Selection Effects with Heterogeneous Firms

Monika Mrázová University of Surrey and CEP, LSE J. Peter Neary University of Oxford and CEPR

Nottingham Lectures in International Economics 2012 March 13, 2012

• Firms and Trade: Selection Effects

- Firms and Trade: Selection Effects
- Melitz (2003): More efficient firms export

- Firms and Trade: Selection Effects
- Melitz (2003): More efficient firms export
- More efficient firms more likely to do everything:
 - FDI rather than export: Helpman-Melitz-Yeaple (2004)
 - Internalise rather than outsource: Antràs-Helpman (2004)
 - Pay higher wages: Egger-Kreickemeier (2009), Helpman-Itskhoki-Redding (2010)
 - Adopt more skill-intensive technology: Bustos (2011)

- Firms and Trade: Selection Effects
- Melitz (2003): More efficient firms export
- More efficient firms more likely to do everything:
 - FDI rather than export: Helpman-Melitz-Yeaple (2004)
 - Internalise rather than outsource: Antràs-Helpman (2004)
 - Pay higher wages: Egger-Kreickemeier (2009), Helpman-Itskhoki-Redding (2010)
 - Adopt more skill-intensive technology: Bustos (2011)
- Increasingly applied to other fields:
 - International macroeconomics: Ghironi-Melitz (2005)
 - International tax competition: Davies-Eckel (2010)
 - Environmental economics: Forslid-Okubo-Ulltveit-Moe (2011)

- Observations:
 - Typical of modern manufacturing? (Milgrom-Roberts 1990)
 - "Supermodularity" important: substantively? technically?

- Observations:
 - Typical of modern manufacturing? (Milgrom-Roberts 1990)
 - "Supermodularity" important: substantively? technically?
 - Robustness? All these results derived for special functional forms:
 - Preferences: CES (quadratic in Melitz-Ottaviano 2007)
 - Distribution of firm productivities: Pareto
 - Symmetric countries

- Observations:
 - Typical of modern manufacturing? (Milgrom-Roberts 1990)
 - "Supermodularity" important: substantively? technically?
 - Robustness? All these results derived for special functional forms:
 - Preferences: CES (quadratic in Melitz-Ottaviano 2007)
 - Distribution of firm productivities: Pareto
 - Symmetric countries
 - If successful firms are large in every dimension, is monopolistic competition the right market structure?

- Observations:
 - Typical of modern manufacturing? (Milgrom-Roberts 1990)
 - "Supermodularity" important: substantively? technically?
 - Robustness? All these results derived for special functional forms:
 - Preferences: CES (quadratic in Melitz-Ottaviano 2007)
 - Distribution of firm productivities: Pareto
 - Symmetric countries
 - If successful firms are large in every dimension, is monopolistic competition the right market structure?
 - A universal tendency? Or are there interesting counter-examples?

Our Contribution

- Distinguish "first-order" and "second-order" selection effects
 - "First-order" much more robust
- General result on second-order selection effects
 - Proved first for a monopoly firm choosing between exports and FDI
 - We then show that it extends to a wide variety of market structures:
 - monopolistic competition, oligopoly;
 - ... and to a wide variety of firm choices:
 - choice of technique, in-house vs outsourcing, multi-market vs export-platform FDI

Our Contribution

- Distinguish "first-order" and "second-order" selection effects
 - "First-order" much more robust
- General result on second-order selection effects
 - Proved first for a monopoly firm choosing between exports and FDI
 - We then show that it extends to a wide variety of market structures:
 - monopolistic competition, oligopoly;
 - ... and to a wide variety of firm choices:
 - choice of technique, in-house vs outsourcing, multi-market vs export-platform FDI
- Technical: Application of supermodularity
 - Arises very naturally in this context
 - e.g., FDI: Both production costs and market access costs differ by finite amounts
 - Supermodularity imposes a natural restriction on the finite "difference-in-differences" of firm profits

Related Literature

Firm Selection

- Exports: Melitz (Em 2003)
- FDI: Helpman-Melitz-Yeaple (AER 2004)
- Export-Platform FDI: Helpman-Melitz-Yeaple (WP 2003, Appendix), Mrázová-Neary (2010)
- Outsourcing: Antràs-Helpman (JPE 2004)
- Heterogeneous workers: Helpman-Itskhoki-Redding (Em 2010)
- Choice of technique: Bustos (AER 2011)

Related Literature

Firm Selection

- Exports: Melitz (Em 2003)
- FDI: Helpman-Melitz-Yeaple (AER 2004)
- Export-Platform FDI: Helpman-Melitz-Yeaple (WP 2003, Appendix), Mrázová-Neary (2010)
- Outsourcing: Antràs-Helpman (JPE 2004)
- Heterogeneous workers: Helpman-Itskhoki-Redding (Em 2010)
- Choice of technique: Bustos (AER 2011)

Supermodularity

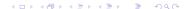
- General: Milgrom-Roberts (AER 1990), Milgrom-Shannon (Em 1994), Athey (QJE 2002)
- Trade:
 - Matching: Grossman-Maggi (AER 2000), Costinot (Em 2009), Costinot-Vogel (JPE 2010)
 - Trade and Environmental Agreements: Limao (JIE 2005)
 - Firm Selection: Costinot (WP 2007)

Outline of the Talk

- **1** First-Order Selection Effects
- 2 Supermodularity
- 3 Selection into FDI versus Exporting
- 4 Selection Effects in Monopolistic Competition
- 5 Selection Effects in Oligopoly
- 6 Alternative Firm Choices
- Summary and Conclusion
- 8 Supplementary Material

Outline of the Talk

- **1** First-Order Selection Effects
- 2 Supermodularity
- 3 Selection into FDI versus Exporting
- 4 Selection Effects in Monopolistic Competition
- 5 Selection Effects in Oligopoly
- 6 Alternative Firm Choices
- Summary and Conclusion
- 8 Supplementary Material



Operating Profits

- Consider a single firm located in one country
- It wishes to serve consumers in a foreign country
- $\pi(t,c)$: Maximum operating profits it can earn; weakly decreasing in:
 - t: Access cost (tariffs and transport costs) it faces
 - c: Exogenous cost parameter (inversely related to productivity)
 - Often, though not always, equal to marginal production cost
 - In some applications, an inverse indicator of quality
 - Other determinants optimally chosen or exogenous; examples later

First-Order Selection Effects

• Consider two firms: Which one will select into exporting?

First-Order Selection Effects

- Consider two firms: Which one will select into exporting?
 - Assume $\pi_c < 0$ and only one firm exports
 - Total profits: $\Pi^X = \pi(t,c) f_X < 0$; fixed cost f_X independent of c
 - With $c_1 > c_2$, we have $\pi(t, c_1) < \pi(t, c_2)$
 - So, firm 2 must be the exporter
 - $\Pi_2^X < 0 \Rightarrow \Pi_1^X << 0; \Pi_1^X > 0 \Rightarrow \Pi_2^X >> 0$

First-Order Selection Effects

- Consider two firms: Which one will select into exporting?
 - Assume $\pi_c < 0$ and only one firm exports
 - Total profits: $\Pi^X = \pi(t,c) f_X < 0$; fixed cost f_X independent of c
 - With $c_1 > c_2$, we have $\pi(t, c_1) < \pi(t, c_2)$
 - So, firm 2 must be the exporter

•
$$\Pi_2^X < 0 \Rightarrow \Pi_1^X << 0$$
; $\Pi_1^X > 0 \Rightarrow \Pi_2^X >> 0$

- Robust? Very; extends to:
 - Continuum of firms
 - Arbitrary distribution of variable costs
 - Asymmetric countries
 - Arbitrary assumptions about demand and technology
- ullet All that is needed is π decreasing in c: a very mild assumption

Outline of the Talk

- First-Order Selection Effects
- 2 Supermodularity
- 3 Selection into FDI versus Exporting
- 4 Selection Effects in Monopolistic Competition
- 5 Selection Effects in Oligopoly
- 6 Alternative Firm Choices
- Summary and Conclusion
- 8 Supplementary Material

Supermodularity

• Δ_c : The finite difference between the values of a function evaluated at two different values of c:

$$\Delta_{c}\pi\left(t,c\right)\equiv\pi\left(t,c_{1}\right)-\pi\left(t,c_{2}\right)$$
 when $c_{1}\geq c_{2}$

- Non-positive: measures the profit disadvantage of a higher-cost firm
- π differentiable in c: $\frac{\Delta_c \pi(t,c)}{c_1-c_2} o \frac{\partial \pi}{\partial c}$ as $c_1 o c_2$

Supermodularity

• Δ_c : The finite difference between the values of a function evaluated at two different values of c:

$$\Delta_{c}\pi\left(t,c\right)\equiv\pi\left(t,c_{1}\right)-\pi\left(t,c_{2}\right)$$
 when $c_{1}\geq c_{2}$

- Non-positive: measures the profit disadvantage of a higher-cost firm
- π differentiable in $c\colon \frac{\Delta_c \pi(t,c)}{c_1-c_2} \to \frac{\partial \pi}{\partial c}$ as $c_1 \to c_2$

Definition

The function $\pi(t,c)$ is supermodular in t and c if and only if:

$$\Delta_c \pi\left(t_1,c\right) \geq \Delta_c \pi\left(t_2,c\right)$$
 when $t_1 \geq t_2$.

