LEVERHULME LECTURE 2

Firms, Exports, and Innovation: A Dynamic Framework

University of Nottingham

December 2004

Jonathan Eaton

New York University

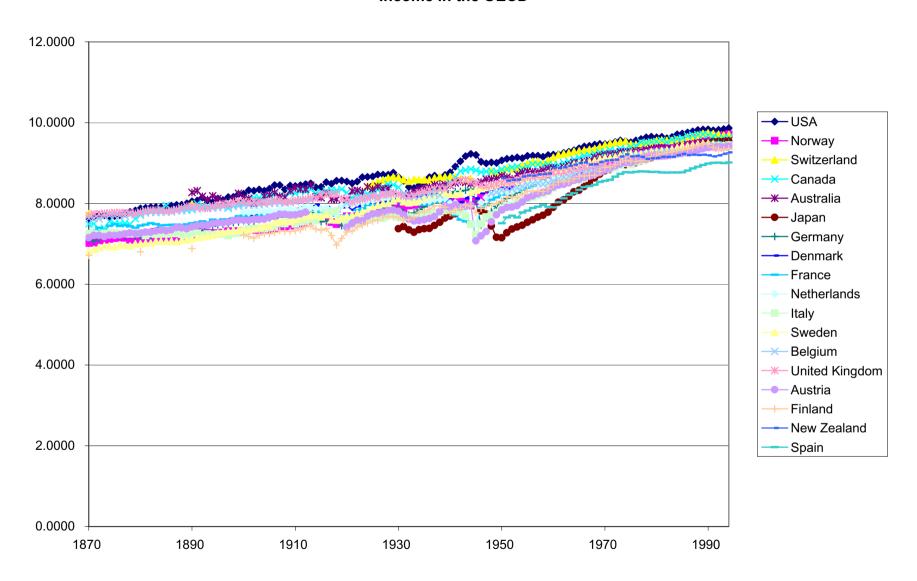
Based on work with Sam Kortum

University of Minnesota

Issues:

• Effect of Diffusion on Welfare in an Open Economy (Krugman, Samuelson, Gomery and Baumol)

• Effect of Trade and Diffusion on the Incentive to Innovate in different countries.


• Diffusion and Trade as Substitutes

Two pieces of evidence:

• Parallel growth

• Research Concentration

Income in the OECD

Business Sector Research Scientists (per 1000 Industrial Workers)

TABLE 1

Turkey Mexico	Greece	China	Portugal	Poland	Romania	Hungary	Czech Republic	Slovak Republic	Italy	New Zealand	Spain	Slovenia	Australia	Netherlands	Austria	Taiwan	United Kingdom	Korea	Ireland	Denmark	France	Singapore	Germany	Canada	Norway	Belgium	Russia	Luxembourg	Sweden	Japan	United States	Finland	COUNTRY
0.2		0.7	0.7	0.8	1.4	1.4	1.4	1.6	1.6	1.7	1.8	2.0	2.4	3.6	3.9	4.2	4.2	4.2	4.4	4.5	5.1	5.3	5.5	5.9	6.0	6.2	6.6	6.8	7.7	9.8	10.2	12.2	Scientists
21 27	44	1	48	27	14	31	42	35	64	56	53	48	76	72	70	55	68	42	76	80	66	80	67	<u>8</u> 1	90	70	28	138	69	73	100	69	Income P
66835 97221	10558	1258821	10005	38646	22435	10024	10272	5401	57728	3831	39927	1988	19157	15920	8110	21777	59756	47275	3787	5338	60431	4018	82168	30750	4491	10254	145555	441	8871	126919	275423	5176	Population

Data are for 2000 or the previous available year Income is relative to the United States (100) Population is in 1000's Sources: OECD (2004) and Heston, Summers, and Aten (2002).

Previous Work:

- Krugman (1991) North-South model
- Endogenous R&D (in 1 country) and diffusion: Grossman Helpman (1991)
- Multicountry innovation EK (1999) and trade: EK (2001,2002,2005).
- Here: an integration
- Why has it taken so long?

• Two countries: n = N, S.

• Continuum of goods $j \in [0, 1]$, as in DFS (1977).

- ullet Three types of technologies to produce a good j: i=N,S,C
- TFP $z_i^h(j)$ i = N, S, C.
- Distributional Assumptions:

$$\Pr[Z_i \le z] = \exp[-T_i z^{-\theta}]$$

independent across i = N, S, C...

