power of 0.423 and PWY β
GLS of 0.292 yielding a power

advantage of 0.131.
Consider now Figures 1(c) and 1(d), where α = 2 such that the initial condition

is asymptotically non-negligible. In both the mean and trend cases, with i = {µ, β},
PWY i

OLS has superior power to PWY i
GLS across almost all values of c. The power

difference between the two tests is greater than that exhibited when α = 0, with
PWY µ

OLS and PWY β
OLS having a maximum power advantage of 0.105 and 0.231

respectively. Figures 1(e) and 1(f) examine power for α = 10. The relative power
advantage of PWY i

OLS over PWY i
GLS has increased from the α = 2 case, with

observed maximum power differences of 0.167 and 0.318 respectively. These results
demonstrate that when a short explosive period is considered, PWY i

OLS generally
has superior power performance to PWY i

GLS for both asymptotically negligible and
non-negligible initial conditions. This is contrary to the full-sample results of Harvey
and Leybourne (2014), where PWY i

GLS was shown to outperform PWY i
OLS at all

values of the initial condition. The relative power advantage of PWY i
OLS increases

as the value of the initial condition increases, with the difference in powers always
greater in the two trend-invariant tests than in the mean-invariant case.
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Figure 2 reports power results where the longer explosive regime, [τ1, τ2] =
[0.2, 0.8], is considered. Figures 2(a) and 2(b) report powers for the mean-invariant
and trend-invariant tests respectively, where α = 0. Figures 2(c) and 2(d) consider
α = 2 and 2(e) and 2(f) consider α = 10. Consider first Figures 2(a) and 2(b).
As before, the asymptotic local power of all tests is increasing in c. However, for
this longer explosive regime, PWY µ

GLS has a small power advantage compared to
PWY µ

OLS for c values up to approximately 4.5, beyond which the powers of the
two tests are near identical. The maximum power advantage of PWY µ

GLS over
PWY µ

OLS is approximately 0.115 observed at c = 2. In the trend case, PWY β
GLS

outperforms PWY β
OLS at almost all settings of c, with near identical power observed

for the few remaining c settings. As with the short explosive period considered in
Figure 1, the power difference between the two tests is greater when considering the
trend-invariant case, with PWY β

GLS having a maximum power advantage of 0.182
at c = 3.5.

In Figures 2(c) and 2(d), where α = 2, the relative power performance of the
mean-invariant tests is shown to closely correspond to that exhibited in Figure 2(a).
In the trend case, the power advantage of PWY β

GLS over PWY β
OLS is much larger

than that obtained for α = 0, with a maximum power difference of 0.528 observed
at c = 2. Figure 2(e) and 2(f) considers α = 10, and again PWY µ

GLS has a power
advantage over PWY µ

OLS for the vast majority of c settings. The magnitude of the
power difference between tests is similar to that observed for α = 2, with powers of
0.739 and 0.630 respectively for PWY µ

GLS and PWY µ
OLS observed at c = 0.4, yielding

a maximum power advantage of 0.109. In the trend case PWY β
GLS now exhibits a

maximum power advantage over PWY β
OLS of 0.489 at c = 0.9, slightly lower than

that for α = 2. We therefore find that, for a longer explosive period, PWY i
GLS

generally outperforms PWY i
OLS irrespective of the value of the initial condition.

These results coincide with the full sample analysis of Harvey and Leybourne (2014).
We note that the initial condition plays a role in the relative superiority of PWY β

GLS,
with a much larger power advantage observed in the case of α = 2 and α = 10 than
for an asymptotically negligible initial condition. However, unlike in the case of a
short explosive period, the power differences of the two mean-invariant tests appear
to be somewhat less affected by the size of the initial condition.

To further investigate the impact that the initial condition has on asymptotic
power, we examine the performance of PWY i

OLS and PWY i
GLS for a given c value

across different values of α. Figures 3 and 4 display power for the two [τ1, τ2] pairs:
[0.45, 0.55] and [0.2, 0.8] respectively. We set α = {1, ..., 10} and we select a value of
c that yields power approaching one for the largest value of α. Consider first Figure
3, where c = 2. In both the mean and trend case, the powers of PWY i

OLS and
PWY i

GLS are increasing as α increases, due to the role the initial condition plays
in the magnitude of the explosive bubble process. However, beyond approximately
α = 2.5 in the mean case and α = 1 in the trend case, the powers of the two tests
begin to grow at different rates, such that the relative power advantage of PWY i

OLS

to PWY i
GLS is increasing with α. Now considering Figure 4, we set c = 0.8 in

Figure 4(a) and c = 1 in Figure 4(b). Again, in both the mean and trend case,
the power of both tests is increasing as α increases. The relative power ranking of
the mean-invariant tests is generally unaffected by the size of the initial condition.
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However, in the trend case, we observe that the power advantage of PWY β
GLS over

PWY β
OLS increases substantially with α. This is in contrast to the full sample,

left-tailed results of Muller and Elliott (2003) where a GLS-based unit root test is
shown to have decreasing power as the size of the initial condition increases.

Overall, the results in this section highlight the important role that the length
of the explosive period plays in the performance of recursive, right-tailed unit root
tests. Whilst for longer explosive periods PWY i

GLS has superior power performance
to PWY i

OLS, this power ranking is reversed for short explosive periods. With the
exception of mean-invariant tests under the longer explosive period, the power differ-
ence between tests is shown to be small when the initial condition is asymptotically
negligible, but much larger under the presence of an asymptotically non-negligible
initial condition. As both the length of the explosive period and the value of the
initial condition are unlikely to be known in practice, it will often be unclear which
test procedure should be employed. This uncertainty suggests that a composite
procedure which capitalises on the respective power advantages of both tests is
required.

5 A union of rejections strategy

We consider a union of rejections testing approach, in line with that of Harvey
et al. (2009, 2012) to combine inference from the two mean-invariant tests, or the
two trend-invariant tests. The union of rejections procedure is a simple decision
rule where the null hypothesis of a unit root is rejected if either of the individual
tests reject. We can write our proposed union of rejections strategies as

Uµ : Reject H0 if PWY µ
OLS > λζcv

ζ,µ
OLS or PWY µ

GLS > λζcv
ζ,µ
GLS

Uβ : Reject H0 if PWY β
OLS > λζcv

ζ,β
OLS or PWY β

GLS > λζcv
ζ,β
GLS

where cvζ,µOLS, cv
ζ,µ
GLS, cv

ζ,β
OLS and cvζ,βGLS denote the asymptotic null critical values of

PWY µ
OLS, PWY µ

GLS, PWY β
OLS and PWY β

GLS respectively for a significance level ζ .
If we were to use the decision rule

Reject H0 if PWY i
OLS > cvζ,iOLSor PWY i

GLS > cvζ,iGLS

such that both test statistics are compared to the critical values given in Table 1,
U i would be oversized. We therefore incorporate a scaling constant, λζ , which is
calculated such that the asymptotic size of Uµ and Uβ is equivalent to the nominal
size ζ . The decision rules can also be written as:

Uµ : Reject H0 if max

(
PWY µ

OLS,
cvOLS

µ

ζ

cvGLS
µ

ζ

PWY µ
GLS

)
> λζcv

ζ,µ
OLS

Uβ : Reject H0 if max

(
PWY β

OLS,
cvζ,βOLS
cvζ,βGLS

PWY β
GLS

)
> λζcv

ζ,β
OLS
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Under the null hypothesis, where δ = 0,

max

(
PWY µ

OLS,
cvζ,µOLS
cvζ,µGLS

PWY µ
GLS

)
d→ max

(
LOLS

µ

c,τ1,τ2
,
cvζ,µOLS
cvζ,µGLS

LGLS
µ

c,τ1,τ2

)
(8)

max

(
PWY β

OLS,
cvζ,βOLS
cvζ,βGLS

PWY β
GLS

)
d→ max

(
LOLS

β

c,τ1,τ2
,
cvζ,βOLS
cvζ,βGLS

LGLS
β

c,τ1,τ2

)
(9)

To obtain the appropriate value for the scaling constant λζ , we can simulate the
limit distribution of U i (i.e. the RHS of equations 8 and 9) and calculate the ζ level
critical value cvζ,µU or cvζ,βU . Computing λζ = cvζ,iU /cv

ζ,i
OLS will then give the value for

the scaling constant that ensures U i is asymptotically correctly sized. Asymptotic
scaling constants calculated in this way are given in Table 1.