▶ Implications

$$\Delta_{c}\pi(t_{1}, c) \geq \Delta_{c}\pi(t_{2}, c)$$

$$\Rightarrow 0 \geq \pi(t_{1}, c_{1}) - \pi(t_{1}, c_{2}) \geq \pi(t_{2}, c_{1}) - \pi(t_{2}, c_{2})$$

$$\Delta_c \pi\left(t_1, c\right) \ge \Delta_c \pi\left(t_2, c\right)$$

$$\Rightarrow 0 \ge \pi(t_1, c_1) - \pi(t_1, c_2) \ge \pi(t_2, c_1) - \pi(t_2, c_2)$$

$$\Rightarrow \pi(t_2, c_2) - \pi(t_1, c_2) \ge \pi(t_2, c_1) - \pi(t_1, c_1) \ge 0$$

- The "Matthew Effect": "To those who have, more shall be given":
 - A lower tariff is of more benefit to a firm with more sales
 - A lower-cost (more productive) firm usually has higher sales
 - ... though not always ...

$$\Delta_c \pi\left(t_1, c\right) \ge \Delta_c \pi\left(t_2, c\right)$$

$$\Rightarrow 0 \ge \pi(t_1, c_1) - \pi(t_1, c_2) \ge \pi(t_2, c_1) - \pi(t_2, c_2)$$

$$\Rightarrow \pi(t_2, c_2) - \pi(t_1, c_2) \ge \pi(t_2, c_1) - \pi(t_1, c_1) \ge 0$$

- The "Matthew Effect": "To those who have, more shall be given":
 - A lower tariff is of more benefit to a firm with more sales
 - A lower-cost (more productive) firm usually has higher sales
 - ... though not always ...
- π differentiable: Supermodularity $\Leftrightarrow \pi_{tc} \geq 0$ as $\{t_1 \rightarrow t_2, c_1 \rightarrow c_2\}$

$$\Delta_c \pi\left(t_1, c\right) \ge \Delta_c \pi\left(t_2, c\right)$$

$$\Rightarrow 0 \ge \pi(t_1, c_1) - \pi(t_1, c_2) \ge \pi(t_2, c_1) - \pi(t_2, c_2)$$

$$\Rightarrow \pi(t_2, c_2) - \pi(t_1, c_2) \ge \pi(t_2, c_1) - \pi(t_1, c_1) \ge 0$$

- The "Matthew Effect": "To those who have, more shall be given":
 - A lower tariff is of more benefit to a firm with more sales
 - A lower-cost (more productive) firm usually has higher sales
 - ... though not always ...
- π differentiable: Supermodularity $\Leftrightarrow \pi_{tc} \geq 0$ as $\{t_1 \rightarrow t_2, c_1 \rightarrow c_2\}$
- Analogous to Hicksian complementarity in consumer theory or strategic complementarity in game theory

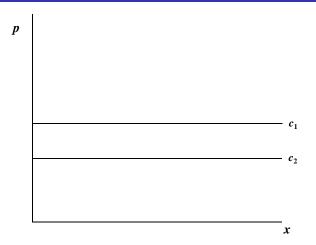
Example 1: Marginal Cost Independent of Output

- ullet Constant marginal cost c
- Inverse demand function: p(x)
- So, firm's operating profits equal:

$$\pi\left(t,c\right)\equiv \mathop{Max}_{x}\left[\left\{ p(x)-c-t\right\} x\right]$$

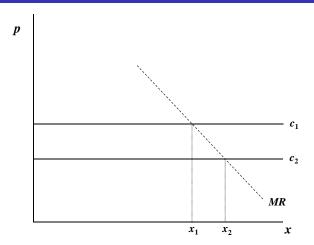
► Maths

Example of Supermodularity



- Less productive firm has higher marginal cost
- And therefore ...

Example of Supermodularity



- Less productive firm has higher marginal cost
- And therefore lower output, so it benefits less from a tariff reduction.

Example 2: Marginal Cost Varies with Output

- Key features of Example 1: π continuous in t and c and depends only on their sum
 - Given these, supermodularity \Leftrightarrow convexity of π in both t and c

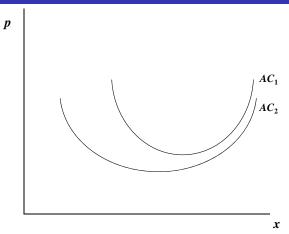
Example 2: Marginal Cost Varies with Output

- Key features of Example 1: π continuous in t and c and depends only on their sum
 - Given these, supermodularity \Leftrightarrow convexity of π in both t and c
- Suppose instead that marginal cost varies with output:

$$\pi\left(t,c\right)\equiv \mathop{Max}_{x}\left[\left\{ p(x)-t\right\} x-C\left(c,x\right)\right]$$

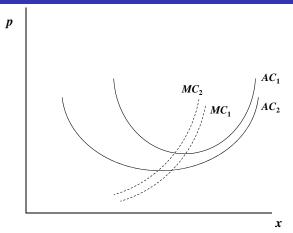
• $C\left(c,x\right)$: Total variable costs; $C_c>0$, $C_x>0$

Example of Submodularity



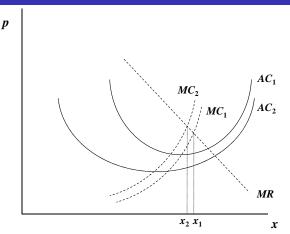
- Less productive firm is relatively more productive at higher output
- So much so that ...

Example of Submodularity



- Less productive firm is *relatively* more productive at higher output
- So much so that it has *lower* marginal cost ...

Example of Submodularity



- Less productive firm is *relatively* more productive at higher output
- So much so that it has lower marginal cost and higher output

Example 2: Conclusion

- Example 2 provides an exception to supermodularity because inter-firm differences in efficiency work in opposite directions on average and at the margin.
- Supermodularity holds as long as they work in the same direction.

Outline of the Talk

- 1 First-Order Selection Effects
- 2 Supermodularity
- 3 Selection into FDI versus Exporting
- 4 Selection Effects in Monopolistic Competition
- 5 Selection Effects in Oligopoly
- 6 Alternative Firm Choices
- Summary and Conclusion
- 8 Supplementary Materia

The Tariff-Jumping Gain

- Firm has two options:
 - Proximity: FDI avoids the trade cost t

$$\Pi^F = \pi \left(0, c \right) - f_F$$

The Tariff-Jumping Gain

- Firm has two options:
 - Proximity: FDI avoids the trade cost t

$$\Pi^F = \pi \left(0, c \right) - f_F$$

• Concentration: Exports incur a lower fixed cost: $f_X < f_F$

$$\Pi^X = \pi\left(t,c\right) - f_X$$

The Tariff-Jumping Gain

- Firm has two options:
 - Proximity: FDI avoids the trade cost t

$$\Pi^F = \pi \left(0, c \right) - f_F$$

• Concentration: Exports incur a lower fixed cost: $f_X < f_F$

$$\Pi^X = \pi \left(t, c \right) - f_X$$

• Define the tariff-jumping gain γ :

$$\gamma(t, c, f) \equiv \pi(0, c) - \pi(t, c) - f = \Pi^F - \Pi^X$$

ullet $f\equiv f_F-f_X>0$ is the excess fixed cost of FDI relative to exporting

Firm Selection into Tariff-Jumping

$$\gamma(t, c, f) \equiv \pi(0, c) - \pi(t, c) - f$$

• Apply Δ_c to the tariff-jumping gain:

$$\Delta_c \gamma(t, c, f) = \Delta_c \pi(0, c) - \Delta_c \pi(t, c)$$

• From the definition of supermodularity, $\Delta_c \gamma(t,c,f)$ is negative if and only if π is supermodular in t and c

Firm Selection into Tariff-Jumping

$$\gamma(t, c, f) \equiv \pi(0, c) - \pi(t, c) - f$$

• Apply Δ_c to the tariff-jumping gain:

$$\Delta_c \gamma(t, c, f) = \Delta_c \pi(0, c) - \Delta_c \pi(t, c)$$

- From the definition of supermodularity, $\Delta_c \gamma(t,c,f)$ is negative if and only if π is supermodular in t and c
- ullet Since γ measures the incentive to engage in FDI relative to exporting:

Proposition

If and only if the profit function π is supermodular in t and c, higher-cost firms will serve the foreign market by exports, while lower-cost firms will serve it via FDI, for all admissible f.

- Sufficiency is immediate:
 - SM [Supermodularity of π in t and c] $\Rightarrow \gamma$ weakly decreasing in c
 - ullet \Rightarrow Selection, if it occurs, must follow the CS pattern
 - CS ["Conventional Sorting"]: High-cost firms export, low-cost in FDI

- Sufficiency is immediate:
 - SM [Supermodularity of π in t and c] $\Rightarrow \gamma$ weakly decreasing in c
 - $\bullet \ \Rightarrow$ Selection, if it occurs, must follow the CS pattern
 - CS ["Conventional Sorting"]: High-cost firms export, low-cost in FDI
- Necessity: CS for some fixed cost f does not imply SM
 - It implies a weaker condition: SCP [The Single-Crossing Property]
 - Figure

- Sufficiency is immediate:
 - SM [Supermodularity of π in t and c] $\Rightarrow \gamma$ weakly decreasing in c
 - ullet \Rightarrow Selection, if it occurs, must follow the CS pattern
 - CS ["Conventional Sorting"]: High-cost firms export, low-cost in FDI
- Necessity: CS for some fixed cost f does not imply SM
 - It implies a weaker condition: SCP [The Single-Crossing Property]
 - ▶ Figure
- However, CS for all admissible f does imply SM
 - So, SM is also necessary
 - ullet "Admissible": Range of f for which selection occurs:
 - $f \in (0, \overline{f})$, where $\overline{f} \equiv \max_{c} \gamma(t, c, 0)$ for given t > 0
 - ullet Quasi-linearity of Π is crucial for this
 - → Figure

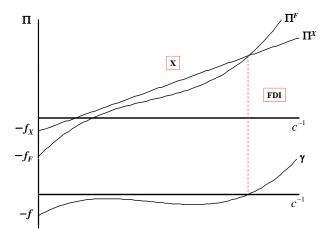
▶ Formal proof

- Sufficiency is immediate:
 - SM [Supermodularity of π in t and c] $\Rightarrow \gamma$ weakly decreasing in c
 - ullet \Rightarrow Selection, if it occurs, must follow the CS pattern
 - CS ["Conventional Sorting"]: High-cost firms export, low-cost in FDI
- Necessity: CS for some fixed cost f does not imply SM
 - It implies a weaker condition: SCP [The Single-Crossing Property]
 - ▶ Figure
- However, CS for all admissible f does imply SM
 - So, SM is also necessary
 - "Admissible": Range of f for which selection occurs:
 - $f \in (0, \overline{f})$, where $\overline{f} \equiv \max_{c} \gamma(t, c, 0)$ for given t > 0
 - ullet Quasi-linearity of Π is crucial for this
 - ▶ Figure

▶ Formal proof

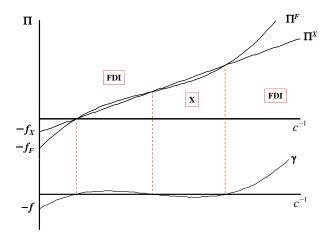
- None of this matters in many practical applications
 - Mostly we assume π is differentiable
 - ullet So sufficiency is sufficient: we need only check if π_{tc} is non-negative
 - Since: $\pi_{tc} > 0 \Rightarrow SM \Rightarrow SCP \Rightarrow CS$
 - Next

SCP But Not SM



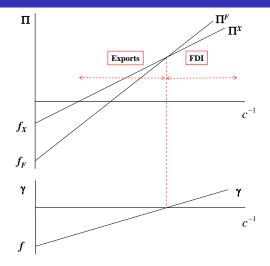
ullet SCP holds but not SM, and so CS holds for some f

Not SM \Rightarrow Not SCP for some f



 SM does not hold, so we can always find an f such that SCP and so CS does not hold

