Productivity and Organization in Portuguese Firms

Lorenzo Caliendo, Yale University Giordano Mion, ESSEC and University of Nottingham Luca David Opromolla, NCSU Esteban Rossi-Hansberg, Chicago University

> Nottingham Lectures March 2024

過 ト イヨト イヨト

Introduction

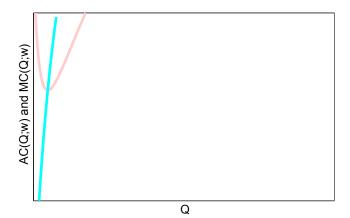
- Firms are very heterogeneous in size, set of products, and organizational characteristics
 - Recent work in economics has underscored these differences to explain a variety of observed phenomena

...but little is known about the sources of this heterogeneity

- Part of it can probably be safely treated as exogenous
 - ★ e.g. original or random inventions or improvements
- > Part of it is endogenous due to investments or organizational change
 - A response to exogenous firm or economy-wide changes (e.g. a trade liberalization)
 - ★ Within-firm responses can have aggregate consequences
- Goal is to understand and measure these within-firm responses and their consequences

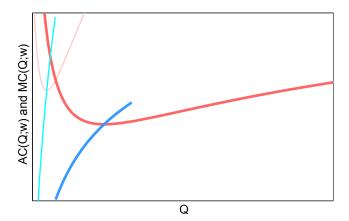
• • = • • = •

Introduction

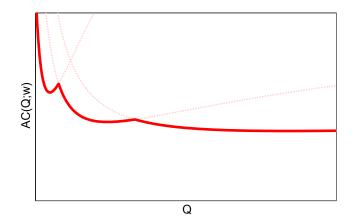

- Consider a sudden increase in demand due to a product becoming fashionable
 - Firm can expand by adding a plant, a more complex management structure, a new division, etc.
- Suppose the firm decides to add a layer of management (a new division with a CEO that manages the whole firm)
 - The new organization is suitable for a larger firm which increases quantity-based productivity
 - Moreover, organizational structure fitted for a larger firm reduces marginal cost
 - Leads to higher quantities and lower prices, which reduces revenue-based productivity

Introduction

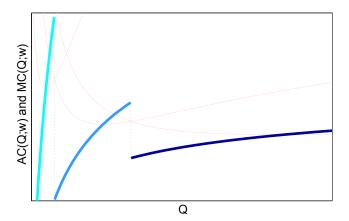
- In this paper we explore the role that organization plays in determining firm productivity
 - We use the theory of knowledge-based hierarchies as a guiding tool as in Rosen (1982) and Garicano (2000)
 - ★ In particular the version in Caliendo and Rossi-Hansberg (2012)
 - Measure organization using the occupational composition of employment within firms
 - ★ As in Caliendo, Monte, and Rossi-Hansberg (2015)
 - Use detailed Portuguese firm-level and firm-product-level data to measure revenue-based and quantity-based productivity
 - Need a flexible method that can incorporate demand shocks and organizational variables (Forlani et al., 2015)
 - Relate organization to revenue-based and quantity based productivity


- 4 週 ト - 4 三 ト - 4 三 ト

Sketch of the Theory - Marginal and Average Costs


★ ∃ >

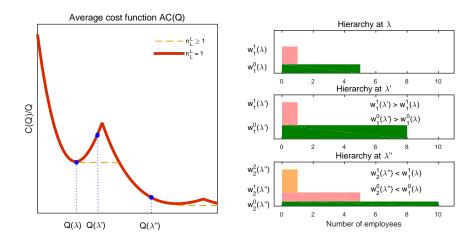
Sketch of the Theory - Marginal and Average Costs


- ₹ ∃ ►

Sketch of the Theory - Average Costs

・ロン ・四と ・ヨン ・ヨン

Sketch of the Theory - Marginal Costs



-

3

Image: A mathematical states and a mathem

The Effect of Revenue Shocks

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Implications of a Revenue Shock on Productivity

- Firms that add layers as a result of a marginal revenue shock increase their quantity discontinuously
- New organization is more productive at the new scale ...but quantity expansion decreases price and revenue-based TFP

- Proposition 1: If firms face fixed costs and prices are increasing in marginal costs, a positive revenue shock that results in additional layers
 - Increases quantity-based productivity
 - Decreases revenue-based productivity

Data Description

• Three datasets for Portuguese manufacturing firms (1995-2005):