Figures 1 and 2 display the powers of Uµ and Uβ at the nominal 0.05 level
for the explosive intervals [τ1, τ2] = [0.45, 0.55] and [0.2, 0.8] respectively for initial
conditions α = {0, 2, 10}. Consider first Figures 1(a) and 1(b). In both the mean
and trend case, the power of U i is near identical to that exhibited by PWY i

OLS, the
better performing of the two individual test procedures. This pattern extends to
Figures 1(c)-1(f), where asymptotically non-negligible initial conditions are consid-
ered. Therefore, when a short explosive period is present in the data, applying the
union procedure is costless in the sense that there is no power loss associated with
using U i over PWY i

OLS, but a power gain is made by using U i instead of PWY i
GLS.

Figure 2 considers the longer explosive period where we previously showed that
PWY i

GLS generally outperforms PWY i
OLS. Figures 2(a) and 2(b) display the power

of U i when the initial condition is asymptotically negligible. In both the mean and
trend cases, the power of U i is either very similar, or tracking slightly below that
of PWY i

GLS. U
i outperforms PWY i

OLS (or has near identical power) at all values
of c. When considering a non-negligible initial condition, as in Figures 2(c)-2(f), U i

retains its power advantage over PWY i
OLS, exhibiting power either equivalent to or

slightly lower than that obtained by PWY i
GLS.

Figures 3 and 4 display the power of U i for explosive intervals of [0.45, 0.55] and
[0.2, 0.8] respectively across different values of α. In all cases, we see that the power
of U i is either equivalent to, or slightly below that of the best-performing individual
test, whilst always greater than that of the worst-performing test.

The results from this section demonstrate the obvious advantage of employing a
union of rejections strategy when testing for temporary explosive behaviour. When
the powers of PWY i

OLS and PWY i
GLS are similar, U i will have near identical power

to the better-performing of the two tests, regardless of the length of the explosive
period. As the size of the initial condition increases, such that the power difference
between the two individual tests also increases, the power of U i always closely tracks
that of the better-performing test, providing a substantial power advantage over ei-
ther PWY i

GLS when a short explosive interval is considered, or PWY i
OLS when a

longer explosive interval is considered. A practitioner employing a union of rejec-
tions procedure would overcome any potential power loss arising from uncertainty
over both the length of the explosive period and the size of the initial condition.

Throughout this paper we abstract from the issue of whether or not a trend
is present in the time series and assume that the practitioner is able to make an
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informed judgement about this. Of course, all four individual tests could be com-
bined in a union procedure in line with Harvey et al. (2012), who demonstrate the
need for a higher scale value when combining an increasing number of tests, and
the subsequent impact on power that this has.

6 Finite sample power comparison

To assess the extent to which the local asymptotic power results are an accurate
representation of finite sample behaviour, we consider a number of finite sample
simulations. Finite sample critical values for conventional levels of significance and
a sample size of T = 150 are given in Table 2. Note that whilst we use finite sample
critical values in line with PWY, we continue to use asymptotic union scale values
as is standard in a union of rejections context. As in the asymptotic simulations,
we set α = {0, 2, 10}. Finite sample results for T = 150 are given in Figures 5
and 6 for the [τ1, τ2] pairs: [0.45, 0.55] and [0.2, 0.8] respectively. For both the short
and long explosive period, the finite sample powers of PWY i

OLS and PWY i
GLS are

closely aligned with their local asymptotic counterparts. As before, the power of
U i is always greater than that of the worst-performing individual test (PWY i

GLS

in the [0.45, 0.55] case and PWY i
OLS in the [0.2, 0.8] case), whilst exhibiting power

that closely tracks that obtained by the better-performing test.
To assess whether the location of the explosive period affects the power perfor-

mance of the test statistics, we also consider two additional [τ1, τ2] pairs: [0.15, 0.25]
and [0.75, 0.85]. We therefore have two bubbles of short length, located near the
beginning and end of the sample respectively. Figures 7 and 8 display the power of
PWY i

OLS, PWY i
GLS and U i for both asymptotically negligible and non-negligible

initial conditions, setting α = {0, 2, 10} as before.
For these short explosive intervals we again find that PWY i

OLS is generally
superior to PWY i

GLS. We note an exception to this in Figures 7(d) and 7(f) where
the two trend-invariant tests are considered for the interval [0.15, 0.25] with α = 2
and α = 10 respectively. Here, despite the small interval length, there is a power
ranking reversal as c increases such that PWY i

GLS has a small power advantage
over PWY i

OLS across most values of c. This result does not occur when the same
explosive interval length is placed later in the sample at [0.75, 0.85] in Figures 8(d)
and 8(f), suggesting that the relative power of PWY i

OLS to PWY i
GLS is adversely

affected if the explosive period is early in the sample. The power performance of U i

is unaffected by the location of the explosive interval within the sample. As such,
U i offers a method for detecting explosive processes that is robust to the length of
the explosive period, the point in the sample at which the explosive period occurs,
and the value of the initial condition.

It is well documented that financial returns exhibit time-varying volatility, thus
an applied researcher may be interested in the performance of bubble detection
procedures under conditionally heteroskedastic errors. In Section 4 we assume
that the innovation process vt follows a martingale difference sequence, such that
ARCH/GARCH errors are permitted in our asymptotic framework. As a result, the
asymptotic size and power of the test procedures discussed in this paper should not
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be affected by conditional heteroskedasticity of this nature. To evaluate the finite
sample performance of tests under conditional heteroskedasticity, we consider the
temporarily explosive DGP in (6) - (7), but now allowing for GARCH errors such
that vt = ηt

√
ht with ηt ∼ NIID(0, 1) and

ht = ω + γv2t−1 + φht−1. (10)

Phillips et al. (2015) fit a GARCH error process of this form to the S&P 500
price-dividend ratio over the sample period January 2004 to December 2007 using
maximum likelihood estimation. Assuming no trend or initial condition is present
(β = 0 and α = 0), and setting µ = dT−ψ, they obtain the following estimates:
y0 = 376.8, d = 1, ψ = 1, ω = 30.69, γ = 0 and φ = 0.61. Simulating empirical sizes
of PWY µ

OLS with these estimates used as parameter values in the GARCH equation,
and using sample sizes from T = 100 to T = 1600, they find that conditional
heteroskedasticity of this degree has little impact on the size of the procedure.