$SM \Rightarrow SCP$



 $\bullet\,$ SM holds, so SCP and CS hold for all admissible f

- Note: Proposition 1 does not depend directly on fixed costs
 - ullet γ depends on f but $\Delta_c \gamma$ does not

- Note: Proposition 1 does not depend directly on fixed costs
 - γ depends on f but $\Delta_c \gamma$ does not
- Fixed costs are necessary for selection effects (no trade-off otherwise)
- ... But: Do not determine their direction
 - Though in CES case, fixed costs predict their direction correctly

- Note: Proposition 1 does not depend directly on fixed costs
 - γ depends on f but $\Delta_c \gamma$ does not
- Fixed costs are necessary for selection effects (no trade-off otherwise)
- ... But: Do not determine their direction
 - Though in CES case, fixed costs predict their direction correctly
- So statements like "Only the more productive firms select into the higher-fixed-cost activity" are often true, but always misleading
 - True given supermodularity; fixed costs per se irrelevant in general

- Note: Proposition 1 does not depend directly on fixed costs
 - γ depends on f but $\Delta_c \gamma$ does not
- Fixed costs are necessary for selection effects (no trade-off otherwise)
- ... But: Do not determine their direction
 - Though in CES case, fixed costs predict their direction correctly
- So statements like "Only the more productive firms select into the higher-fixed-cost activity" are often true, but always misleading
 - True given supermodularity; fixed costs per se irrelevant in general
- This assumes that fixed costs are the same for all firms
 - ullet Things are different if they depend on t and c: see below

- Note: Proposition 1 does not depend directly on fixed costs
 - γ depends on f but $\Delta_c \gamma$ does not
- Fixed costs are necessary for selection effects (no trade-off otherwise)
- ... But: Do not determine their direction
 - Though in CES case, fixed costs predict their direction correctly
- So statements like "Only the more productive firms select into the higher-fixed-cost activity" are often true, but always misleading
 - True given supermodularity; fixed costs per se irrelevant in general
- This assumes that fixed costs are the same for all firms
 - ullet Things are different if they depend on t and c: see below
- Proposition 1 generalises the result of Helpman-Melitz-Yeaple (2004)
- ... or does it?

Outline of the Talk

- **Selection Effects in Monopolistic Competition**
 - Exports versus FDI with CES Preferences
 - General Preferences
 - General Transport Costs

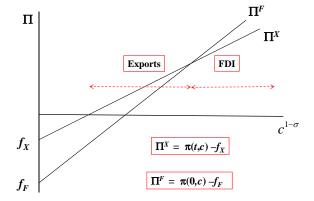
- As in Helpman-Melitz-Yeaple: CES preferences $x = Ap^{-\sigma}$
- Profits: $\pi(t,c) = (\tau c)^{1-\sigma}B$
 - $\tau = 1 + t \ge 1$: Iceberg transport cost
 - $\sigma > 1$: Elasticity of substitution
 - A, B: Demand parameters; taken as given by firms

- As in Helpman-Melitz-Yeaple: CES preferences $x = Ap^{-\sigma}$
- Profits: $\pi(t,c) = (\tau c)^{1-\sigma}B$
 - $\tau = 1 + t \ge 1$: Iceberg transport cost
 - $\sigma > 1$: Elasticity of substitution
 - A, B: Demand parameters; taken as given by firms
- $\to \pi_{tc}(t,c) = (\sigma 1)^2 (\tau c)^{-\sigma} B > 0$
- So, supermodularity holds, given B

- As in Helpman-Melitz-Yeaple: CES preferences $x = Ap^{-\sigma}$
- Profits: $\pi(t,c) = (\tau c)^{1-\sigma}B$
 - $\tau = 1 + t \ge 1$: Iceberg transport cost
 - $\sigma > 1$: Elasticity of substitution
 - A, B: Demand parameters; taken as given by firms
- $\to \pi_{tc}(t,c) = (\sigma 1)^2 (\tau c)^{-\sigma} B > 0$
- \bullet So, supermodularity holds, given B
- Do we need to allow for variations in B in general equilibrium?
 - $B = \tilde{B}(E, P)$ $P = \tilde{P}[\{n_i\}, g(c), \tau]$

- As in Helpman-Melitz-Yeaple: CES preferences $x = Ap^{-\sigma}$
- Profits: $\pi(t,c) = (\tau c)^{1-\sigma}B$
 - $\tau = 1 + t \ge 1$: Iceberg transport cost
 - $\sigma > 1$: Elasticity of substitution
 - A, B: Demand parameters; taken as given by firms
- $\to \pi_{tc}(t,c) = (\sigma 1)^2 (\tau c)^{-\sigma} B > 0$
- \bullet So, supermodularity holds, given B
- Do we need to allow for variations in B in general equilibrium?
 - $B = \tilde{B}(E, P)$ $P = \tilde{P}[\{n_i\}, g(c), \tau]$
- No: Cross-section comparison between two different firms only, both of measure zero

Inferring Selection Effects the Hard Way



• Usual approach (HMY): Compute equilibrium, check selection effects

- Usual approach (HMY): Compute equilibrium, check selection effects
- Our approach: Assume an equilibrium exists
 - ullet Then, show that supermodularity of π is necessary and sufficient for the conventional sorting

- Usual approach (HMY): Compute equilibrium, check selection effects
- Our approach: Assume an equilibrium exists
 - ullet Then, show that supermodularity of π is necessary and sufficient for the conventional sorting
 - Parallel with GE results: Maskin-Roberts (ET 2008)

- Usual approach (HMY): Compute equilibrium, check selection effects
- Our approach: Assume an equilibrium exists
 - ullet Then, show that supermodularity of π is necessary and sufficient for the conventional sorting
 - Parallel with GE results: Maskin-Roberts (ET 2008)
- Details:

- Usual approach (HMY): Compute equilibrium, check selection effects
- Our approach: Assume an equilibrium exists
 - ullet Then, show that supermodularity of π is necessary and sufficient for the conventional sorting
 - Parallel with GE results: Maskin-Roberts (ET 2008)
- Details:

▶ Skip Maths

• SM:
$$\Delta_c \pi(t,c) > \Delta_c \pi(0,c)$$

$$\Leftrightarrow \pi(t, c_1) - \pi(t, c_2) > \pi(0, c_1) - \pi(0, c_2)$$

$$\Leftrightarrow \pi(0, c_2) - \pi(t, c_2) > \pi(0, c_1) - \pi(t, c_1)$$

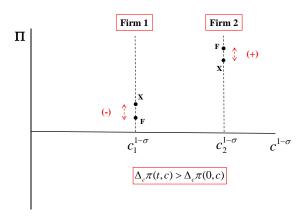
• Now subtract $f = f_F - f_X$ from both sides:

$$\Leftrightarrow \Pi^F(c_2) - \Pi^X(c_2) > \Pi^F(c_1) - \Pi^X(c_1)$$

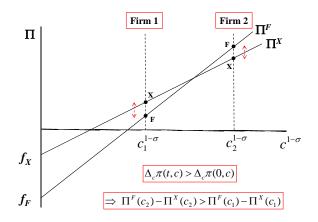
• Repeat for every pair of firms ...

◆ロ > ◆昼 > ◆ き > ・ き ・ り < ○

Selection Effects: Two Tiny Firms at a Time



Inferring Selection Effects from Supermodularity



• In general, the result is ambiguous:

• In general, the result is ambiguous:

- Maximized operating profits: $\pi\left(t,c\right)\equiv \underset{x}{Max}\left[\tilde{\pi}\left(x;\tau,c\right)\right]$
- $\Rightarrow \pi_{tc} = \tilde{\pi}_{\tau c} + \tilde{\pi}_{\tau x} \frac{dx}{dc} = \underbrace{\tilde{\pi}_{\tau c}}_{Direct} \underbrace{-\tilde{\pi}_{\tau x} (\tilde{\pi}_{xx})^{-1} \tilde{\pi}_{xc}}_{Indirect}$

In general, the result is ambiguous:

- Maximized operating profits: $\pi\left(t,c\right)\equiv \underset{x}{Max}\left[\tilde{\pi}\left(x;\tau,c\right)\right]$
- $\Rightarrow \pi_{tc} = \tilde{\pi}_{\tau c} + \tilde{\pi}_{\tau x} \frac{dx}{dc} = \underbrace{\tilde{\pi}_{\tau c}}_{Direct} \underbrace{-\tilde{\pi}_{\tau x} (\tilde{\pi}_{xx})^{-1} \tilde{\pi}_{xc}}_{Indirect}$
- With general preferences and iceberg transport costs:
 - Operating profits: $\tilde{\pi}\left(x;\tau,c\right)=\left[p(x)-\tau c\right]x$
 - $\bullet \Rightarrow \pi_{tc} = -x \tau c \tilde{\pi}_{xx}^{-1}$
 - Second-order condition: $\tilde{\pi}_{xx} = 2p' + xp'' < 0$

• In general, the result is ambiguous:

- Maximized operating profits: $\pi\left(t,c\right)\equiv \mathop{Max}\limits_{x}\left[\tilde{\pi}\left(x;\tau,c\right)\right]$
- $\Rightarrow \pi_{tc} = \tilde{\pi}_{\tau c} + \tilde{\pi}_{\tau x} \frac{dx}{dc} = \underbrace{\tilde{\pi}_{\tau c}}_{Direct} \underbrace{-\tilde{\pi}_{\tau x} \left(\tilde{\pi}_{xx}\right)^{-1} \tilde{\pi}_{xc}}_{Indirect}$
- With general preferences and iceberg transport costs:
 - Operating profits: $\tilde{\pi}\left(x;\tau,c\right)=\left[p(x)-\tau c\right]x$
 - $\bullet \Rightarrow \pi_{tc} = -x \tau c \tilde{\pi}_{xx}^{-1}$
 - Second-order condition: $\tilde{\pi}_{xx} = 2p' + xp'' < 0$
- Conflicting effects, so ambiguous in general:
 - **1** Negative Direct Effect $[\tilde{\pi}_{\tau c} = -x]$: A higher-cost firm loses more from a rise in transport costs $(\tilde{\pi}_{\tau}$ is more negative) since its cost of shipping one unit of exports is $(\tau 1) c$.