Other assumptions:

• Wages w_N , w_S (= 1, sometimes). Assume a world with parameters such that $w_N \ge w_S$.

Cobb-Douglas preferences:

$$X_n(j) = Y_n$$

where $X_n(j)$ is spending on good j in market n and Y_n is total spending in market n (easy to generalize to CES).

• Iceberg transport costs $d \geq 1$.

Inevitable Ricardian taxonomy:

- 1. $w_N > w_S d$: C technologies only used in S.
- 2. $w_N = w_S d$: C technologies used in both countries, but exported only by S.
- 3. $w_N < w_S d$: C technologies used in both countries, with no trade in goods made with those technologies.

Effective wage for technologies: $w_{ni} i = N, S, C$; n = N, S:

$$\begin{array}{lll} w_{NN}=w_N & w_{NC}=\min\{w_N,w_Sd\} & w_{NS}=w_Sd\\ w_{SN}=w_Nd & w_{SC}=w_S & w_{SS}=w_S \end{array}$$

• Unit costs:

$$c_N(j) = \min\{w_N/z_N(j), w_{NC}/z_C(j), w_Sd/z_S(j)\}$$

 $c_S(j) = \min\{w_Nd/z_N(j), w_S/z_C(j), w_S/z_S(j)\}$

• Cost distribution in the North:

$$egin{array}{lll} H_N(c) &=& \Pr[C_N(j) \leq c] \ &=& 1 - \Pr[Z_N \leq w_N/c] \Pr[Z_S \leq w_S d/c] \Pr[Z_C \leq w_{NC}/c] \ &=& 1 - \exp\left[-\Phi_N c^{ heta}
ight] \ &=& to \exp\left[-\Phi_N c^{ heta}$$

• While in the South:

$$H_S(c) = \Pr[C_S(j) \leq c]$$

$$= 1 - \exp\left[-\Phi_S c^{ heta}
ight]$$
 where $\Phi_S = T_N \left(w_N d
ight)^{- heta} + T_S w_S^{- heta} + T_C w_S^{- heta}.$

- \bullet Φ_n reflects market n's access to world technology, taking into account factor costs and geographic barriers.
- Probability country *n* uses technology *i* for a good:

$$\pi_{ni} = \frac{T_i w_{ni}^{-\theta}}{\Phi_n}$$

$$n = N, S; i = N, S, C.$$

Labor market equilibrium:

$$w_N L_N^E = \beta (\pi_{NN} Y_N + \pi_{SN} Y_S)$$

where β is the labor share and L_N^E the measure of N workers using N technology. Here Y_i is total spending in market i.

Different cases.

Market Structure and Profit Share

• Ideas: a way to make a good j with efficiency q, realization of a r.v. Q with Pareto distribution (Kortum 1997):

$$F(q) = \Pr[Q \le q] = 1 - q^{-\theta}.$$

Only an idea that lowers cost somewhere will be used. Initially ideas are exclusive to the country of invention.

To be useful at home an invention from country n of quality q for good j
must satisfy:

$$rac{w_n}{q} \leq c_n(j) = \min\left[rac{w_{nN}}{z_N(j)}, rac{w_{nC}}{z_C(j)}, rac{w_{nS}}{z_C(j)}
ight]$$

where $z_i(j)$ is the state of the art for technology of type i = N, S, C while to lower the cost of serving the foreign market $n' \neq n$ it must satisfy:

$$\frac{w_n d}{q} \le c_{n'}(j) = \min\left[\frac{w_{n'N}}{z_N(j)}, \frac{w_{n'C}}{z_C(j)}, \frac{w_{n'S}}{z_C(j)}\right]$$

which is tougher, since the cost of a good cannot differ by more than d, while the cost of exporting is d.

Hence a small innovation may be used for sale only in the domestic market,
 while a larger one will be sold more widely.

Three Implications for firms (BEJK 2003)

- 1. Higher $q \rightarrow$ more likely to export
- 2. Higher $q \rightarrow$ more likely to be further ahead of the next cheapest technology, so charge a higher markup.
- 3. Higher $q \rightarrow$ more likely to charge a lower price, so, with a high elasticity of substitution, sell more even at home

Ergo, the observed productivity and size advantage of exporting units.

