1 Introduction

Steel tubes are versatile and efficient in construction applications. The Extended Hollo-Bolt (EHB) blind bolts are installed from one side to concrete filled steel tubes. This connection is complex, so it has not been fully characterised.

Aim
To investigate the EHB preload and tensile behaviour when combined failure mode can occur.

Objectives

Lab testing

Numerical analysis

Meta modelling

2 Experimentation

Tensile pull-out tests are performed studying the effect of changing the following parameters:

- Concrete strength
- Column thickness
- Bolt shank length
- Bolt grade & diameter
- Gauge and pitch distances

3 Numerical Analysis

Finite element software allows to model complex 3D problems at a lower cost compared to laboratory testing. It also provides access to data that cannot easily be recorded during testing.

Parametric studies are performed with validated models.

4 Metamodelling

Efficient method to explore design optimisation alternatives.

Allows capturing complex behaviour that cannot be studied with traditional analytical methods.

5 Conclusions

- EHB is a promising alternative which will allow to expand the use of steel tubes in construction, generating more efficient multi-storey buildings.
- EHB combined failure mode is complex to analyse and requires further investigation.
- Metamodels combine experimental and numerical data with the purpose of being used in design guidance.