• In general, the result is ambiguous:

- Maximized operating profits: $\pi\left(t,c\right)\equiv Max\left[\tilde{\pi}\left(x;\tau,c\right)\right]$
- $\Rightarrow \pi_{tc} = \tilde{\pi}_{\tau c} + \tilde{\pi}_{\tau x} \frac{dx}{dc} = \tilde{\pi}_{\tau c} \tilde{\pi}_{\tau x} (\tilde{\pi}_{xx})^{-1} \tilde{\pi}_{xc}$ Direct Indirect
- With general preferences and iceberg transport costs:
 - Operating profits: $\tilde{\pi}(x;\tau,c) = [p(x) \tau c] x$
 - $\bullet \Rightarrow \pi_{tc} = -x \tau c \tilde{\pi}_{max}^{-1}$
 - Second-order condition: $\tilde{\pi}_{xx} = 2p' + xp'' < 0$
- Conflicting effects, so ambiguous in general:
 - **1** Negative Direct Effect $[\tilde{\pi}_{\tau c} = -x]$: A higher-cost firm loses more from a rise in transport costs ($\tilde{\pi}_{\tau}$ is more negative) since its cost of shipping one unit of exports is $(\tau - 1) c$.
 - 2 Positive Indirect Effect $\left[\tilde{\pi}_{\tau x}\frac{dx}{dc} = -\tau c\tilde{\pi}_{xx}^{-1}\right]$: A higher-cost firm is less vulnerable to a rise in transport costs ($\tilde{\pi}_{\tau}$ is less negative) since it has lower sales. (The Matthew Effect)

- Write demand elasticity as a function of x: $\varepsilon(x) \equiv -\frac{\partial x}{\partial p} \frac{p}{x} = -\frac{p}{xp'}$
 - Krugman (1979): $\varepsilon_x < 0$ (e.g., quadratic, Stone-Geary, CARA, logistic)
 - CES case: $p = x^{-1/\sigma} \Rightarrow \varepsilon_x = 0$, $\varepsilon = \sigma$
 - ullet $\varepsilon_x \geq 0$: "superconvex demands"; i.e., as or more convex than CES
 - e.g., $p = (x \beta)^{-1/\sigma}$, $\beta > 0$

- Write demand elasticity as a function of x: $\varepsilon(x) \equiv -\frac{\partial x}{\partial p} \frac{p}{x} = -\frac{p}{xp'}$
 - Krugman (1979): $\varepsilon_x < 0$ (e.g., quadratic, Stone-Geary, CARA, logistic)
 - CES case: $p = x^{-1/\sigma} \Rightarrow \varepsilon_x = 0$, $\varepsilon = \sigma$
 - $\varepsilon_x \geq 0$: "superconvex demands"; i.e., as or more convex than CES
 - e.g., $p = (x \beta)^{-1/\sigma}$, $\beta > 0$

- Write demand elasticity as a function of x: $\varepsilon(x) \equiv -\frac{\partial x}{\partial p} \frac{p}{x} = -\frac{p}{xp'}$
 - Krugman (1979): $\varepsilon_x < 0$ (e.g., quadratic, Stone-Geary, CARA, logistic)
 - CES case: $p = x^{-1/\sigma} \Rightarrow \varepsilon_x = 0$, $\varepsilon = \sigma$
 - $\varepsilon_x \geq 0$: "superconvex demands"; i.e., as or more convex than CES
 - e.g., $p = (x \beta)^{-1/\sigma}$, $\beta > 0$

Proposition

With iceberg transport costs, the profit function is supermodular in t and c for all levels of output if the demand function is superconvex, $\varepsilon_x \geq 0$.

▶ Proof

- Write demand elasticity as a function of x: $\varepsilon(x) \equiv -\frac{\partial x}{\partial p} \frac{p}{x} = -\frac{p}{xp'}$
 - Krugman (1979): $\varepsilon_x < 0$ (e.g., quadratic, Stone-Geary, CARA, logistic)
 - CES case: $p = x^{-1/\sigma} \Rightarrow \varepsilon_x = 0$, $\varepsilon = \sigma$
 - $\varepsilon_x \geq 0$: "superconvex demands"; i.e., as or more convex than CES
 - e.g., $p = (x \beta)^{-1/\sigma}$, $\beta > 0$

Proposition

With iceberg transport costs, the profit function is supermodular in t and c for all levels of output if the demand function is superconvex, $\varepsilon_x \geq 0$.

▶ Proof

$$\pi_{tc} = \frac{(\varepsilon - 1)^2 + x\varepsilon_x}{\underbrace{\varepsilon - 1 - x\varepsilon_x}_{SOC: +}} x$$

- Write demand elasticity as a function of x: $\varepsilon(x) \equiv -\frac{\partial x}{\partial n} \frac{p}{x} = -\frac{p}{xx'}$
 - Krugman (1979): $\varepsilon_x < 0$ (e.g., quadratic, Stone-Geary, CARA, logistic)
 - CES case: $p = x^{-1/\sigma} \Rightarrow \varepsilon_x = 0$, $\varepsilon = \sigma$
 - $\varepsilon_x \geq 0$: "superconvex demands"; i.e., as or more convex than CES
 - e.g., $p = (x \beta)^{-1/\sigma}$, $\beta > 0$

Proposition

With iceberg transport costs, the profit function is supermodular in t and cfor all levels of output if the demand function is superconvex, $\varepsilon_x > 0$.

$$\pi_{tc} = \frac{(\varepsilon - 1)^2 + x\varepsilon_x}{\underbrace{\varepsilon - 1 - x\varepsilon_x}_{SOC: +}} x$$

• By contrast, if $\varepsilon_x < 0$, submodularity may hold for sufficiently high x.

• Submodularity possible whenever $\varepsilon_x < 0$:

$$\varepsilon_x = -\frac{1}{x} (1 + \varepsilon - \varepsilon \rho) \qquad \rho \equiv -\frac{xp''}{p'}$$

- ρ: A measure of convexity of demand
 - $\rho=0$ with linear demand; $\rho=\frac{\sigma+1}{\sigma}$ with CES
- So: Submodularity possible for any linear or concave demand system

• Submodularity possible whenever $\varepsilon_x < 0$:

$$\varepsilon_x = -\frac{1}{x} (1 + \varepsilon - \varepsilon \rho) \qquad \rho \equiv -\frac{xp''}{p'}$$

- ρ: A measure of convexity of demand
 - $\rho = 0$ with linear demand; $\rho = \frac{\sigma+1}{\sigma}$ with CES
- So: Submodularity possible for any linear or concave demand system

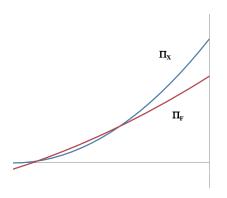
Proposition

With general demands and iceberg transport costs, the profit function is supermodular in t and c if and only if: $\varepsilon + \rho - 3 > 0$.

$$\pi_{tc} = -x - \tau c \tilde{\pi}_{xx}^{-1} = -x - \frac{p + xp'}{2p' + xp''} = \frac{\varepsilon + \rho - 3}{2 - \rho} x$$

So: Submodularity more likely for less elastic and more concave demand

Quadratic Preferences; Iceberg Transport Costs



Quadratic preferences (Melitz-Ottaviano (2008), Nefussi (2006))

► Compare Ad Valorem Case

- Yet another example of large firms' supermodular superiority?
 - The most efficient firms incur the lowest transport costs?

- Yet another example of large firms' supermodular superiority?
 - The most efficient firms incur the lowest transport costs?
- Or an artifact of iceberg transport costs?
 - The most efficient firms produce the cheapest icebergs?
 - $\pi = (p \tau c)x \Leftrightarrow \pi = px c(\tau x)$

- Yet another example of large firms' supermodular superiority?
 - The most efficient firms incur the lowest transport costs?
- Or an artifact of iceberg transport costs?
 - The most efficient firms produce the cheapest icebergs?

•
$$\pi = (p - \tau c)x \Leftrightarrow \pi = px - c(\tau x)$$

- Suppose instead that trade and production costs are separable:
 - $\tilde{\pi}(x;\tau,c) = R(x,\tau) cx$

- Yet another example of large firms' supermodular superiority?
 - The most efficient firms incur the lowest transport costs?
- Or an artifact of iceberg transport costs?
 - The most efficient firms produce the cheapest icebergs?

•
$$\pi = (p - \tau c)x \Leftrightarrow \pi = px - c(\tau x)$$

- Suppose instead that trade and production costs are separable:
 - $\tilde{\pi}(x;\tau,c) = R(x,\tau) cx$
 - Now: π always supermodular!

- Yet another example of large firms' supermodular superiority?
 - The most efficient firms incur the lowest transport costs?
- Or an artifact of iceberg transport costs?
 - The most efficient firms produce the cheapest icebergs?

•
$$\pi = (p - \tau c)x \Leftrightarrow \pi = px - c(\tau x)$$

- Suppose instead that trade and production costs are separable:
 - $\tilde{\pi}\left(x;\tau,c\right) = R\left(x,\tau\right) cx$
 - Now: π *always* supermodular!

• No direct effect: total transport costs and hence $\tilde{\pi}_{\tau}$ do not depend directly on c; indirect effect is presumptively positive as before

- Yet another example of large firms' supermodular superiority?
 - The most efficient firms incur the lowest transport costs?
- Or an artifact of iceberg transport costs?
 - The most efficient firms produce the cheapest icebergs?

•
$$\pi = (p - \tau c)x \Leftrightarrow \pi = px - c(\tau x)$$

- Suppose instead that trade and production costs are separable:
 - $\tilde{\pi}(x;\tau,c) = R(x,\tau) cx$
 - Now: π always supermodular!

- No direct effect: total transport costs and hence $\tilde{\pi}_{\tau}$ do not depend directly on c; indirect effect is presumptively positive as before
- Example: Ad valorem transport costs: $R(x,\tau) = \frac{xp(x)}{\tau}$
 - $\bullet \ \Rightarrow \ \pi_t = \tilde{\pi}_\tau = -\tfrac{px}{\tau^2}; \quad \tilde{\pi}_{\tau x} = -\tfrac{1}{\tau^2} \left(p + x p' \right) = -\tfrac{1}{\tau} c \quad \text{(from FOC)}$
 - $\Rightarrow \pi_{tc} = \tilde{\pi}_{\tau c} + \tilde{\pi}_{\tau x} \frac{dx}{dc} = (0) + \left(-\frac{1}{\tau}c\right)\left(\tau \tilde{\pi}_{xx}^{-1}\right) = -c\tilde{\pi}_{xx}^{-1} > 0$
 - So full effect is unambiguously positive for all demand systems
 - Always supermodular!

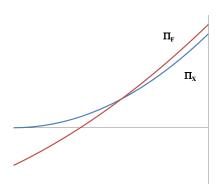
- Yet another example of large firms' supermodular superiority?
 - The most efficient firms incur the lowest transport costs?
- Or an artifact of iceberg transport costs?
 - The most efficient firms produce the cheapest icebergs?

•
$$\pi = (p - \tau c)x \Leftrightarrow \pi = px - c(\tau x)$$

- Suppose instead that trade and production costs are separable:
 - $\tilde{\pi}(x;\tau,c) = R(x,\tau) cx$
 - Now: π always supermodular!