- Quadros de Pessoal (QP): matched employer-employee data
 - ★ Measure layers (maximum 4), employment, revenue and wages
- Balance sheet data (BS): capital and materials
 - ★ Needed to compute revenue-based TFP measures
- ▶ Prodcom data (PC): quantity produced at the firm-year-product level
 - ★ Products recorded at the Prodcom 8 digit level and the unit of measurement (Kg, liters, etc.) depends on the specific product
 - ★ We aggregate products at the 2-digits-unit of measurement pairs
 - We split multi-products firms into several single product firms using products revenue shares as weights

イロト イポト イヨト イヨト

Different Forms of Reorganizations: Three Examples

- Small firm, "Manufacture of articles of cork, straw & plaiting material"
 - ▶ Growth spell 2004-5: value-added \uparrow 3%, qty sold \uparrow 28%, prices \downarrow 6%
- Reorganization:
 - Add a top layer of management (production & operations dept.)
 - (Net) Reinforcement of "wood treaters" and lower wages in pre-existing layers

	Firm with	1 Layer (20	004)	
Occupation	Layer 0	Layer 1	Layer 2	Layer 3
Managers				
Clerks		1		
Crafts Workers	8	1		
	Firm with 2	Layers (2	005)	
Managers			2	
Clerks		1		
Crafts Workers	9			

Table 4: Cork Firm Reorganization, Nace 2052 Example

Notes: Occupations correspond to ISCO-88 1-digit major groups.

• Productivity: TFPQ \uparrow 6%, TFPR \downarrow 28%

CMORH

イロト 人間ト イヨト イヨト

Example 2: Downsizing, core tasks, imported inputs

- Small-medium firm, "Knitted and crocheted pullovers, cardigans..."
- Shock: China's entry in the WTO in 2000 \rightarrow removal of EU quotas
 - Downsized heavily: From 37 to 10 employees. Qty sold ↓ 50%, prices ↑ 30%. Imported intermediate inputs double.

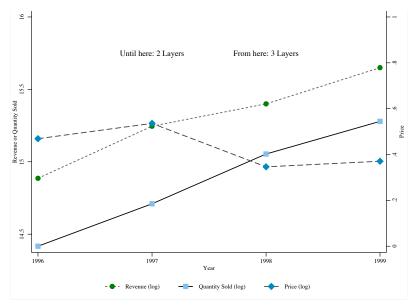
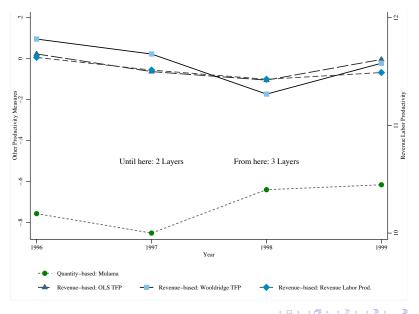

Firm with 3 Layers (2004)						
Occupation	Layer 0	Layer 1	Layer 2	Layer 3		
Managers			1	2		
Technicians and Assoc. Professionals		1				
Clerks	2					
Crafts Workers	15		4			
Plant and Machine Operators	11					
Elementary Occupations	1					
Firm with 2	Layers (20	005)				
Managers						
Technicians and Assoc. Professionals		1	1			
Clerks		1				
Crafts Workers	4					
Plant and Machine Operators	1		1			
Elementary Occupations	1					

Table 1: Textile and Apparel Firm Reorganization, Nace 1772 Example


Notes: Occupations correspond to ISCO-88 1-digit major groups.

• Wages \uparrow . Productivity: TFPQ \downarrow 53%, TFPR \uparrow 9.2%

Example 3: Aluminium Cookware Firm

Example 3: Aluminium Cookware Firm

Structural Estimation - Assumptions

• Production Function for firm i

$$Q_{it} = A_{it} \frac{O_{it}^{\alpha_O} M_{it}^{\alpha_M} K_{it}^{(\gamma - \alpha_M - \alpha_O)}}{K_{it}^{\alpha_M} K_{it}^{(\gamma - \alpha_M - \alpha_O)}}$$

Timing: K_{it}, and L_{it} chosen prior to t (O^{*}_{it} = O_{it}|_{L_{it}})
Use O^{*}_{it} = C (O^{*}_{it}; w_t) / AC (O^{*}_{it}; w_t), then in logs

$$q_{it} = \tilde{a}_{it} + \alpha_O \ln C \left(O_{it}^*; w_t \right) + \alpha_M m_{it} + (\gamma - \alpha_M - \alpha_O) k_{it}$$