Implications for markups and profit

• Implied distribution of the mark-up over second lowest cost:

$$G(m) = 1 - m^{-\theta}$$

 This distribution applies to all goods actually sold in a market so that total profit in market n is:

$$\Pi_{nt} = Y_{nt} \int_{1}^{\infty} (1 - m^{-1}) dG(m) = \frac{Y_{nt}}{1 + \theta}$$

• Expected profit for an idea from technology i in market n:

$$\frac{\pi_{ni}\Pi_{nt}}{T_{it}}$$

Innovation, Growth, and Diffusion

• Labor force growth rate n.

- Rate of diffusion out of exclusive into common technologies ϵ .
- Ratio of exclusive technologies to labor forces:

$$t_i = T_i/L_i$$
 $i = N, S$

• Research productivity α_i .

• Growth of t_i :

$$\frac{\dot{t}_i}{t_i} = \frac{\dot{T}_i}{T_i} - \frac{\dot{L}_i}{L_i} = \frac{\alpha_i r_i}{t_i} - (n + \epsilon)$$

• Steady state:

$$t_i^* = \frac{\alpha_i r_i}{n + \epsilon}$$

• Steady state ratio of common to exclusive technologies:

$$t_C^* = \frac{T_C}{T_N + T_S} = \frac{\epsilon}{n}$$

• Discount factor ρ . The s.s. value of an idea:

$$V_{it} = \frac{1}{\rho + \epsilon - n/\theta} \frac{\pi_{Ni} \Pi_{Nt} + \pi_{Si} \Pi_{St}}{T_{it}} + \left(\frac{1}{\rho - n/\theta} - \frac{1}{\rho + \epsilon - n/\theta}\right) \frac{\pi_{NC} \Pi_{Nt} + \pi_{SC} \Pi_{St}}{T_{Ct}}.$$

• Labor-market equilibrium:

$$\alpha_i V_{it} = w_{it} \quad r_{it} \in [0, 1]$$

$$\alpha_i V_{it} \leq w_{it} \quad r_{it} = 0$$

$$\alpha_i V_{it} \geq w_{it} \quad r_{it} = 1$$

Steady-State Research Activity in Four Cases

1. No diffusion ($\epsilon = 0$) (EK 2001):

$$r = \frac{n}{\rho \theta}$$

Research effort is independent of size or of trade barriers.

- 2. Instantaneous diffusion $(\epsilon \to \infty)$:
 - (a) Value of ideas V the same everywhere. $w_N \leq w_S d$. Outcome depends on α_N/α_S relative to d

i.
$$\alpha_N/\alpha_S < d$$

$$\frac{w_N}{w_S} = \frac{\alpha_N}{\alpha_S}$$

$$r = \frac{n}{\rho \theta}$$

- A. No trade. Diffusion is a perfect substitute.
- B. Balanced trade in royalties.

ii.
$$\alpha_N/\alpha_S > d$$

$$egin{array}{lll} rac{w_N}{w_S} &=& d \\ r_S &=& \mathbf{0} \\ r_N &=& rac{n}{
ho heta} \left(\mathbf{1} + rac{L_S}{dL_N}
ight) \end{array}$$

Less research activity but more research output.

- 3. No trade $(d \to \infty)$:
 - (a) No clean analytical solution:
 - (b) Effect of more diffusion: larger market but more competition. No unambiguous result.
 - (c) Effect of market size. ditto.
 - (d) Numerical examples: deviations from no diffusion case small.

4. Costless trade (d = 1): Depends on case.

(a) case
$$2 \rightarrow w_N = w_S$$

i. One economy:

$$\frac{R_N + R_S}{L_N + L_S} = \frac{n}{\rho \theta}$$

ii. Location indeterminate if $\alpha_N=\alpha_S$. All in N if $\alpha_N\geq\alpha_S$.

- (b) case $1 \to w_N > w_S$
 - i. Messy.
 - ii. Numerical example. From no diffusion, allowing some diffusion shifts research to where research is more productive, but also to smaller market.

Conclusions

• Rapid diffusion reduces trade.

• More diffusion leads to specialization in research according to CA if trade costs are low relative to CA in research.

• Trade openness has little to do with research incentives.

• Not here: IP issues (Helpman 1993 and others).

• How to incorporate more countries?

• Going to data: a panel of firms, looking at their R and D, export, and foreign direct investment activity.