- No direct effect: total transport costs and hence $\tilde{\pi}_{\tau}$ do not depend directly on c; indirect effect is presumptively positive as before
- \bullet Example: Ad valorem transport costs: $R(x,\tau) = \frac{xp(x)}{\tau}$
 - $\bullet \ \Rightarrow \ \pi_t = \tilde{\pi}_\tau = -\tfrac{px}{\tau^2}; \quad \tilde{\pi}_{\tau x} = -\tfrac{1}{\tau^2} \left(p + x p' \right) = -\tfrac{1}{\tau} c \quad \text{(from FOC)}$
 - $\Rightarrow \pi_{tc} = \tilde{\pi}_{\tau c} + \tilde{\pi}_{\tau x} \frac{dx}{dc} = (0) + \left(-\frac{1}{\tau}c\right)\left(\tau \tilde{\pi}_{xx}^{-1}\right) = -c\tilde{\pi}_{xx}^{-1} > 0$
 - So full effect is unambiguously positive for all demand systems
 - Always supermodular!
- ullet BUT: Separability of π does not hold if c measures quality

Quadratic Preferences; Ad Valorem Transport Costs



Summary: Monopolistic Competition

• Is the profit function always supermodular?

Preferences:	$\varepsilon_x \ge 0$	$\varepsilon_x < 0$
Iceberg transport costs: Proportional transport costs:	Yes Yes	No Yes

Outline of the Talk

- 1 First-Order Selection Effects
- 2 Supermodularity
- 3 Selection into FDI versus Exporting
- 4 Selection Effects in Monopolistic Competition
- 5 Selection Effects in Oligopoly
- 6 Alternative Firm Choices
- Summary and Conclusion
- **8** Supplementary Materia

- Individual firms no longer of measure zero
- Result still holds for given behaviour by rivals

- Individual firms no longer of measure zero
- Result still holds for given behaviour by rivals
- Example:
 - 2 rival U.S. firms, "1" and "2"
 - Payoffs to firm 1, given choice of firm 2:

Choice of Firm 2:	Export	FDI
Export: FDI:	$\pi(t, c, E) - f_X$ $\pi(0, c, E) - f_F$	

- Individual firms no longer of measure zero
- Result still holds for given behaviour by rivals
- Example:
 - 2 rival U.S. firms, "1" and "2"
 - Payoffs to firm 1, given choice of firm 2:

Choice of Firm 2:	Export	FDI
Export: FDI:	(/ / / 0	$\pi(t, c, F) - f_X$ $\pi(0, c, F) - f_F$

• Provided supermodularity holds in each column, result goes through

- Individual firms no longer of measure zero
- Result still holds for given behaviour by rivals
- Example:
 - 2 rival U.S. firms, "1" and "2"
 - Payoffs to firm 1, given choice of firm 2:

Choice of Firm 2:	Export	FDI
Export:	$\pi(t,c,E)-f_X$	
FDI:	$\pi(0,c,E)-f_F$	$\pi(0,c,F)-f_F$

- Provided supermodularity holds in each column, result goes through
- Though need to be careful in considering boundary cases
- Examples:
 - Leahy-Montagna (2009): Outsourcing
 - Porter (2011): FDI

Outline of the Talk

- **Alternative Firm Choices**
 - Vertical Disintegration
 - Heterogeneous Fixed Costs
 - Endogenous Fixed Costs

Alternative Firm Choices

- So far, focus on choice between exports and FDI only
- Analogous results apply to other firm choices:
 - Export-platform versus multi-plant FDI
 - In-house production versus outsourcing: Antràs-Helpman (JPE 2004)
 - ▶ Details
 - More versus less skill-intensive technology: Bustos (AER 2011)

Alternative Firm Choices

- So far, focus on choice between exports and FDI only
- Analogous results apply to other firm choices:
 - Export-platform versus multi-plant FDI
 - In-house production versus outsourcing: Antràs-Helpman (JPE 2004)
 - ▶ Details
 - More versus less skill-intensive technology: Bustos (AER 2011)
 - In each case, supermodularity (between firm's cost parameter and a parameter representing the marginal cost of the choice variable) is necessary and sufficient for the standard selection effect

Alternative Firm Choices

- So far, focus on choice between exports and FDI only
- Analogous results apply to other firm choices:
 - Export-platform versus multi-plant FDI
 - In-house production versus outsourcing: Antràs-Helpman (*JPE* 2004)
 - More versus less skill-intensive technology: Bustos (AER 2011)
 - In each case, supermodularity (between firm's cost parameter and a parameter representing the marginal cost of the choice variable) is necessary and sufficient for the standard selection effect
- Of course, this does not apply to first-order selection effects;
 e.g., choice between serving a market or not:
 - Melitz (2003): Export decision
 - Depends *only* on $\pi(t,c) f_X$
 - π decreasing in c ensures conventional sorting.
- Melitz result is very robust.

- Now: firm wants to serve home market ("North"); 2 distinct choices:
 - Produce in North or in South?
 - Make or Buy Intermediate?

- Now: firm wants to serve home market ("North"); 2 distinct choices:
 - Produce in North or in South?
 - Make or Buy Intermediate?

	North	South
Make: Buy:	Vertical Integration Outsource	FDI Offshore

- Now: firm wants to serve home market ("North"); 2 distinct choices:
 - Produce in North or in South?
 - Make or Buy Intermediate?

	North	South
Make: Buy:	Vertical Integration Outsource	FDI Offshore

- Firm/HQ chooses organizational form to maximize "realized" profits:
 - $\pi(w, \psi, c) \equiv Max_x (1 \psi) [p(x) wc] x$
 - Wages: w_N in North, w_S in South, $w_N > w_S$
 - ullet ψ : profit loss due to incomplete contracting between HQ and supplier
 - Structural microfoundations in Antràs-Helpman (2004)
 - No transport costs

- Consider first the simplest form of choice (1): Produce in N or S?
 - Profit function: $\pi\left(w,c\right)\equiv Max_{x}\left[p(x)-wc\right]x$

- Consider first the simplest form of choice (1): Produce in N or S?
 - Profit function: $\pi(w,c) \equiv Max_x [p(x) wc] x$
 - This has exactly the same form as the profit function with iceberg transport costs in horizontal FDI case . . .

- Consider first the simplest form of choice (1): Produce in N or S?
 - Profit function: $\pi\left(w,c\right)\equiv Max_{x}\left[p(x)-wc\right]x$
 - This has exactly the same form as the profit function with iceberg transport costs in horizontal FDI case . . .
 - So: Selection effect for "pure" vertical FDI not so robust:
 - More efficient firms select into vertical FDI in CES case . . .
 - ... but not necessarily for non-CES preferences

- Consider first the simplest form of choice (1): Produce in N or S?
 - Profit function: $\pi\left(w,c\right)\equiv Max_{x}\left[p(x)-wc\right]x$
 - This has exactly the same form as the profit function with iceberg transport costs in horizontal FDI case . . .
 - So: Selection effect for "pure" vertical FDI not so robust:
 - More efficient firms select into vertical FDI in CES case . . .
 - ... but not necessarily for non-CES preferences
- Consider next the simplest form of choice (2): Make or Buy?
 - Profit function: $\pi\left(\psi,c\right)\equiv Max_{x}(1-\psi)\left[p(x)-wc\right]x$ for given w

- Consider first the simplest form of choice (1): Produce in N or S?
 - Profit function: $\pi\left(w,c\right)\equiv Max_{x}\left[p(x)-wc\right]x$
 - This has exactly the same form as the profit function with iceberg transport costs in horizontal FDI case . . .
 - So: Selection effect for "pure" vertical FDI not so robust:
 - More efficient firms select into vertical FDI in CES case . . .
 - ... but not necessarily for non-CES preferences
- Consider next the simplest form of choice (2): Make or Buy?
 - Profit function: $\pi\left(\psi,c\right)\equiv Max_{x}(1-\psi)\left[p(x)-wc\right]x$ for given w
 - This has similar properties to the profit function with proportional transport costs in horizontal FDI case: *always* supermodular . . .

- Consider first the simplest form of choice (1): Produce in N or S?
 - Profit function: $\pi(w,c) \equiv Max_x [p(x) wc] x$
 - This has exactly the same form as the profit function with iceberg transport costs in horizontal FDI case ...
 - So: Selection effect for "pure" vertical FDI not so robust:
 - More efficient firms select into vertical FDI in CES case
 - ... but not necessarily for non-CES preferences
- Consider next the simplest form of choice (2): Make or Buy?
 - Profit function: $\pi(\psi,c) \equiv Max_x(1-\psi)[p(x)-wc]x$ for given w
 - This has similar properties to the profit function with proportional transport costs in horizontal FDI case: always supermodular ...
 - So: Selection effect for outsourcing very robust:
 - More efficient firms select into lower- ψ organizational form (in-house rather than outsource) for all preferences and productivity distributions

- Consider first the simplest form of choice (1): Produce in N or S?
 - Profit function: $\pi(w,c) \equiv Max_x [p(x) wc] x$
 - This has exactly the same form as the profit function with iceberg transport costs in horizontal FDI case ...
 - So: Selection effect for "pure" vertical FDI not so robust:
 - More efficient firms select into vertical FDI in CES case
 - ... but not necessarily for non-CES preferences
- Consider next the simplest form of choice (2): Make or Buy?
 - Profit function: $\pi(\psi,c) \equiv Max_x(1-\psi)[p(x)-wc]x$ for given w
 - This has similar properties to the profit function with proportional transport costs in horizontal FDI case: always supermodular ...
 - So: Selection effect for outsourcing very robust:
 - More efficient firms select into lower- ψ organizational form (in-house rather than outsource) for all preferences and productivity distributions

Summary

• Is the profit function always supermodular?

Firm's Decision	Profits	$\varepsilon_x \ge 0$	$\varepsilon_x < 0$
HFDI with iceberg transport costs: HFDI with proportional transport costs:	$\pi(t,c) = (p - \tau c)x$	Yes	No
	$\pi(t,c) = (p/\tau - c)x$	Yes	Yes

Summary

• Is the profit function always supermodular?

Firm's Decision	Profits	$\varepsilon_x \ge 0$	$\varepsilon_x < 0$
HFDI with iceberg transport costs:	$\pi(t,c) = (p - \tau c)x$	Yes	No
HFDI with proportional transport costs:	$\pi(t,c) = (p/\tau - c)x$	Yes	Yes
Produce in North or South:	$\pi(w,c) = (p - wc)x$	Yes	No

Summary

• Is the profit function always supermodular?

