

3D Inkjet Printing of Electrically Active Materials

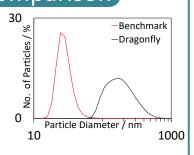
Oliver Nelson-Dummett

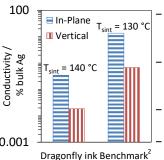
Supervised by: Dr Lyudmila Turyanska, Prof Christopher Tuck, and Prof Richard Hague

1. Introduction

Inkjet printing (IJP) can deposit micronsized drops containing functional materials for scalable manufacture of custom electronics, such as sensors, energy storage, metamaterials, antennas, and more. Multi-material printing enables the creation of encapsulated electronics and complex devices in a single step.

This work aims to:


- Print complex, 3D, conductive structures in a dielectric matrix
- Increase conductivity
- Reduce anisotropy
- Increase geometric accuracy
- Make a tougher, stronger matrix



A Colored

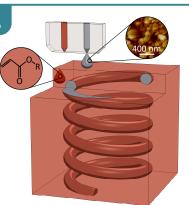
3. Conductivity Comparison

Dynamic light scattering shows that the commercial benchmark Ag NP ink from Advanced Nano Products has a narrower size distribution of smaller particles compared to the Dragonfly ink. It also has almost half the silver loading by weight.

- Electrical conductivity in-plane is 8.6 $\mu\Omega^{\text{--}1}$ m⁻⁻¹ for the benchmark, and 0.3 $\mu\Omega^{\text{--}1}$ m⁻⁻¹ for the Dragonfly
- Vertical conductivity decreases for both inks due to ligand segregation between layers².
- Conductivity is lower in the Dragonfly ink due to contact resistance.
- The Dragonfly ink has less anisotropy, likely due to shorter ligands

5. Conclusion and Future Work

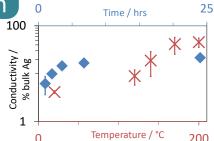
IJP can build complex, multi-material structures, including electronics. Conductivity is affected mostly by sintering parameters & needs to improve, especially vertically.


Future goals are to improve Ag ink properties (e.g. conductive ligands, Ag-salt additives) and print a device which is sensitive to 3D geometry and material properties, e.g. antennas

2. Functional Inks

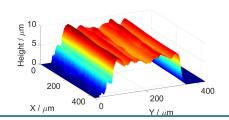
- Ink drops are deposited onto the substrate
- Drops merge and are fixed by UV, heat etc.
- Post-processing, e.g. sintering, improves material properties

Challenges:


- Optimising printing and postprocessing conditions for one ink that will not damage the second ink
- Maximising material loading metal nanoparticles (NPs) are preferred to precursors, which increases printing speed¹.
- Tailoring polymer properties whilst retaining good ink rheology – often use complex monomer mixtures

The Dragonfly LDM printer by Nano Dimension is the best-in-industry for IJP electronics. It uses a UV-curable polyacrylate to support Ag structures made from an infra-red-sintered NP ink, and is the basis for this project.

4. Optimisation


Optimisation of sintering parameters leads to in-plane conductivity of up to 75% of bulk silver's. Increasing the temperature and/or time increased conductivity, plateauing around 170 °C and 4 hours.

Ž mm

Log-pile printing and slight offsets between layers can also help to reduce surface roughness in multilayer prints.

Optimisation of printing parameters leads to higher accuracy of drop placement in-plane (left) and lower surface roughness (below).

- 1. Tekin E et al. *Soft Matter* 2008;4:703
- 2. Trindade GF et al. Commun Mater 2021;2:47