To examine the power of all the test procedures considered in this paper under an
empirically relevant conditional heteroskedasticity set up, we consider the DGP in
(6) - (7) with the GARCH error process in (10), setting ω = 30, γ = 0 and φ = 0.6,
approximately the S&P 500 estimated coefficients taken from Phillips et al. (2015).
We consider the same [τ1, τ2] and c settings as considered in Figures 5 - 6 and
display results in Figure 9. The power profiles of the six test procedures are very
similar to those observed in the IID error case, demonstrating the robustness of
these procedures to empirically realistic degrees of conditional heteroskedasticity.1

7 Empirical application

To illustrate the differing performances of the test statistics considered in this paper,
we apply the four individual tests PWY µ

OLS, PWY µ
GLS, PWY β

OLS and PWY β
GLS, as

well as the two union procedures Uµ and Uβ to logarithms of real daily NASDAQ
closing prices. Daily NASDAQ closing prices are obtained from Yahoo Finance.
Monthly US Consumer Price Index data is obtained from the Federal Reserve Bank
of St. Louis FRED database and linearly interpolated to a daily frequency to con-
vert nominal prices into real prices. PWY employ PWY µ

OLS on the NASDAQ stock
index using monthly data from February 1973 - June 2005 and conclude that the
series exhibits explosive behaviour. The sample period used here is 2 January 1996
- 31 December 2015, yielding 5036 observations (note that there are approximately
252 trading days in each year). Our choice of sample period is motivated by the
date estimation of Harvey et al. (2017) who propose a dating procedure based on
minimum sum of squared residual estimators combined with Bayesian Information
Criterion (BIC) model selection. This dating algorithm provides consistent esti-
mates of the start and end dates of explosive regimes and is shown to outperform
recursive unit root test methods for dating in finite samples. Using this procedure,

1We report results for α = 0 only here. Unreported simulations confirm that the comparative
power performance of the six test procedures when considering non-zero initial conditions and
GARCH errors are qualitatively similar to that observed in Figures 5 - 6.
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Harvey et al. (2017) find evidence of explosive behaviour in NASDAQ prices start-
ing in November 1998 and ending in September 20002. The sample period used
here covers this period of explosiveness.

PWY i
OLS and PWY i

GLS tests are computed using augmented DF tests where the
optimal number of lags is selected using BIC up to a maximum lag of 14. Table 3
reports the four individual test statistics and the rejections obtained from the two
union procedures. PWY µ

OLS fails to reject the unit root null at conventional levels
of significance, whilst PWY µ

GLS rejects the null at a 0.01 level. The mean-invariant
union, Uµ, is able to pick up this rejection at a 0.05 level. Considering the trend-
invariant tests, it is the GLS-based procedure, PWY β

GLS, that fails to reject the null
hypothesis of a unit root. In contrast, PWY β

OLS rejects the null at a 0.01 level of
significance. The trend-invariant union procedure, Uβ , picks up this rejection, also
at a 0.01 level. This demonstrates that inference from PWY tests can depend on
whether the procedure employs OLS or GLS DF tests. In both the mean and trend
case (where a rejection comes respectively from the GLS test only and the OLS test
only), the union of rejections procedure is able to reject the null hypothesis.

8 Conclusion

In this paper we examine the power performance of the PWY test for detecting
explosive behaviour in comparison to a GLS-based procedure. Limit distributions
for both mean-invariant and trend-invariant versions of the two tests are derived,
and these limits are shown to be dependent on the value of the initial condition and
the start and end date of the temporary explosive regime. Asymptotic and finite
sample simulations show that the GLS-based test offers superior power when an
explosive period of long length is considered, whilst the original OLS PWY test has
a power advantage for explosive periods of short length. The power rankings of the
two tests are unaffected by the presence of an asymptotically non-negligible initial
condition, but, in general, an increase in the size of the initial condition increases
the magnitude of the power differences between OLS and GLS-based approaches. A
union of rejections procedure is shown to capitalise on the relative power advantages
provided by these competing tests across all values of initial condition and lengths
of the explosive regime considered in this paper. Further simulations show that the
union procedure is robust to the point in the sample at which the explosive period
occurs. An application of our proposed union procedure to daily NASDAQ price
data demonstrates the empirical value of this testing strategy.

Phillips et al. (2015) consider detecting multiple bubbles using a generalised
version of the PWY procedure in which the starting point of each recursive DF
test is no longer fixed at the first observation of the sample, but instead allowed to
vary across the sample. When considering a long time series that contains multiple
periods of explosiveness, and where the explosive intervals are likely to be of different
lengths, it may be the case that a GLS-based multiple bubble detection procedure

2Harvey et al. (2017) also apply the Phillips et al. (2015) procedure for detecting multiple
bubbles to NASDAQ prices, which yields an identical start date, but an end date of December
2000.

15



can outperform the original OLS procedure in certain circumstances. Additionally,
the focus of this paper is on detection rather than dating of temporary explosive
behaviour. Both PWY and Phillips et al. (2015) propose dating procedures, based
on recursions of OLS DF tests, which can be used to estimate the start and end
points of a detected explosive regime. In light of the results of this paper, it may
be interesting to examine the performance of a GLS-based dating procedure. We
leave these possibilities to future work.
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Appendix: Proof of Theorem 1

By backward substitution in (7) we obtain

ut =





T 1/2σα t = 1

T 1/2σα +
∑t

i=2 vi t = 2, ..., ⌊τ1T ⌋
(1 + δ)t−⌊τ1T ⌋

(
T 1/2σα +

∑⌊τ1T ⌋
i=2 vi

)

+
∑t

i=⌊τ1T ⌋+1(1 + δ)i−⌊τ1T ⌋−1vt−(i−⌊τ1T ⌋−1)

t = ⌊τ1T ⌋+ 1, ..., ⌊τ2T ⌋

u⌊τ2T ⌋+1 +
∑t

i=⌊τ2T ⌋+2 vi t = ⌊τ2T ⌋+ 2, ..., T

The third of these parts comes from the backward recursion:

u⌊τ1T+1⌋ = (1 + δ)u⌊τ1T ⌋ + v⌊τ1T ⌋+1

u⌊τ1T+2⌋ = (1 + δ)u⌊τ1T ⌋+1 + v⌊τ1T ⌋+2

= (1 + δ)2u⌊τ1T ⌋ + (1 + δ)v⌊τ1T ⌋+1 + v⌊τ1T ⌋+2

u⌊τ1T+3⌋ = (1 + δ)u⌊τ1T ⌋+2 + v⌊τ1T ⌋+3

= (1 + δ)3u⌊τ1T ⌋ + (1 + δ)2v⌊τ1T ⌋+1 + (1 + δ)v⌊τ1T ⌋+2 + v⌊τ1T ⌋+3

...

ut = (1 + δ)t−⌊τ1T ⌋u⌊τ1T ⌋ +
∑t

i=⌊τ1T ⌋+1(1 + δ)t−ivi t = ⌊τ1T ⌋+ 1, ..., ⌊τ2T ⌋

= (1 + δ)t−⌊τ1T ⌋
(
T 1/2σα +

∑⌊τ1T ⌋
i=1 vi

)

+
∑t

i=⌊τ1T ⌋+1(1 + δ)t−ivi t = ⌊τ1T ⌋+ 1, ..., ⌊τ2T ⌋
and subsequently, using δ = c/T

T−1/2u⌊rT ⌋ =





σα ⌊rT ⌋ = 1

σα+ T−1/2
∑⌊rT ⌋

i=2 vi ⌊rT ⌋ = 2, ..., ⌊τ1T ⌋
(1 + c/T )⌊rT ⌋−⌊τ1T ⌋

(
σα+ T−1/2

∑⌊τ1T ⌋
i=2 vi

)

+T−1/2
∑⌊rT ⌋

i=⌊τ1T ⌋+1(1 + c/T )⌊rT ⌋−ivi
⌊rT ⌋ = ⌊τ1T ⌋+ 1, ..., ⌊τ2T ⌋

T−1/2u⌊τ2T ⌋+1 + T−1/2
∑⌊rT ⌋

i=⌊τ2T ⌋+2 vi ⌊rT ⌋ = ⌊τ2T ⌋+ 1, ..., T

Weak convergence of standardised partial sums of vt to the standard Brownian motion
process W (r) is a standard result, so we can write

T−1/2

⌊rT ⌋∑

i=2

vi
d→ σW (r)

T−1/2

⌊τ1T ⌋∑

i=2

vi
d→ σW (τ1)

T−1/2

⌊rT ⌋∑

i=⌊τ2T ⌋+2

vi
d→ σW (r)− σW (τ2)

Following Phillips (1987), from the third part of the above

T−1/2

⌊rT ⌋∑

i=⌊τ1T ⌋+1

(1 + c/T )⌊rT ⌋−ivi
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converges in distribution to the Ornstein-Uhlenbeck process