Firm's Decision	Profits	$\varepsilon_x \ge 0$	$\varepsilon_x < 0$
HFDI with iceberg transport costs: HFDI with proportional transport costs: Produce in North or South: Produce in-house or outsource:	$\pi(t,c) = (p - \tau c)x$ $\pi(t,c) = (p/\tau - c)x$ $\pi(w,c) = (p - wc)x$ $\pi(\psi,c) = (1 - \psi)(p - wc)x$	Yes Yes Yes Yes	No Yes No Yes

Summary

• Is the profit function always supermodular?

Firm's Decision	Profits	$\varepsilon_x \ge 0$	$\varepsilon_x < 0$
HFDI with iceberg transport costs: HFDI with proportional transport costs: Produce in North or South: Produce in-house or outsource:	$\pi(t,c) = (p - \tau c)x$ $\pi(t,c) = (p/\tau - c)x$ $\pi(w,c) = (p - wc)x$ $\pi(\psi,c) = (1 - \psi)(p - wc)x$	Yes Yes Yes Yes	No Yes No Yes

• Composite VFDI case with $\psi_N < \psi_S$ and $w_N > w_S$ ambiguous

▶ Skip to Conclusion

- Analysis unaffected if fixed costs depend on t only
 - e.g. Kleinert-Toubal (2006, RIE 2010):
 - Fixed costs rising with distance rationalize a gravity equation for FDI
 - and avoid counter-factual prediction that falling trade costs lower FDI
 - But selection effects are unchanged
 - Why? Δ_c operator applied to γ eliminates $f_F(t)$

- What if fixed costs depend on c and t?
 - Technically, results still go through
 - Just include firm-specific fixed costs in definition of operating profits:

- What if fixed costs depend on c and t?
 - Technically, results still go through
 - Just include firm-specific fixed costs in definition of operating profits:
 - ullet Let $ilde{\pi}(t,c)$ denote operating profits net of firm-specific fixed costs;
 - Define: $\pi(t,c) \equiv \tilde{\pi}(t,c) I(t)f_F(c)$
 - I(t)=0 when t>0 [X], =1 when t=0 [FDI]

- What if fixed costs depend on c and t?
 - Technically, results still go through
 - Just include firm-specific fixed costs in definition of operating profits:
 - ullet Let $ilde{\pi}(t,c)$ denote operating profits net of firm-specific fixed costs;
 - Define: $\pi(t,c) \equiv \tilde{\pi}(t,c) I(t)f_F(c)$
 - I(t)=0 when t>0 [X], =1 when t=0 [FDI]
 - Now: Supermodularity may not hold:
 - $\Delta_c \pi(t,c) \Delta_c \pi(0,c) = [\Delta_c \tilde{\pi}(t,c) \Delta_c \tilde{\pi}(0,c)] + \Delta_c f_F(c)$

- What if fixed costs depend on c and t?
 - Technically, results still go through
 - Just include firm-specific fixed costs in definition of operating profits:
 - ullet Let $ilde{\pi}(t,c)$ denote operating profits net of firm-specific fixed costs;
 - Define: $\pi(t,c) \equiv \tilde{\pi}(t,c) I(t)f_F(c)$
 - I(t) = 0 when t > 0 [X], = 1 when t = 0 [FDI]
 - Now: Supermodularity may not hold:
 - $\Delta_c \pi(t,c) \Delta_c \pi(0,c) = [\Delta_c \tilde{\pi}(t,c) \Delta_c \tilde{\pi}(0,c)] + \Delta_c f_F(c)$
 - Example 1: Behrens-Mion-Ottaviano (2010): $f_F(c) = cf$
 - So: $\Delta_c f_F(c) = (c_1 c_2) f \ge 0$
 - Supermodularity and so conventional sorting are reinforced

- What if fixed costs depend on c and t?
 - Technically, results still go through
 - Just include firm-specific fixed costs in definition of operating profits:
 - Let $\tilde{\pi}(t,c)$ denote operating profits net of firm-specific fixed costs;
 - Define: $\pi(t,c) \equiv \tilde{\pi}(t,c) I(t) f_F(c)$
 - I(t) = 0 when t > 0 [X], = 1 when t = 0 [FDI]
 - Now: Supermodularity may not hold:
 - $\Delta_c \pi(t,c) \Delta_c \pi(0,c) = [\Delta_c \tilde{\pi}(t,c) \Delta_c \tilde{\pi}(0,c)] + \Delta_c f_F(c)$
 - Example 1: Behrens-Mion-Ottaviano (2010): $f_F(c) = cf$
 - So: $\Delta_c f_F(c) = (c_1 c_2) f > 0$
 - Supermodularity and so conventional sorting are reinforced
 - Example 2: Oldenski (2009): Task-based trade in services
 - Higher-productivity firms in service sectors are more vulnerable to contract risk when located abroad:
 - Now: $\Delta_c f_F(c) = f_F(c_1) f_F(c_2) < 0$, so $\pi(t,c)$ may be submodular
 - Conventional sorting may be reversed: higher-productivity firms may find it more profitable to locate at home.

▶ Skip to Conclusion

- Assume firm invests in market-specific process R&D
 - Similar results apply to advertising, marketing, etc. (Arkolakis JPE 2010)
- ... and costs vary continuously in investment
 - Approach also applies to discrete choice of techniques (Bustos AER 2011)

▶ Skip to Conclusion

- Assume firm invests in market-specific process R&D
 - Similar results apply to advertising, marketing, etc. (Arkolakis JPE 2010)
- ... and costs vary continuously in investment
 - Approach also applies to discrete choice of techniques (Bustos AER 2011)

$$\pi\left(t,c\right)\equiv\underset{x,k}{Max}\left[\left\{ p\left(x\right)-C\left(c,k\right)-t\right\} x-F\left(k\right)\right]$$

c: Firm's cost level or inverse productivity (exogenous, as before)

k : Investment in cost-reducing R&D (endogenous)

 $C\left(c,k
ight)$: Marginal production cost: increasing in c, decreasing in k

F(k): Endogenous fixed cost: increasing in k

▶ Skip to Conclusion

- Assume firm invests in market-specific process R&D
 - Similar results apply to advertising, marketing, etc. (Arkolakis JPE 2010)
- ... and costs vary continuously in investment
 - Approach also applies to discrete choice of techniques (Bustos AER 2011)

$$\pi\left(t,c\right)\equiv\underset{x,k}{Max}\left[\left\{ p\left(x\right)-C\left(c,k\right)-t\right\} x-F\left(k\right)\right]$$

c: Firm's cost level or inverse productivity (exogenous, as before)

k: Investment in cost-reducing R&D (endogenous)

 $C\left(c,k
ight)$: Marginal production cost: increasing in c, decreasing in k

F(k): Endogenous fixed cost: increasing in k

- Supermodularity may not hold if $C_{kc} << 0$
- i.e., if investment lowers the cost disadvantage of a lower productivity firm

▶ Skip to Conclusion

- Assume firm invests in market-specific process R&D
 - Similar results apply to advertising, marketing, etc. (Arkolakis JPE 2010)
- ... and costs vary continuously in investment
 - Approach also applies to discrete choice of techniques (Bustos AER 2011)

$$\pi\left(t,c\right)\equiv\underset{x,k}{Max}\left[\left\{ p\left(x\right)-C\left(c,k\right)-t\right\} x-F\left(k\right)\right]$$

c: Firm's cost level or inverse productivity (exogenous, as before)

k : Investment in cost-reducing R&D (endogenous)

 $C\left(c,k
ight)$: Marginal production cost: increasing in c, decreasing in k

F(k): Endogenous fixed cost: increasing in k

- Supermodularity may not hold if $C_{kc} << 0$
- i.e., if investment lowers the cost disadvantage of a lower productivity firm
- This cannot happen in some commonly-used special cases ...
- ... But: We can find examples exhibiting submodularity ...

◆ロ → ◆卸 → ◆ き → き → り へ で

Endogenous Fixed Costs: Details

$$\pi\left(t,c\right)\equiv\operatorname*{Max}_{x,k}\left[\left\{ p\left(x\right)-C\left(c,k\right)-t\right\} x-F\left(k\right)\right]$$

Proposition

 $\pi\left(t,c
ight)$ is supermodular in (t,c) if $C\left(c,k
ight)$ is supermodular in (c,k).

Endogenous Fixed Costs: Details

$$\pi\left(t,c\right) \equiv \mathop{Max}_{x,k}\left[\left\{ p\left(x\right) - C\left(c,k\right) - t\right\} x - F\left(k\right)\right]$$

Proposition

 $\pi\left(t,c
ight)$ is supermodular in (t,c) if $C\left(c,k
ight)$ is supermodular in (c,k).

$$C(c,k) = c_0 + c\phi(k), \quad F'' = 0$$

Lemma

 $\pi\left(t,c\right)$ is supermodular in (t,c) if and only if $\phi\left(k\right)$ is log-convex in k.

Endogenous Fixed Costs: Details

$$\pi\left(t,c\right)\equiv\underset{x,k}{Max}\left[\left\{ p\left(x\right)-C\left(c,k\right)-t\right\} x-F\left(k\right)\right]$$

Proposition

 $\pi(t,c)$ is supermodular in (t,c) if C(c,k) is supermodular in (c,k).

$$C(c,k) = c_0 + c\phi(k), \quad F'' = 0$$

Lemma

 $\pi(t,c)$ is supermodular in (t,c) if and only if $\phi(k)$ is log-convex in k.

- $\pi(t, c_0, c)$ is always supermodular in (t, c_0)
- Second-order condition requires: $xC_{kk} + F'' > 0 \Rightarrow C_{kk} > 0$ if F'' = 0
 - So, when F'' = 0, C must be convex in k, but need not be log-convex.