★ Where $\tilde{a}_{it} = a_{it} - \alpha_0 \ln AC (O_{it}^*; w_t) = a_{it} + \beta L_{it}$ (from CRH)

Demand (CES)

$$r_{it} = (1/\mu_{it}) \left(q_{it} + \lambda_{it} \right)$$

where μ_{it} is the markup, λ_{it} is a demand shifter

<ロト <回ト < 回ト < 回ト < 回ト = 三日

Structural Estimation - Assumptions

• Stochastic processes

$$\tilde{\mathbf{a}}_{it} = \begin{cases} \alpha_i + \delta_t + \phi_a \tilde{\mathbf{a}}_{it-1} + \nu_{ait} & \text{if } \Delta L_{it} = 0\\ \alpha_i + \delta_t + \phi_a \tilde{\mathbf{a}}_{it-1} + \phi_L \Delta L_{it} + \nu_{ait} & \text{if } \Delta L_{it} \neq 0 \end{cases}$$

and

$$\lambda_{it} = \delta_t^{\lambda} + \phi_{\lambda} \lambda_{it-1} + \nu_{\lambda it}$$

- v_{ait} and $v_{\lambda it}$ are iid idiosyncratic productivity and demand shocks
- v_{ait} and $v_{\lambda it}$ are uncorrelated with past values of \tilde{a}_{it} and λ_{it}

Estimating Strategy

- First, estimate the parameters of the production function $(\gamma, \alpha_M, \alpha_O)$
- Second, obtain quantity productivity, $\tilde{a}_{it} = q_{it} - \alpha_O \ln C \left(O_{it}^*; w_t \right) - \alpha_M m_{it} - (\gamma - \alpha_M - \alpha_O) k_{it}$
- ▶ Third, use the process of \tilde{a}_{it} to estimate ϕ_L and ϕ_a including firm-time-fixed effects

・ロト ・得ト ・ヨト ・ヨト

Quantity-based Productivity Results

VARIABLES	(1)	(2)	(3)	(4)
	Increasing	Decreasing	Constant	All
QTFP t-1	0.912 ^a	0.880ª	0.926 ^a	0.910 ^a
	(0.012)	(0.018)	(0.014)	(0.008)
Change in layers	0.037 ^b (0.017)	0.052 ^b (0.023)		0.062ª (0.016)
Constant	-0.014	0.127	0.211ª	0.116 ^a
	(0.016)	(0.123)	(0.042)	(0.031)
Observations	4,141	2,829	3,031	10,001
Number of fixed effects	1,663	1,274	1,290	4,227
AR(2) Test Stat	0.468	0.117	2.443	1.980
P-value AR(2)	0.640	0.907	0.015	0.048

Table: Quantity TFP. Firm-product-sequence FE. Dynamic panel data estimator

Firm-level clustered standard errors in parentheses. Year and Industry dummies are included in the estimations. a $p{<}0.01,\ ^b$ $p{<}0.05,\ ^c$ $p{<}0.1$

Instrument ΔL_{it}: λ_{it-1}, μ_{it-1}, L_{it}, K_{it}, r_{it-1}, q_{it-1}, ã_{it-2}, as well as all of these variables lagged to the first available year

Revenue-based Productivity Results

• Revenue-based TFP is given by

$$\tilde{a}_{it} = \bar{a}_{it} - p_{it}$$

• Issue: prices are functions productivity, use FOC to get

$$\bar{\mathbf{a}}_{it} = \bar{\alpha}_i + \bar{\delta}_t + \bar{\phi}_a \bar{\mathbf{a}}_{it-1} + \bar{\phi}_L \Delta L_{it} + \bar{\phi}_R X_{it} + v_{\bar{\mathbf{a}}it},$$

where $X_{it} = [\lambda_{it-1}, p_{it-1}, \ln(\mu_{it}), k_{it}]$

- In addition of instrumenting for ΔL_{it} we have to instrument for $\ln (\mu_{it})$ in X_{it} since it is endogenous
 - We can use the same instruments