Wc(r) =

∫ r

τ1

ec(r−s)dW (s)

We can therefore show that

T−1/2u⌊rT ⌋
d→ σ





α r = 0
α+W (r) r < τ1
ec(r−τ1)α+ ec(r−τ1)W (τ1) +

∫ r
τ1
ec(r−s)dW (s) τ1 < r < τ2

W (r)−W (τ2) + ec(τ2−τ1)α+ ec(τ2−τ1)W (τ1)

+
∫ τ2
τ1

ec(τ2−s)dW (s)
r > τ2

≡ σKc,α(r, τ1, τ2)
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Asymptotic distribution of PWY µ
OLS

Here we have β = 0 and the recursive test statistic calculated for the sub-sample
t = 1, ..., ⌊τT ⌋ is based on the t-ratio for δ̂τ from the estimated regression

∆ûτ,t = δ̂τ ûτ,t−1 + v̂τ,t, t = 1, ..., ⌊τT ⌋
where

ûτ,t = yt − ⌊τT ⌋−1

⌊τT ⌋∑

s=1

ys

i.e.

tτ =
δ̂τ

s.e.(δ̂τ )

where

δ̂τ =

∑⌊τT ⌋
t=2 ∆ûτ,tûτ,t−1∑⌊τT ⌋

t=2 û2τ,t−1

s.e.(δ̂τ )
2 =

σ̂2
τ∑⌊τT ⌋

t=2 û2τ,t−1

σ̂2
τ = ⌊τT ⌋−1

⌊τT ⌋∑

t=2

v̂2τ,t

Note that in what follows we can set µ = 0 without loss of generality, so that
yt = ut. Consider the recursively demeaned yt, i.e. ûτ,t. Since yt = ut we have

ûτ,t = ut − ⌊τT ⌋−1

⌊τT ⌋∑

s=1

us

T−1/2ûτ,⌊rT ⌋ = T−1/2u⌊rT ⌋ − ⌊τT ⌋−1

⌊τT ⌋∑

⌊sT ⌋=1

T−1/2u⌊sT ⌋

d→ σKc,α(r, τ1, τ2)− στ−1

∫ τ

0

Kc,α(s, τ1, τ2)ds

≡ σKµ
c,α(r, τ, τ1, τ2)

where

T−3/2

⌊τT ⌋∑

⌊sT ⌋=1

u⌊sT ⌋
d→ σ

∫ τ

0

Kc,α(s, τ1, τ2)ds

by the Functional Central Limit Theorem.
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The recursive parameter estimate δ̂τ :

δ̂τ =

∑⌊τT ⌋
t=2 ∆ûτ,tûτ,t−1∑⌊τT ⌋

t=2 û2τ,t−1

T δ̂τ =
T−1

∑⌊τT ⌋
t=2 ∆ûτ,tûτ,t−1

T−2
∑⌊τT ⌋

t=2 û2τ,t−1

For the denominator we have

T−2

⌊τT ⌋∑

t=2

û2τ,t−1 = T−1

⌊τT ⌋∑

⌊rT ⌋=2

(T−1/2ûτ,⌊rT ⌋−1)
2

d→ σ2

∫ τ

0

Kµ
c,α(r, τ, τ1, τ2)

2dr

Now consider the numerator

T−1

⌊τT ⌋∑

t=2

∆ûτ,tûτ,t−1 =
1

2



(T−1/2û⌊τT ⌋)

2 − (T−1/2û1)
2 − T−1

⌊τT ⌋∑

t=2

(∆ûτ,t)
2





using

ûτ,t = ∆ûτ,t + ûτ,t−1

⌊τT ⌋∑

t=2

û2τ,t =

⌊τT ⌋∑

t=2

(∆ûτ,t)
2 +

⌊τT ⌋∑

t=2

û2τ,t−1 + 2

⌊τT ⌋∑

t=2

∆ûτ,tûτ,t−1

⌊τT ⌋∑

t=2

∆ûτ,tûτ,t−1 =
1

2





⌊τT ⌋∑

t=2

û2τ,t −
⌊τT ⌋∑

t=2

û2τ,t−1 −
⌊τT ⌋∑

t=2

(∆ûτ,t)
2





=
1

2



û

2
⌊τT ⌋ − û21 −

⌊τT ⌋∑

t=2

(∆ûτ,t)
2





Then

T−1

⌊τT ⌋∑

t=2

∆ûτ,tûτ,t−1 =
1

2



(T−1/2û⌊τT ⌋)

2 − (T−1/2û1)
2 − T−1

⌊τT ⌋∑

t=2

(∆ûτ,t)
2





d→ 1

2

{
σ2Kµ

c,α(τ, τ, τ1, τ2)
2 − σ2Kµ

c,α(0, τ, τ1, τ2)
2 − τσ2

}
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The limit of the last term comes from

T−1

⌊τT ⌋∑

t=2

(∆ûτ,t)
2 = T−1

⌊τT ⌋∑

t=2

(ûτ,t − ûτ,t−1)
2

= T−1

⌊τT ⌋∑

t=2






ut − ⌊τT ⌋−1

⌊τT ⌋∑

s=1

us


−


ut−1 − ⌊τT ⌋−1

⌊τT ⌋∑

s=1

us







2

= T−1

⌊τT ⌋∑

t=2

(∆ut)
2

= τ(τT )−1

⌊τT ⌋∑

t=2

(∆ut)
2

= τ





(τT )−1
∑⌊τT ⌋

t=2 v2t ⌊τT ⌋ ≤ ⌊τ1T ⌋
(τT )−1

∑⌊τT ⌋
t=2 v2t + op(1) ⌊τ1T ⌋ < ⌊τT ⌋ ≤ ⌊τ2T ⌋

(τT )−1
∑⌊τT ⌋

t=2 v2t + op(1) ⌊τT ⌋ > ⌊τ2T ⌋
p→ τσ2

since

∆ut =





vt t = 2, ..., ⌊τ1T ⌋
cT−1ut−1 + vt t = ⌊τ1T ⌋+ 1, ..., ⌊τ2T ⌋
vt t = ⌊τ2T ⌋+ 1, ..., T

=





vt t = 2, ..., ⌊τ1T ⌋
vt + op(1) t = ⌊τ1T ⌋+ 1, ..., ⌊τ2T ⌋
vt t = ⌊τ2T ⌋+ 1, ..., T

So

T δ̂τ
d→

1
2

{
σ2Kµ

c,α(τ, τ, τ1, τ2)
2 − σ2Kµ

c,α(0, τ, τ1, τ2)
2 − τσ2

}

σ2
∫ τ
0
Kµ
c,α(r, τ, τ1, τ2)2dr

=
Kµ
c,α(τ, τ, τ1, τ2)

2 −Kµ
c,α(0, τ, τ1, τ2)

2 − τ

2
∫ τ
0
Kµ
c,α(r, τ, τ1, τ2)2dr
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Next consider σ̂2
τ and then s.e.(δ̂τ ). We obtain

σ̂2
τ = ⌊τT ⌋−1

⌊τT ⌋∑

t=2

v̂2τ,t

= ⌊τT ⌋−1

⌊τT ⌋∑

t=2

(∆ûτ,t − δ̂τ ûτ,t−1)
2

= ⌊τT ⌋−1

⌊τT ⌋∑

t=2

(∆ûτ,t)
2 + δ̂2τ⌊τT ⌋−1

⌊τT ⌋∑

t=2

û2τ,t−1 − 2δ̂τ⌊τT ⌋−1

⌊τT ⌋∑

t=2

∆ûτ,tûτ,t−1

= ⌊τT ⌋−1

⌊τT ⌋∑

t=2

(∆ut)
2 +Op(T

−2)Op(T )− 2Op(T
−1)Op(1)