Mrázová & Neary (Surrey & Oxford)

Endogenous Fixed Costs: Proofs

Proof of Proposition:

- Supermodularity again depends on sign of x_c : $\pi_{tc} = -x_c$
- First-order conditions: p C t + xp' = 0 and $-xC_k F' = 0$

$$\Rightarrow \begin{bmatrix} 2p' + xp'' & -C_k \\ -C_k & -(xC_{kk} + F'') \end{bmatrix} \begin{bmatrix} dx \\ dk \end{bmatrix} = \begin{bmatrix} C_c dc + dt \\ xC_{kc} dc \end{bmatrix}$$
$$\Rightarrow \pi_{tc} = -x_c = D_+^{-1} \left[\underbrace{C_c \left(xC_{kk} + F'' \right)}_{\perp} - xC_k C_{kc} \right]$$

Endogenous Fixed Costs: Proofs

Proof of Proposition:

- Supermodularity again depends on sign of x_c : $\pi_{tc} = -x_c$
- First-order conditions: p C t + xp' = 0 and $-xC_k F' = 0$

$$\Rightarrow \begin{bmatrix} 2p' + xp'' & -C_k \\ -C_k & -(xC_{kk} + F'') \end{bmatrix} \begin{bmatrix} dx \\ dk \end{bmatrix} = \begin{bmatrix} C_c dc + dt \\ xC_{kc} dc \end{bmatrix}$$
$$\Rightarrow \pi_{tc} = -x_c = D_+^{-1} \left[\underbrace{C_c \left(xC_{kk} + F'' \right)}_{-} - xC_k C_{kc} \right]$$

- Second-order conditions: D>0 (determinant) and $xC_{kk}+F''>0$
- ... both of which work in favour of $x_c < 0$ and so of supermodularity
- But: supermodularity could still fail if $C_{kc} << 0$

Proof of Lemma:

- $C(c,k) c_0 = c\phi(k)$ log-convex in $k \Leftrightarrow C_k C_{kc} C_c C_{kk} < 0$.
 - $\Phi(k) \equiv \ln \phi(k)$; $\Phi'' > 0 \Leftrightarrow \phi \phi'' (\phi')^2 > 0$
 - $C_k C_{kc} C_c C_{kk} = c \left[(\phi')^2 \phi \phi'' \right]$

Endogenous Fixed Costs: Special Cases

- **①** d'Aspremont-Jacquemin (*AER* 1988): $C(c,k)=c_0-c^{-1}k$, $F(k)=\frac{1}{2}\gamma k^2$
 - Applied to FDI by Petit and Sanna-Randaccio (IJIO 2000)
 - $C_{kc} > 0$
 - So: supermodularity always holds

Endogenous Fixed Costs: Special Cases

- **1** d'Aspremont-Jacquemin (*AER* 1988): $C(c,k)=c_0-c^{-1}k$, $F(k)=\frac{1}{2}\gamma k^2$
 - Applied to FDI by Petit and Sanna-Randaccio (IJIO 2000)
 - $C_{kc} > 0$
 - So: supermodularity always holds
- ② Spence (*Em* 1984): $C(c,k) = c_0 + ce^{-\theta k}$, F(k) = k
 - $C_{kc} < 0$; but only negative enough to make $\pi_{tc} = 0$
 - $C(c,k) c_0 = ce^{-\theta k}$ is log-linear in k
 - $x_c = 0$, so π is modular in (t, c)
 - So: No selection effects in the Spence case
 - All firms produce the same level of output (though more productive firms invest less and make higher profits)

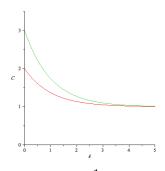
Endogenous Fixed Costs: Special Cases

- **1** d'Aspremont-Jacquemin (*AER* 1988): $C(c,k)=c_0-c^{-1}k$, $F(k)=\frac{1}{2}\gamma k^2$
 - Applied to FDI by Petit and Sanna-Randaccio (IJIO 2000)
 - $C_{kc} > 0$
 - So: supermodularity always holds
- ② Spence (*Em* 1984): $C(c,k) = c_0 + ce^{-\theta k}$, F(k) = k
 - $C_{kc} < 0$; but only negative enough to make $\pi_{tc} = 0$
 - $C(c,k) c_0 = ce^{-\theta k}$ is log-linear in k
 - $x_c = 0$, so π is modular in (t, c)
 - So: No selection effects in the Spence case
 - All firms produce the same level of output (though more productive firms invest less and make higher profits)
 - However, a less convex R&D cost function can be submodular ...
 - ... as well as being economically interesting ...

- $C(c,k) = c_0 + ce^{-\theta k^a}$:
 - a = 1: Spence (1984); a = 2: Gaussian function

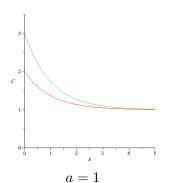
- $C(c,k) = c_0 + ce^{-\theta k^a}:$
 - a=1: Spence (1984); a=2: Gaussian function
 - a > 1: R&D with threshold effects; $C(c, k) c_0$ is log-concave in k
 - ullet ightarrow firm selection into proximity versus concentration reversed

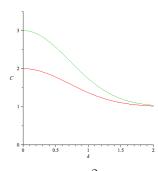
- **3** $C(c,k) = c_0 + ce^{-\theta k^a}$:
 - a = 1: Spence (1984); a = 2: Gaussian function
 - a > 1: R&D with threshold effects; $C(c, k) c_0$ is log-concave in k
 - ullet ightarrow firm selection into proximity versus concentration reversed



◆ロ → ◆卸 → ◆ き → き → り へ で

- **3** $C(c,k) = c_0 + ce^{-\theta k^a}$:
 - a = 1: Spence (1984); a = 2: Gaussian function
 - a > 1: R&D with threshold effects; $C(c, k) c_0$ is log-concave in k
 - ullet ightarrow firm selection into proximity versus concentration reversed





Outline of the Talk

- First-Order Selection Effects
- Supermodularity
- 3 Selection into FDI versus Exporting
- 4 Selection Effects in Monopolistic Competition
- 5 Selection Effects in Oligopoly
- 6 Alternative Firm Choices
- Summary and Conclusion
- 8 Supplementary Material

Summary and Conclusion

- First-order selection effects very robust (e.g. Melitz (2003))
- Second-order selection effects less robust
 - Supermodularity of profits in tariffs and production costs is necessary and sufficient for "conventional sorting"
 - More efficient firms engage in FDI, less efficient in exporting
 - Fixed costs may not predict outcome, except in CES case
- Result holds under a variety of assumptions about market structure and extends to a broad range of models
- Supermodularity pervasive but not universal; counter-examples:
 - FDI without CES: Horizontal with icebergs, or Vertical
 - Task-based trade in services
 - Threshold effects in R&D
- Technique very easy to apply analytically

Summary and Conclusion

Thank you for listening. Comments welcome!

Outline of the Talk

- First-Order Selection Effects
- Supermodularity
- Selection into FDI versus Exporting
- 4 Selection Effects in Monopolistic Competition
- 5 Selection Effects in Oligopoly
- 6 Alternative Firm Choices
- Summary and Conclusion
- 8 Supplementary Material
 Examples 1 and 2

Examples 1 and 2

- Example 1: $\pi(t,c) \equiv \mathop{Max}\limits_{x} \left[\left\{ p(x) c t \right\} x \right]$
 - From the envelope theorem: $\pi_t = -x(t,c)$.
 - Hence the second cross-partial derivative is positive: $\pi_{tc} = -x_c > 0$.
 - Proof: The first-order condition is: p-c-t+xp'=0
 - Differentiate this to get: $dx = -H^{-1}dc$
 - $H \equiv -(2p' + xp'') > 0$ from second-order condition
 - $\bullet \Rightarrow \pi_{tc} = -x_c = H^{-1} > 0$
 - So π is supermodular in t and c.

Examples 1 and 2

- Example 1: $\pi(t,c) \equiv Max \left[\left\{ p(x) c t \right\} x \right]$
 - From the envelope theorem: $\pi_t = -x(t,c)$.
 - Hence the second cross-partial derivative is positive: $\pi_{tc} = -x_c > 0$.
 - Proof: The first-order condition is: p c t + xp' = 0
 - Differentiate this to get: $dx = -H^{-1}dc$
 - $H \equiv -(2p' + xp'') > 0$ from second-order condition
 - $\bullet \Rightarrow \pi_{tc} = -x_c = H^{-1} > 0$
 - So π is supermodular in t and c.

- Example 2: $\pi(t,c) \equiv Max \left[\left\{ p(x) t \right\} x C(c,x) \right]$
 - Envelope theorem still holds: $\pi_t = -x(t,c)$

$$\Rightarrow \pi_{tc} = -x_c = H^{-1}C_{xc}$$

- $H \equiv -[2p' + xp'' (2C_x + xC_{xx})] > 0$ from second-order condition
- But π is submodular if C_{xc} is negative

Proof of Proposition 1

- Proof of Necessity:
 - Let t > 0.
 - If π is not supermodular in t and c, then there exist some c_1 and c_2 such that $c_1 > c_2$ and $\pi(t, c_1) \pi(t, c_2) < \pi(0, c_1) \pi(0, c_2)$.
 - Rearranging terms gives: $G_1>G_2$, $G_1\equiv\pi(0,c_1)-\pi(t,c_1)$, $G_2\equiv\pi(0,c_2)-\pi(t,c_2)$

Proof of Proposition 1

- Proof of Necessity:
 - Let t > 0.
 - If π is not supermodular in t and c, then there exist some c_1 and c_2 such that $c_1 > c_2$ and $\pi(t, c_1) \pi(t, c_2) < \pi(0, c_1) \pi(0, c_2)$.
 - Rearranging terms gives: $G_1>G_2$, $G_1\equiv\pi(0,c_1)-\pi(t,c_1)$, $G_2\equiv\pi(0,c_2)-\pi(t,c_2)$
 - Set f such that: $f = \frac{1}{2}(G_1 + G_2)$.
 - For this f, we have: $\bar{\gamma(t,c_1,f)} = G_1 f = \frac{1}{2} \left(G_1 G_2 \right) > 0$ and $\gamma(t,c_2,f) = G_2 f = \frac{1}{2} \left(G_2 G_1 \right) < 0$.
 - Since γ measures the incentive to engage in FDI relative to exporting, the higher-cost firm will serve the foreign market via FDI while the lower-cost firm will serve it by exports.
- ullet So, if SM does not hold, we can find some f such that CS is reversed.
- So, SM is necessary for CS

Proof of Proposition 3

We want to express π_{tc} in terms of ε and ε_x :

▶ Return

$$\varepsilon(x) = -\frac{p(x)}{xp'(x)} \to \varepsilon_x = -\frac{1}{x} + \frac{p(p' + xp'')}{(xp')^2}$$
$$\to 2p' + xp'' = -\frac{p}{x\varepsilon^2} (\varepsilon - 1 - x\varepsilon_x) < 0$$
$$p - \tau c + xp' = 0 \to \tau c = p + xp' = p - \frac{p}{\varepsilon} = \frac{\varepsilon - 1}{\varepsilon} p$$

Finally, substitute these results into π_{tc} :

$$\pi_{tc} = -x - \tau c \left(2p' + xp''\right)^{-1} = -x + \frac{\varepsilon - 1}{\varepsilon - 1 - x\varepsilon_x} \varepsilon x$$

Collecting terms gives the desired expression:

$$\pi_{tc} = \frac{(\varepsilon - 1)^2 + x\varepsilon_x}{\varepsilon - 1 - x\varepsilon_x}x$$

Mrázová & Neary (Surrey & Oxford)

Example: Quadratic Preferences

Quadratic preferences:

Example: Quadratic Preferences

Quadratic preferences:

- $p = A bx \Rightarrow p' = -b$, p'' = 0, H = 2b
- FOC: $p \tau c bx = 0 \Rightarrow x = \frac{1}{2b} (A \tau c)$
- \Rightarrow Maximized operating profits: $\pi(t,c) = bx^2 = \frac{1}{4b} \left(A \tau c\right)^2$
- $\bullet \Rightarrow \pi_{tc} = -x + \frac{\tau c}{2b} = -\frac{1}{2b} \left(A 2\tau c \right) \ge 0$

Example: Quadratic Preferences

Quadratic preferences:

- $p = A bx \Rightarrow p' = -b, p'' = 0, H = 2b$
- FOC: $p \tau c bx = 0 \Rightarrow x = \frac{1}{2b} (A \tau c)$
- \Rightarrow Maximized operating profits: $\pi(t,c) = bx^2 = \frac{1}{4b} \left(A \tau c\right)^2$
- $\Rightarrow \pi_{tc} = -x + \frac{\tau c}{2b} = -\frac{1}{2b} (A 2\tau c) \ge 0$
- So: Super-modular for high-cost firms:
 - High $c \Rightarrow 2\tau c > A \Rightarrow \pi_{tc} > 0$
 - Highest-cost firms likely to export (depending on threshold values)
 - Mid-cost ones engage in FDI

Example: Quadratic Preferences

Quadratic preferences:

▶ Back

•
$$p = A - bx \Rightarrow p' = -b, p'' = 0, H = 2b$$

• FOC:
$$p - \tau c - bx = 0 \implies x = \frac{1}{2b} (A - \tau c)$$

•
$$\Rightarrow$$
 Maximized operating profits: $\pi(t,c) = bx^2 = \frac{1}{4b} (A - \tau c)^2$

•
$$\Rightarrow \pi_{tc} = -x + \frac{\tau c}{2b} = -\frac{1}{2b} (A - 2\tau c) \ge 0$$

• So: Super-modular for high-cost firms:

• High
$$c \Rightarrow 2\tau c > A \Rightarrow \pi_{tc} > 0$$

- Highest-cost firms likely to export (depending on threshold values)
- Mid-cost ones engage in FDI
- But: Sub-modular for low-cost firms!
 - Low $c \Rightarrow 2\tau c < A \Rightarrow \pi_{tc} < 0$
 - Lowest-cost/most productive firms export

- ullet Assume firm wants to serve n identical foreign countries [e.g., EU]
 - Same inverse demand function p(x) in each
 - ullet Results as before if both intra-EU and transatlantic tariff equal t.

- ullet Assume firm wants to serve n identical foreign countries [e.g., EU]
 - Same inverse demand function p(x) in each
 - ullet Results as before if both intra-EU and transatlantic tariff equal t.
- ullet Now: n EU countries form a customs union, with internal tariff $t_U < t$
- So: Third option is export-platform FDI

- Assume firm wants to serve n identical foreign countries [e.g., EU]
 - Same inverse demand function p(x) in each
 - Results as before if both intra-EU and transatlantic tariff equal t.
- Now: n EU countries form a customs union, with internal tariff $t_{II} < t$
- So: Third option is export-platform FDI
- \bullet Profits from establishing plants in m member countries and exporting from them to the remaining n-m countries:

$$\Pi^{Fm} = m \left[\pi (0, c) - f_F \right] + (n - m) \left[\pi (t_U, c) - f_X \right]$$

- ullet Assume firm wants to serve n identical foreign countries [e.g., EU]
 - Same inverse demand function p(x) in each
 - ullet Results as before if both intra-EU and transatlantic tariff equal t.
- ullet Now: n EU countries form a customs union, with internal tariff $t_U < t$
- So: Third option is export-platform FDI
- Profits from establishing plants in m member countries and exporting from them to the remaining n-m countries:

$$\Pi^{Fm} = m \left[\pi (0, c) - f_F \right] + (n - m) \left[\pi (t_U, c) - f_X \right]$$

• Define the export-platform gain: $\phi(t,t_{U},c)\equiv\pi\left(t_{U},c\right)-\pi\left(t,c\right)>0$

$$\rightarrow \Pi^{Fm} - \Pi^{X} = m\gamma(t, c, f) + (n - m)\phi(t, t_{U}, c)$$

- ullet Assume firm wants to serve n identical foreign countries [e.g., EU]
 - Same inverse demand function p(x) in each
 - ullet Results as before if both intra-EU and transatlantic tariff equal t.
- ullet Now: n EU countries form a customs union, with internal tariff $t_U < t$
- So: Third option is export-platform FDI
- Profits from establishing plants in m member countries and exporting from them to the remaining n-m countries:

$$\Pi^{Fm} = m \left[\pi (0, c) - f_F \right] + (n - m) \left[\pi (t_U, c) - f_X \right]$$

• Define the export-platform gain: $\phi(t,t_{U},c)\equiv\pi\left(t_{U},c\right)-\pi\left(t,c\right)>0$

$$\rightarrow \Pi^{Fm} - \Pi^X = m\gamma(t, c, f) + (n - m)\phi(t, t_U, c)$$

• Linear in m, so optimal m is either one or n

- Assume firm wants to serve n identical foreign countries [e.g., EU]
 - Same inverse demand function p(x) in each
 - Results as before if both intra-EU and transatlantic tariff equal t.
- Now: n EU countries form a customs union, with internal tariff $t_{II} < t$
- So: Third option is export-platform FDI
- \bullet Profits from establishing plants in m member countries and exporting from them to the remaining n-m countries:

$$\Pi^{Fm} = m \left[\pi (0, c) - f_F \right] + (n - m) \left[\pi (t_U, c) - f_X \right]$$

• Define the export-platform gain: $\phi(t, t_U, c) \equiv \pi (t_U, c) - \pi (t, c) > 0$

$$\rightarrow \Pi^{Fm} - \Pi^{X} = m\gamma\left(t, c, f\right) + \left(n - m\right)\phi\left(t, t_{U}, c\right)$$

- Linear in m, so optimal m is either one or n
- So, a firm that engages in FDI will establish either a single export-platform plant or n plants, one in each country.
- Assumption of constant marginal cost c is crucial here.

Gain from multi-market FDI relative to export-platform FDI:

$$\Pi^{Fn} - \Pi^{F1} = (n-1) \left[\gamma(t, c, f) - \phi(t, t_U, c) \right]$$

Gain from multi-market FDI relative to export-platform FDI:

$$\Pi^{Fn} - \Pi^{F1} = (n-1) \left[\gamma(t, c, f) - \phi(t, t_U, c) \right]$$

Gain from export-platform FDI relative to exporting:

$$\Pi^{F1} - \Pi^X = \gamma(t, c, f) + (n - 1) \phi(t, t_U, c)$$

Gain from multi-market FDI relative to export-platform FDI:

$$\Pi^{Fn} - \Pi^{F1} = (n-1) \left[\gamma(t, c, f) - \phi(t, t_U, c) \right]$$

Gain from export-platform FDI relative to exporting:

$$\Pi^{F1} - \Pi^X = \gamma(t, c, f) + (n - 1) \phi(t, t_U, c)$$

• Like $\Pi^{Fn} - \Pi^X = n\gamma(t, c, f)$, both can be either positive or negative.

• Gain from multi-market FDI relative to export-platform FDI:

$$\Pi^{Fn} - \Pi^{F1} = (n-1) \left[\gamma(t, c, f) - \phi(t, t_U, c) \right]$$

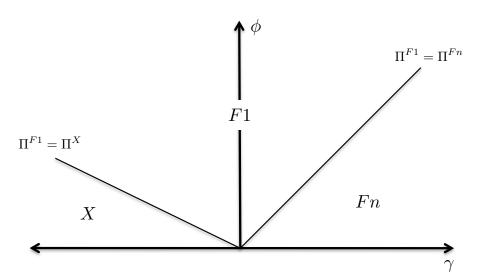
Gain from export-platform FDI relative to exporting:

$$\Pi^{F1} - \Pi^X = \gamma(t, c, f) + (n - 1) \phi(t, t_U, c)$$

- Like $\Pi^{Fn} \Pi^X = n\gamma(t, c, f)$, both can be either positive or negative.
- Summarising the results so far:

Lemma

There are only three profitable modes of serving the n markets: exporting to all, export-platform FDI (with one plant), and multi-market FDI (with nplants).



Firm Selection

Export-platform FDI versus exports:

$$\Delta_c \left(\Pi^{F1} - \Pi^X \right) = \Delta_c \gamma \left(t, c, f \right) + (n - 1) \Delta_c \phi \left(t, t_U, c \right) \tag{1}$$

• If and only if π is supermodular in t and c, both $\Delta_c \gamma (t, c, f)$ and $\Delta_c \phi (t, t_U, c)$ are negative, so (1) is negative

Firm Selection

Export-platform FDI versus exports:

$$\Delta_c \left(\Pi^{F1} - \Pi^X \right) = \Delta_c \gamma \left(t, c, f \right) + (n - 1) \Delta_c \phi \left(t, t_U, c \right) \tag{1}$$

- If and only if π is supermodular in t and c, both $\Delta_c \gamma \left(t,c,f\right)$ and $\Delta_c \phi \left(t,t_U,c\right)$ are negative, so (1) is negative
- Multi-market versus export-platform FDI:

$$\Delta_c \left(\Pi^{Fn} - \Pi^{F1} \right) = (n-1) \Delta_c \left[\gamma \left(t, c, f \right) - \phi \left(t, t_U, c \right) \right]$$
$$= (n-1) \Delta_c \gamma \left(t_U, c, f \right)$$

ullet This too is negative if and only if profits are supermodular in t and c

Firm Selection

Export-platform FDI versus exports:

$$\Delta_c \left(\Pi^{F1} - \Pi^X \right) = \Delta_c \gamma \left(t, c, f \right) + (n - 1) \Delta_c \phi \left(t, t_U, c \right) \tag{1}$$

- If and only if π is supermodular in t and c, both $\Delta_c \gamma \left(t,c,f\right)$ and $\Delta_c \phi \left(t,t_U,c\right)$ are negative, so (1) is negative
- Multi-market versus export-platform FDI:

$$\Delta_c \left(\Pi^{Fn} - \Pi^{F1} \right) = (n-1) \Delta_c \left[\gamma \left(t, c, f \right) - \phi \left(t, t_U, c \right) \right]$$
$$= (n-1) \Delta_c \gamma \left(t_U, c, f \right)$$

ullet This too is negative if and only if profits are supermodular in t and c

Proposition

If and only if π is supermodular in t and c, then the least efficient firms that serve foreign markets will do so via exporting, the next most efficient via export-platform FDI, and the most efficient via multi-market FDI, for all admissible f.

More effective worker screening: Helpman-Itskhoki-Redding (Em 2010)