Revenue-based Productivity Results

Revenue TFP. Firm-product-sequence FE. Dynamic panel data estimator					
	(1)	(2)	(3)	(4)	
VARIABLES	Increasing	Decreasing	Constant	All	
RTFP t-1	0.935ª	0.956ª	0.967ª	0.953ª	
	(0.014)	(0.019)	(0.016)	(0.009)	
Change in layers	-0.018 ^b	-0.035ª	. ,	-0.025ª	
change in layers	(0.008)	(0.011)		(0.009)	
	. ,	()	0.0000	. ,	
Demand t-1	-0.006	-0.008 ^a	-0.008 ^c	-0.006*	
	(0.003)	(0.002)	(0.004)	(0.002)	
Price t-1	-0.007	-0.011 ^c	-0.001	-0.006 ^c	
	(0.005)	(0.006)	(0.006)	(0.003)	
Log Markup	0.075	0.059	0.074	0.049	
	(0.070)	(0.046)	(0.081)	(0.042)	
Capital	0.001	0.002	0.001	0.001	
- 1	(0.002)	(0.002)	(0.002)	(0.001)	
Constant	-0.027ª	0.079	0.000	-0.014 ^b	
constant	(0.009)	(0.051)	(0.000)	(0.006)	
	()	(0.000)	()	()	
Observations	4,141	2,829	3,031	10,001	
Number of fixed effects	1,663	1,274	1,290	4,227	
AR(2) Test Stat	0.043	1.352	1.548	1.805	
P-value AR(2)	0.966	0.177	0.122	0.071	

Firm-level clustered standard errors in parentheses. Year and Industry dummies are included in the estimations. ^ p<0.01, ^ p<0.01, ^ p<0.1

3

イロト イヨト イヨト イヨト

Case Study: Textile & Apparel: China's Entry into WTO

- Removal of EU quotas to China in 2000 (China's entry into the WTO)
- Quotas were applied only to some textile & apparel products
 - Firm-specific instrument capturing the exposure to the quotas
- Underlying identifying assumption: unobserved demand/technology shocks are uncorrelated with the strength of quotas in 2000
 - Quotas were built up from the 1950s, and their phased abolition negotiated in the late 1980s in preparation for the Uruguay Round
- Bloom, Draca, and Van Reenen (2016) calculate that the reduction in quotas created a 240% increase in Chinese imports in that industry
 - In our data, firms that produced products that were protected by a quota, experienced a 24% negative demand shock, an 11% reduction in actual sales, and an 11% reduction in employment (all significant at the 1% level). These firms also reduced the numbers of layers

소리가 소문가 소문가 소문가 ...

Case Study: Textile & Apparel: China's Entry into WTO

Textile and Apparel: OLS, and TV estimates					
VARIABLES	TFPR OLS	TFPR IV	TFPQ OLS	TFPQ IV	
RTFP t-1	0.834 <i>ª</i>	0.827ª			
	(0.040)	(0.042)			
QTFP t-1			0.865ª	0.864ª	
			(0.030)	(0.030)	
Change in layers	-0.014	-0.026	0.085ª	0.147 ^b	
	(0.014)	(0.018)	(0.028)	(0.066)	
Demand t-1	-0.011ª	-0.008ª			
	(0.002)	(0.003)			
Price t-1	0.004	0.002			
	(0.008)	(0.008)			
Log Markup	0.145ª	0.097 ^c			
	(0.033)	(0.058)			
Capital	0.003 ^c	0.002			
	(0.002)	(0.002)			
Observations	554	554	554	554	
Adjusted R^2	0.666	0.660	0.729	0.725	
Kleibergen-Paap stat.		32.50		42.03	

Textile and Apparel: OLS, and IV estimates

Firm-product-level clustered standard errors in parentheses. Year dummies are included in the estimations. a p<0.01, b p<0.05, c p<0.1

3

소리가 소문가 소문가 소문가 ...

More in the paper

- Study the aggregate effects
 - Reorganizations account for about half of all of the aggregate growth in quantity-based productivity
- Study the direct impact in prices
- Study the cost-pass through implied
- Similar results using a host of different measures of revenue productivity
 - From value-added per worker to Olley and Pakes, 1996, Wooldridge, 2009, and De Loecker and Warzinsky 2012

Conclusion

- The productivity of firms is, at least partly, determined by a firm's actions and decisions
- Using detailed employer-employee matched data and firm production quantity and input data for Portuguese firms, we study the endogenous response of TFPR and TFPQ to a change in layers: a firm reorganization
- We find that as a result of an exogenous demand or productivity shock that makes the firm reorganize and add a layer, TFPQ increases by about 6%, while TFPR drops by around 3%
- These effects are large
 - Reorganizations account for about half of all of the aggregate growth in quantity-based productivity
- The ability to reorganize is therefore essential for firms to growth
 - The inability of firms to grow in developing countries could be related to the inability to reorganize efficiently
 - * Reorganization requires a market for talent and delegation