= ⌊τT ⌋−1

⌊τT ⌋∑

t=2

(∆ut)
2 + op(1)

p→ σ2

and

{Ts.e.(δ̂τ )}2 =
σ̂2
τ

T−2
∑⌊τT ⌋

t=2 û2τ,t−1

d→ σ2

σ2
∫ τ
0
Kµ
c,α(r, τ, τ1, τ2)2dr

=
1∫ τ

0
Kµ
c,α(r, τ, τ1, τ2)2dr

Putting it all together we find

tτ =
T δ̂τ

Ts.e.(δ̂τ )

d→
Kµ

c,α(τ,τ,τ1,τ2)
2−Kµ

c,α(0,τ,τ1,τ2)
2−τ

2
∫ τ

0
Kµ

c,α(r,τ,τ1,τ2)2dr√
1∫ τ

0
Kµ

c,α(r,τ,τ1,τ2)2dr

=
Kµ
c,α(τ, τ, τ1, τ2)

2 −Kµ
c,α(0, τ, τ1, τ2)

2 − τ

2
√∫ τ

0
Kµ
c,α(r, τ, τ1, τ2)2dr
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Asymptotic distribution of PWY µ
GLS

Here we have β = 0 and the recursive test statistic calculated for the sub-sample
t = 1, ..., ⌊τT ⌋ is based on the t-ratio for δ̃τ from the estimated regression

∆ũτ,t = δ̃τ ũτ,t−1 + ṽτ,t, t = 1, ..., ⌊τT ⌋

where
ũτ,t = yt − µ̃τ

with µ̃τ the recursive GLS estimate of the mean with quasi-differencing parameter
ρ̄ = 1 + c̄T−1, i.e.

µ̃τ =
y1 + (1− ρ̄)

∑⌊τT ⌋
t=2 (yt − ρ̄yt−1)

1 + (⌊τT ⌋ − 1)(1− ρ̄)2

=
y1 − c̄T−1

∑⌊τT ⌋
t=2 (∆yt − c̄T−1yt−1)

1 + (⌊τT ⌋ − 1)c̄2T−2

= y1 + op(1)

so the recursive t-ratio here is

tτ =
δ̃τ

s.e.(δ̃τ )

where

δ̃τ =

∑⌊τT ⌋
t=2 ∆ũτ,tũτ,t−1∑⌊τT ⌋

t=2 ũ2τ,t−1

s.e.(δ̃τ )
2 =

σ̃2
τ∑⌊τT ⌋

t=2 ũ2τ,t−1

σ̃2
τ = ⌊τT ⌋−1

⌊τT ⌋∑

t=2

ṽ2τ,t

Note that in what follows we can set µ = 0 without loss of generality, so that
yt = ut. First consider the recursively demeaned yt, i.e. ũτ,t. Since yt = ut we have

ũτ,t = ut − u1 + op(1)

T−1/2ũτ,⌊rT ⌋ = T−1/2(u⌊rT ⌋ − u1) + op(1)
d→ σKc,α(r, τ1, τ2)− σα

= σKµ,G
c,α (r, τ1, τ2)

Now consider the recursive parameter estimate δ̃τ :

δ̃τ =

∑⌊τT ⌋
t=2 ∆ũτ,tũτ,t−1∑⌊τT ⌋

t=2 ũ2τ,t−1

T δ̃τ =
T−1

∑⌊τT ⌋
t=2 ∆ũτ,tũτ,t−1

T−2
∑⌊τT ⌋

t=2 ũ2τ,t−1
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For the denominator we have

T−2

⌊τT ⌋∑

t=2

ũ2τ,t−1 = T−1

⌊τT ⌋∑

⌊rT ⌋=2

(T−1/2ũτ,t−1)
2

d→ σ2

∫ τ

0

Kµ,G
c,α (r, τ1, τ2)

2dr

by the Continuous Mapping Theorem. Now consider the numerator

T−1

⌊τT ⌋∑

t=2

∆ũτ,tũτ,t−1 =
1

2



(T−1/2ũ⌊τT ⌋)

2 − (T−1/2ũ1)
2 − T−1

⌊τT ⌋∑

t=2

(∆ũτ,t)
2





d→ 1

2

{
σ2Kµ,G

c,α (τ, τ1, τ2)
2 − σ2Kµ,G

c,α (0, τ1, τ2)
2 − τσ2

}

with the limit of the last term coming from

T−1

⌊τT ⌋∑

t=2

(∆ũτ,t)
2 = T−1

⌊τT ⌋∑

t=2

(ũτ,t − ũτ,t−1)
2

= T−1

⌊τT ⌋∑

t=2

{(ut − u1)− (ut−1 − u1)}2 + op(1)

= T−1

⌊τT ⌋∑

t=2

(∆ut)
2 + op(1)

= τ(τT )−1

⌊τT ⌋∑

t=2

(∆ut)
2 + op(1)

p→ τσ2

Note that Kµ,G
c,α (0, τ1, τ2) =W (0) = 0 so we can simplify to

T−1

⌊τT ⌋∑

t=2

∆ũτ,tũτ,t−1
d→ 1

2

{
σ2Kµ,G

c,α (τ, τ1, τ2)
2 − τσ2

}

So

T δ̃τ
d→

1
2

{
σ2Kµ,G

c,α (τ, τ1, τ2)
2 − τσ2

}

σ2
∫ τ
0
Kµ,G
c,α (r, τ1, τ2)2dr

=
Kµ,G
c,α (τ, τ1, τ2)

2 − τ

2
∫ τ
0
Kµ,G
c,α (r, τ1, τ2)2dr
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Next consider σ̃2
τ and then s.e.(δ̃τ ). We obtain

σ̃2
τ = ⌊τT ⌋−1

⌊τT ⌋∑

t=2

ṽ2τ,t

= ⌊τT ⌋−1

⌊τT ⌋∑

t=2

(∆ũτ,t − δ̃τ ũτ,t−1)
2

= ⌊τT ⌋−1

⌊τT ⌋∑

t=2

(∆ũτ,t)
2 + δ̃2τ⌊τT ⌋−1

⌊τT ⌋∑

t=2

ũ2τ,t−1 − 2δ̃τ⌊τT ⌋−1

⌊τT ⌋∑

t=2

∆ũτ,tũτ,t−1

= ⌊τT ⌋−1

⌊τT ⌋∑

t=2

(∆ut)
2 +Op(T

−2)Op(T )− 2Op(T
−1)Op(1)

= ⌊τT ⌋−1

⌊τT ⌋∑

t=2

(∆ut)
2 + op(1)

p→ σ2

and

{Ts.e.(δ̃τ )}2 =
σ̃2
τ

T−2
∑⌊τT ⌋

t=2 ũ2τ,t−1

d→ σ2

σ2
∫ τ
0
Kµ,G
c,α (r, τ1, τ2)2dr

=
1∫ τ

0
Kµ,G
c,α (r, τ1, τ2)2dr

Putting it all together we find

tτ =
T δ̃τ

Ts.e.(δ̃τ )

d→
Kµ,G
c,α (τ, τ1, τ2)

2 − τ

2
√∫ τ

0
Kµ,G
c,α (r, τ1, τ2)2dr

26



Asymptotic distribution of PWY β
OLS

In this case the recursive test statistic calculated for the sub-sample t = 1, ..., ⌊τT ⌋
is based on the t-ratio for δ̂τ from the estimated regression

∆ûτ,t = δ̂τ ûτ,t−1 + v̂τ,t, t = 1, ..., ⌊τT ⌋

where
ûτ,t = yt − µ̂τ − β̂τ t

with µ̂τ and β̂τ the recursively detrending estimates. The t-ratio is then

tτ =
δ̂τ

s.e.(δ̂τ )

with

δ̂τ =

∑⌊τT ⌋
t=2 ∆ûτ,tûτ,t−1∑⌊τT ⌋

t=2 û2τ,t−1

s.e.(δ̂τ )
2 =

σ̂2
τ∑⌊τT ⌋

t=2 û2τ,t−1

σ̂2
τ = ⌊τT ⌋−1

⌊τT ⌋∑

t=2

v̂2τ,t

In what follows we can set µ = β = 0, so that yt = ut throughout. First consider
the properties of the recursively detrending estimates:

[
µ̂τ
β̂τ

]
=

[
⌊τT ⌋

∑⌊τT ⌋
t=1 t∑⌊τT ⌋

t=1 t
∑⌊τT ⌋

t=1 t2

]−1 [ ∑⌊τT ⌋
t=1 ut∑⌊τT ⌋
t=1 tut

]

[
T−1/2µ̂τ
T 1/2β̂τ

]
=

[
T−1⌊τT ⌋ T−2

∑⌊τT ⌋
t=1 t

T−2
∑⌊τT ⌋

t=1 t T−3
∑⌊τT ⌋

t=1 t2

]−1 [
T−3/2

∑⌊τT ⌋
t=1 ut

T−5/2
∑⌊τT ⌋

t=1 tut

]

d→
[

τ τ 2/2
τ 2/2 τ 3/3

]−1 [
σ
∫ τ
0
Kc,α(r, τ1, τ2)dr

σ
∫ τ
0
rKc,α(r, τ1, τ2)dr

]

=

[
4
τ

− 6
τ2

− 6
τ2

12
τ3

] [
σ
∫ τ
0
Kc,α(r, τ1, τ2)dr

σ
∫ τ
0
rKc,α(r, τ1, τ2)dr

]

=

[
4σ
τ

∫ τ
0
Kc,α(r, τ1, τ2)dr − 6σ

τ2

∫ τ
0
rKc,α(r, τ1, τ2)dr

12σ
τ3

∫ τ
0
rKc,α(r, τ1, τ2)dr − 6σ

τ2

∫ τ
0
Kc,α(r, τ1, τ2)dr

]

where

T−5/2

rT∑

t=1

tut
d→
∫ τ

0

rKc,α(r, τ1, τ2)dr

is a standard result given in Hamilton (1994).
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Next consider the recursively detrended yt, i.e. ûτ,t. Since yt = ut we have

ûτ,t = ut − µ̂τ − β̂τ t

T−1/2ûτ,⌊rT ⌋ = T−1/2u⌊rT ⌋ − T−1/2µ̂τ − T−1/2β̂τ t

= T−1/2u⌊rT ⌋ − T−1/2µ̂τ − T 1/2β̂τr

d→ σKc,α(r, τ1, τ2)−
4σ

τ

∫ τ

0

Kc,α(s, τ1, τ2)ds+
6σ

τ 2

∫ τ

0

sKc,α(s, τ1, τ2)ds

−
{
12σ

τ 3

∫ τ

0

sKc,α(s, τ1, τ2)ds−
6σ

τ 2

∫ τ

0

Kc,α(s, τ1, τ2)ds

}
r

= σKc,α(r, τ1, τ2)−
2σ

τ

(
2− 3

τ
r

)∫ τ

0

Kc,α(s, τ1, τ2)ds

+
6σ

τ 2

(
1− 2

τ
r

)∫ τ

0

sKc,α(s, τ1, τ2)ds

≡ σKβ
c,α(r, τ, τ1, τ2)

Now consider the recursive parameter estimate δ̂τ :

δ̂τ =

∑⌊τT ⌋
t=2 ∆ûτ,tûτ,t−1∑⌊τT ⌋

t=2 û2τ,t−1

T δ̂τ =
T−1

∑⌊τT ⌋
t=2 ∆ûτ,tûτ,t−1

T−2
∑⌊τT ⌋

t=2 û2τ,t−1

For the denominator we have

T−2

⌊τT ⌋∑

t=2

û2τ,t−1 = T−1

⌊τT ⌋∑

⌊rT ⌋=2

(T−1/2ûτ,⌊rT ⌋−1)
2

d→ σ2

∫ τ

0

Kβ
c,α(r, τ, τ1, τ2)

2dr

Now consider the numerator

T−1

⌊τT ⌋∑

t=2

∆ûτ,tûτ,t−1 =
1

2



(T−1/2û⌊τT ⌋)

2 − (T−1/2û1)
2 − T−1

⌊τT ⌋∑

t=2

(∆ûτ,t)
2





d→ 1

2

{
σ2Kβ

c,α(τ, τ, τ1, τ2)
2 − σ2Kβ

c,α(0, τ, τ1, τ2)
2 − τσ2

}
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The limit of the last term comes from

T−1

⌊τT ⌋∑

t=2

(∆ûτ,t)
2 = T−1

⌊τT ⌋∑

t=2

(ûτ,t − ûτ,t−1)
2

= T−1

⌊τT ⌋∑

t=2

{(
ut − µ̂τ − β̂τ t

)
−
(
ut−1 − µ̂τ − β̂τ (t− 1)

)}2

= T−1

⌊τT ⌋∑

t=2

(∆ut − β̂τ )
2

= τ(τT )−1

⌊τT ⌋∑

t=2

(∆ut)
2 + T−1⌊τT ⌋β̂2

τ − 2β̂τT
−1

⌊τT ⌋∑

t=2

∆ut

= τ(τT )−1

⌊τT ⌋∑

t=2

(∆ut)
2 +Op(T

−1)− 2Op(T
−1/2)Op(T

−1/2)

= τ(τT )−1

⌊τT ⌋∑

t=2

(∆ut)
2 + op(1)

p→ τσ2

So

T δ̂τ
d→

1
2

{
σ2Kβ

c,α(τ, τ, τ1, τ2)
2 − σ2Kβ

c,α(0, τ, τ1, τ2)
2 − τσ2

}

σ2
∫ τ
0
Kβ
c,α(r, τ, τ1, τ2)2dr

=
Kβ
c,α(τ, τ, τ1, τ2)

2 −Kβ
c,α(0, τ, τ1, τ2)

2 − τ

2
∫ τ
0
Kβ
c,α(r, τ, τ1, τ2)2dr

Next consider σ̂2
τ and then s.e.(δ̂τ ). We again obtain σ̂2

τ

p→ σ2 and

{Ts.e.(δ̂τ )}2 =
σ̂2
τ

T−2
∑⌊τT ⌋

t=2 û2τ,t−1

d→ σ2

σ2
∫ τ
0
Kβ
c,α(r, τ, τ1, τ2)2dr

=
1∫ τ

0
Kβ
c,α(r, τ, τ1, τ2)2dr
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Putting it all together we find

tτ =
T δ̂τ

Ts.e.(δ̂τ )

d→
Kβ

c,α(τ,τ,τ1,τ2)
2−Kβ

c,α(0,τ,τ1,τ2)
2−τ

2
∫ τ
0
Kβ

c,α(r,τ,τ1,τ2)2dr√
1∫ τ

0
Kβ

c,α(r,τ,τ1,τ2)2dr

=
Kβ
c,α(τ, τ, τ1, τ2)

2 −Kβ
c,α(0, τ, τ1, τ2)

2 − τ

2
√∫ τ

0
Kβ
c,α(r, τ, τ1, τ2)2dr
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Asymptotic distribution of PWY β
GLS

In this case the recursive test statistic calculated for the sub-sample t = 1, ..., ⌊τT ⌋
is based on the t-ratio for δ̃τ from the estimated regression

∆ũτ,t = δ̃τ ũτ,t−1 + ṽτ,t, t = 1, ..., ⌊τT ⌋

where
ũτ,t = yt − µ̃τ − β̃τ t

with µ̃τ and β̃τ the recursively GLS detrending estimates. The t-ratio is then

tτ =
δ̃τ

s.e.(δ̃τ )

with

δ̃τ =

∑⌊τT ⌋
t=2 ∆ũτ,tũτ,t−1∑⌊τT ⌋

t=2 ũ2τ,t−1

s.e.(δ̃τ )
2 =

σ̃2
τ∑⌊τT ⌋

t=2 ũ2τ,t−1

σ̃2
τ = ⌊τT ⌋−1

⌊τT ⌋∑

t=2

ṽ2τ,t

In what follows we can set µ = β = 0, so that yt = ut throughout. First consider
the properties of the recursively detrending estimates:

[
µ̃τ
β̃τ

]
=

[
1 + (⌊τT ⌋ − 1)(1 − ρ̄)2 1 + (1− ρ̄)

∑⌊τT ⌋
t=2 {t− ρ̄(t− 1)}

1 + (1− ρ̄)
∑⌊τT ⌋

t=2 {t− ρ̄(t− 1)} 1 +
∑⌊τT ⌋

t=2 {t− ρ̄(t− 1)}2

]−1

[
u1 + (1− ρ̄)

∑⌊τT ⌋
t=2 (ut − ρ̄ut−1)

u1 +
∑⌊τT ⌋

t=2 {t− ρ̄(t− 1)}{ut − ρ̄ut−1}

]

T−1/2

[
1 0
0 T−1

]−1 [
µ̃τ
β̃τ

]

=




[
1 + (⌊τT ⌋ − 1)(1− ρ̄)2 1 + (1− ρ̄)

∑⌊τT ⌋
t=2 {t− ρ̄(t− 1)}

1 + (1− ρ̄)
∑⌊τT ⌋

t=2 {t− ρ̄(t− 1)} 1 +
∑⌊τT ⌋

t=2 {t− ρ̄(t− 1)}2

]

[
1 0
0 T−1

]




−1

T−1/2

[
u1 + (1− ρ̄)

∑⌊τT ⌋
t=2 (ut − ρ̄ut−1)

u1 +
∑⌊τT ⌋

t=2 {t− ρ̄(t− 1)}{ut − ρ̄ut−1}

]
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[
T−1/2µ̃τ
T 1/2β̃τ

]

=

([
1 + (⌊τT ⌋ − 1)(1 − ρ̄)2 T−1[1 + (1− ρ̄)

∑⌊τT ⌋
t=2 {t− ρ̄(t− 1)}]

1 + (1− ρ̄)
∑⌊τT ⌋

t=2 {t− ρ̄(t− 1)} T−1[1 +
∑⌊τT ⌋

t=2 {t− ρ̄(t− 1)}2]

])−1

[
T−1/2u1 + T−1/2(1− ρ̄)

∑⌊τT ⌋
t=2 (ut − ρ̄ut−1)

T−1/2u1 + T−1/2
∑⌊τT ⌋

t=2 {t− ρ̄(t− 1)}{ut − ρ̄ut−1}

]

≡
[
A1 T−1A2

A2 A3

]−1 [
B1

B2

]

Taking each term separately:

A1 = 1 + (⌊τT ⌋ − 1)(1− ρ̄)2

= 1− c̄2T−2(⌊τT ⌋ − 1)
d→ 1

A2 = 1 + (1− ρ̄)

⌊τT ⌋∑

t=2

{t− ρ̄(t− 1)}

= 1− c̄T−1

⌊τT ⌋∑

t=2

{1− c̄T−1(t− 1)}

d→ 1− c̄τ + c̄2τ 2/2

A3 = T−1[1 +

⌊τT ⌋∑

t=2

{t− ρ̄(t− 1)}2]

= T−1[1 +

⌊τT ⌋∑

t=2

{1− c̄T−1(t− 1)}2]

d→ τ − c̄τ 2 + c̄2τ 3/3

B1 = T−1/2u1 + T−1/2(1− ρ̄)

⌊τT ⌋∑

t=2

(ut − ρ̄ut−1)

= T−1/2u1 − c̄T−3/2

⌊τT ⌋∑

t=2

(ut − ρ̄ut−1)

p→ σα
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B2 = T−1/2u1 + T−1/2

⌊τT ⌋∑

t=2

{t− ρ̄(t− 1)}{ut − ρ̄ut−1}

= T−1/2u1 + T−1/2

⌊τT ⌋∑

t=2

{1− c̄T−1(t− 1)}(∆ut − c̄T−1ut−1)

= T−1/2u1 + T−1/2

⌊τT ⌋∑

t=2

{∆ut − c̄T−1ut−1} − c̄T−3/2

⌊τT ⌋∑

t=2

t(∆ut − c̄T−1ut−1) + op(1)

= T−1/2u1 + T−1/2(u⌊τT ⌋ − u1)− c̄T−3/2

⌊τT ⌋∑

t=2

ut−1 − c̄T−3/2

⌊τT ⌋∑

t=2

t∆ut

+c̄2T−5/2

⌊τT ⌋∑

t=2

tut−1 + op(1)

= T−1/2u⌊τT ⌋ − c̄T−3/2

⌊τT ⌋∑

t=2

ut−1 − c̄T−3/2

⌊τT ⌋∑

t=2

t∆ut + c̄2T−5/2

⌊τT ⌋∑

t=2

tut−1 + op(1)

d→ σKc,α(τ, τ1, τ2)− c̄σ

∫ τ

0

Kc,α(s, τ1, τ2)ds− c̄σ

∫ τ

0

sdKc,α(s, τ1, τ2)

+c̄2σ

∫ τ

0

sKc,α(s, τ1, τ2)ds

= σKc,α(τ, τ1, τ2)− c̄σ

∫ τ

0

Kc,α(s, τ1, τ2)ds

−c̄σ
{
τKc,α(τ, τ1, τ2)−

∫ τ

0

Kc,α(s, τ1, τ2)ds

}
+ c̄2σ

∫ τ

0

sKc,α(s, τ1, τ2)ds

= σ(1− c̄τ)Kc,α(τ, τ1, τ2) + c̄2σ

∫ τ

0

sKc,α(s, τ1, τ2)ds
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Substituting back in gives
[
T−1/2µ̃τ
T 1/2β̃τ

]
d→
[

1 0
1− c̄τ + c̄2τ 2/2 τ − c̄τ 2 + c̄2τ 3/3

]−1

[
σα

σ(1− c̄τ)Kc,α(τ, τ1, τ2) + c̄2σ
∫ τ
0
sKc,α(s, τ1, τ2)ds

]

= σ

[
1 0

− 1−c̄τ+c̄2τ2/2
τ−c̄τ2+c̄2τ3/3

(τ − c̄τ 2 + c̄2τ 3/3)−1

]

[
α

(1− c̄τ)Kc,α(τ, τ1, τ2) + c̄2
∫ τ
0
sKc,α(s, τ1, τ2)ds

]

= σ




α
(τ − c̄τ 2 + c̄2τ 3/3)−1{(1− c̄τ)Kc,α(τ, τ1, τ2)

+c̄2
∫ τ
0
sKc,α(s, τ1, τ2)ds} − 1−c̄τ+c̄2τ2/2

τ−c̄τ2+c̄2τ3/3
α




Next consider the recursively detrended yt, i.e. ũτ,t. Since yt = ut we have

ũτ,t = ut − µ̃τ − β̃τ t

T−1/2ũτ,⌊rT ⌋ = T−1/2u⌊rT ⌋ − T−1/2µ̃τ − T−1/2β̃τ t

= T−1/2u⌊rT ⌋ − T−1/2µ̃τ − T 1/2β̃τr
d→ σKc,α(r, τ1, τ2)− σα−

σ

[
(τ − c̄τ 2 + c̄2τ 3/3)−1{(1− c̄τ)Kc,α(τ, τ1, τ2)

+c̄2
∫ τ
0
sKc,α(s, τ1, τ2)ds} − 1−c̄τ+c̄2τ2/2

τ−c̄τ2+c̄2τ3/3
α

]
r

≡ σKβ,G
c,c̄,α(r, τ, τ1, τ2)

Now consider the recursive parameter estimate δ̃τ :

δ̃τ =

∑⌊τT ⌋
t=2 ∆ũτ,tũτ,t−1∑⌊τT ⌋

t=2 ũ2τ,t−1

T δ̃τ =
T−1

∑⌊τT ⌋
t=2 ∆ũτ,tũτ,t−1

T−2
∑⌊τT ⌋

t=2 ũ2τ,t−1

For the denominator we have

T−2

⌊τT ⌋∑

t=2

ũ2τ,t−1 = T−1

⌊τT ⌋∑

⌊rT ⌋=2

(T−1/2ũτ,⌊rT ⌋−1)
2

d→ σ2

∫ τ

0

Kβ,G
c,c̄,α(r, τ, τ1, τ2)

2dr

Now consider the numerator

T−1

⌊τT ⌋∑

t=2

∆ũτ,tũτ,t−1 =
1

2



(T−1/2ũ⌊τT ⌋)

2 − (T−1/2ũ1)
2 − T−1

⌊τT ⌋∑

t=2

(∆ũτ,t)
2





d→ 1

2

{
σ2Kβ,G

c,c̄,α(τ, τ, τ1, τ2)
2 − σ2Kβ,G

c,c̄,α(0, τ, τ1, τ2)
2 − τσ2

}

=
1

2

{
σ2Kβ,G

c,c̄,α(τ, τ, τ1, τ2)
2 − τσ2

}
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using T−1
∑⌊τT ⌋

t=2 (∆ũτ,t)
2 p→ τσ2 as before, and noting that Kβ,G

c,c̄,α(0, τ, τ1, τ2) = 0.

So

T δ̂τ
d→

1
2

{
σ2Kβ,G

c,c̄,α(τ, τ, τ1, τ2)
2 − σ2Kβ,G

c,c̄,α(0, τ, τ1, τ2)
2 − τσ2

}

σ2
∫ τ
0
Kβ,G
c,c̄,α(r, τ, τ1, τ2)2dr

=
Kβ,G
c,c̄,α(τ, τ, τ1, τ2)

2 − τ

2
∫ τ
0
Kβ,G
c,c̄,α(r, τ, τ1, τ2)2dr

Next consider σ̃2
τ and then s.e.(δ̃τ ). We again obtain σ̃2

τ

p→ σ2 and

{Ts.e.(δ̃τ )}2 =
σ̃2
τ

T−2
∑⌊τT ⌋

t=2 ũ2τ,t−1

d→ σ2

σ2
∫ τ
0
Kβ,G
c,c̄,α(r, τ, τ1, τ2)2dr

=
1∫ τ

0
Kβ,G
c,c̄,α(r, τ, τ1, τ2)2dr

Putting it all together we find

tτ =
T δ̃τ

Ts.e.(δ̃τ )

d→ Kβ,G
c,c̄,α(τ, τ, τ1, τ2)

2 − τ

2
√∫ τ

0
Kβ,G
c,c̄,α(r, τ, τ1, τ2)2dr
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Table 1: Asymptotic critical values of PWY µ
OLS, PWY µ

GLS, PWY β
OLS, PWY β

GLS,
and λµζ and λβζ values for significance level ζ

ζ PWY µ
OLS PWY µ

GLS PWY β
OLS PWY β

GLS λµζ λβζ

0.10 1.166 2.319 0.298 4.592 1.111 1.238
0.05 1.433 2.626 0.529 5.215 1.096 1.168
0.01 1.923 3.223 1.007 6.415 1.081 1.089

Table 2: Finite sample critical values of PWY µ
OLS, PWY µ

GLS, PWY β
OLS, PWY β

GLS

for significance level ζ and T = 150

ζ PWY µ
OLS PWY µ

GLS PWY β
OLS PWY β

GLS

0.10 1.174 2.498 0.308 5.950
0.05 1.467 2.906 0.572 6.633
0.01 2.137 3.634 1.137 7.980

Table 3: Application of PWY µ
OLS, PWY µ

GLS, PWY β
OLS, PWY β

GLS, U
µ and Uβ to

NASDAQ prices

PWY µ
OLS PWY µ

GLS PWY β
OLS PWY β

GLS Uµ Uβ

1.098 3.227∗∗∗ 1.455∗∗∗ 2.896 ∗∗ ∗∗∗

** and *** indicate rejections at a 0.05 and 0.01 level respectively
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Figure 1: Asymptotic power of PWY i
OLS, PWY i

GLS and U i for [τ1, τ2] = [0.45, 0.55],
where i = {µ, β}

(a) i = µ, α = 0 (b) i = β, α = 0

(c) i = µ, α = 2 (d) i = β, α = 2

(e) i = µ, α = 10 (f) i = β, α = 10

– – PWY i
OLS, - - - PWY i

GLS, — U i
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Figure 2: Asymptotic power of PWY i
OLS, PWY i

GLS and U i for [τ1, τ2] = [0.2, 0.8],
where i = {µ, β}

(a) i = µ, α = 0 (b) i = β, α = 0

(c) i = µ, α = 2 (d) i = β, α = 2

(e) i = µ, α = 10 (f) i = β, α = 10

– – PWY i
OLS, - - - PWY i

GLS, — U i
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Figure 3: Asymptotic power of PWY i
OLS, PWY i

GLS and U i for [τ1, τ2] = [0.45, 0.55],
where i = {µ, β}

(a) i = µ, c = 2 (b) i = β, c = 2

– – PWY i
OLS, - - - PWY i

GLS, — U i

Figure 4: Asymptotic power of PWY i
OLS, PWY i

GLS and U i for [τ1, τ2] = [0.2, 0.8],
where i = {µ, β}

(a) i = µ, c = 0.8 (b) i = β, c = 1

– – PWY i
OLS, - - - PWY i

GLS, — U i
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Figure 5: Finite sample power of PWY i
OLS, PWY i

GLS and U i for [τ1, τ2] =
[0.45, 0.55], where i = {µ, β}

(a) i = µ, α = 0 (b) i = β, α = 0

(c) i = µ, α = 2 (d) i = β, α = 2

(e) i = µ, α = 10 (f) i = β, α = 10

– – PWY i
OLS, - - - PWY i

GLS, — U i
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Figure 6: Finite sample power of PWY i
OLS, PWY i

GLS and U i for [τ1, τ2] = [0.2, 0.8],
where i = {µ, β}

(a) i = µ, α = 0 (b) i = β, α = 0

(c) i = µ, α = 2 (d) i = β, α = 2

(e) i = µ, α = 10 (f) i = β, α = 10

– – PWY i
OLS, - - - PWY i

GLS, — U i
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Figure 7: Finite sample power of PWY i
OLS, PWY i

GLS and U i for [τ1, τ2] =
[0.15, 0.25], where i = {µ, β}

(a) i = µ, α = 0 (b) i = β, α = 0

(c) i = µ, α = 2 (d) i = β, α = 2

(e) i = µ, α = 10 (f) i = β, α = 10

– – PWY i
OLS, - - - PWY i

GLS, — U i
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Figure 8: Finite sample power of PWY i
OLS, PWY i

GLS and U i for [τ1, τ2] =
[0.75, 0.85], where i = {µ, β}

(a) i = µ, α = 0 (b) i = β, α = 0

(c) i = µ, α = 2 (d) i = β, α = 2

(e) i = µ, α = 10 (f) i = β, α = 10

– – PWY i
OLS, - - - PWY i

GLS, — U i
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Figure 9: Finite sample power of PWY i
OLS, PWY i

GLS and U i under GARCH errors,
with ω = 30, γ = 0 and φ = 0.6, for α = 0, where i = {µ, β}

(a) [τ1, τ2] = [0.45, 0.55], i = µ (b) [τ1, τ2] = [0.45, 0.55], i = β

(c) [τ1, τ2] = [0.2, 0.8], i = µ (d) [τ1, τ2] = [0.2, 0.8], i = β

– – PWY i
OLS, - - - PWY i

GLS, — U i
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