CENTRE FOR RESEARCH ON GLOBALISATION AND LABOUR MARKETS

Research Paper 98/3

An Empirical Assessment of the Impact of Trade on Employment in the United Kingdom

by

David Greenaway, Robert C. Hine, and Peter Wright

Centre for Research on Globalisation and Labour Markets, School of Economics, University of Nottingham

The Centre acknowledges financial support from the Leverhulme Foundation under Programme Grant F114/BF

The Authors

David Greenaway is Professor of Economics, Robert C. Hine is Senior Lecturer, and Peter Wright is Lecturer in the School of Economics, University of Nottingham.

Acknowledgements

The authors are grateful to two anonymous referees for detailed comments on an earlier draft of the paper. In addition they are grateful to participants at an EU Alpha seminar at the University of Nottingham in January 1997, the CEPR European Research Workshop on International Trade held in Helsinki in September 1997, the Royal Economic Society Annual Conference at Warwick University in April 1998 and to Chris Milner for comments on an earlier draft. Amanda Greenwood provided excellent research assistance. The authors also gratefully acknowledge financial support from the ESRC under its Asia-Pacific Programme Grant number L324253045 and support from the Leverhulme Trust under Programme Grant number F114/BF.

An Empirical Assessment of the Impact of Trade on Employment in the United Kingdom by

David Greenaway, Robert C. Hine, and Peter Wright

Abstract

This paper investigates the impact of trade on industry level employment outcomes for a sample of 167 manufacturing industries in the United Kingdom. We build on a dynamic labour demand equation and incorporate imports and exports in a panel framework from 1979-1991. We find that increases in trade volumes, both in terms of imports and exports, cause reductions in the level of derived labour demand. This is consistent with the view that increased openness serves to increase the efficiency with which labour is utilised within the firm. Our results however find limited evidence that the potential for substituting foreign for domestic workers increases the wage elasticity of the derived labour demand function. Also, contrary to the populist view, the disciplining effects of trade with East Asia and Japan appears to be less marked than that associated with imports from the EU.

Outline

- 1. Introduction
- 2. Trade and Employment: a Review of Previous Work
- 3. Modelling Employment Effects
- 4. Results
- 5. Conclusions

1 Introduction

Between 1979 and 1991 more than 2 million jobs were lost in UK manufacturing. Table 1 shows, however, that the extent of the job losses differed substantially across 2 digit SIC industry divisions. The manufacture of office machinery and the processing of rubber and plastics, for example, recorded increases in their workforces whilst three divisions – including textiles and motor vehicle manufacturing - experienced job losses of more than 50%. Such large-scale losses reflect a period of major adaptation and organisational change, particularly as the value of UK manufacturing output remained stable in real terms. At a disaggregated level, though, it is clear that the production experience of industries was very mixed, with about equal numbers of those shown in Table 1 recording an expansion or contraction over the period as a whole. The sharpest declines occurred in textiles, leather, footwear and clothing where competition from low wage economies has been particularly intense for the established industrial countries.

The combination of falling employment and stable production in manufacturing necessarily implies rising output per person. Even at the 2 digit SIC level, however, productivity improvements varied widely – for example, the value of output per person in the manufacture of office machinery rose eight times faster than in the leather industry. Relative movements in productivity appear to be reflected in changes in wages in Table 1, but the range of wage changes across industries is much more restricted than in the range of employment or production change. Thus, half of the industries had a growth in average wages per worker of between 55% and 60% over the 12 year period.

UK industry has become increasingly integrated into the international economy through trade and foreign direct investment. Between 1979 and 1991 this was particularly marked for imports, as shown in Table 1. Their (unweighted) average share in apparent consumption rose from 26% to 37%, whilst for exports as a share of production the proportion rose from 23% to 31%. Once again, there was a wide diversity of experiences across industries, although only one division recorded a decline in import penetration (SIC 46, timber and wooden furniture) and only one a decline in export shares (SIC 36, other transport equipment). Reflecting the dominance of intra-industry trade, movements in import penetration and export shares were positively correlated at the 2-digit level. Thus, divisions 36 and 46 were ranked lowest in both import and export growth, and at the upper end instrument and electrical engineering exemplified the growing trade orientation of most sectors of UK manufacturing.

Summing up, the UK has been through a particularly turbulent period in the development of its manufacturing industry with a combination of sharply reduced employment, stable production and marked improvements in output per person employed. This was a period also of increasing openness in the UK economy. An important issue, therefore, is the possible link between greater exposure to trade and labour market adjustments. This is explored econometrically later in this paper, taking advantage of the wide diversity of experience of individual industries which is apparent even at the 2-digit level in Table 1. By combining trade, labour market and industrial organisation data, we assemble a panel of data for 167 (four digit) industries in the UK to evaluate the impact of imports and exports on productivity and employment. This is a unique data set and provides the opportunity to advance on the more limited factor content and accounting approaches to the problem and we would argue yields more robust and more credible results. In addition, however, our data set also permits us to investigate the impact of trade with different groups of countries.

The remainder of the paper is organised as follows. Section II reviews previous evidence on trade and employment and points up the particular contribution which this paper makes. Section III explains our modelling strategy and sets out details of our data set. Section IV reports on and discusses our results, whilst Section V concludes.

2 Trade and Employment: a Review of Previous Work

The Heckscher-Ohlin-Samuelson (H-O-S) framework yields some fairly clear predictions regarding the effect of trade on employment across sectors. When trade barriers are reduced, the import substitute sector contracts whilst the export sector expands; *ceteris paribus* employment in the former declines, whilst in the latter it increases. The simple H-O-S message therefore is that trade results in a redistribution of employment away from the import substitute sector and towards the export sector.

This is a useful starting point. However, given that much international trade appears to be driven by non-H-O-S factors, how do these results need to be adjusted for a world of intraindustry trade (IIT), where a large proportion of trade is between countries with similar factor endowments and where the products concerned might be vertically or horizontally differentiated?¹ In principle one might assume that increased imports (exports) are associated with employment reductions (increases), ceteris paribus. There are some

¹ Greenaway, Hine and Milner (1994, 1995) evaluate empirically the relative importance of horizontal and vertical IIT in the UK.

differences, however. First, because expansions/contractions occur largely within industries the analysis becomes more complicated. Nevertheless, one would still be trying to establish how trade impacts differentially across industries depending upon differences between them in exposure to trade and changes therein. Second, it is conceivable that technical change, on average, affects IIT industries more than non-IIT industries because more (product and process) innovation occurs. Third, the sensitivity of IIT industries may be greater in the sense that adjustment to trade expansion occurs more rapidly.

There have been a number of attempts to evaluate empirically the impact of trade on employment Two principal methodologies have been used: factor content and growth accounting approaches. In factor content studies, estimates are made of the labour required to produce a given amount of exports or being displaced by a given amount of imports. For instance, following this approach, Sapir and Schumacher (1985) show that a balanced expansion of EC trade with other OECD countries would have only minor effects on employment² - imports and exports have similar labour contents. However, in trade with developing countries the job intensity of European exports was only around 0.8 of the import level in the period studied (1970-81). A balanced expansion of trade with developing countries in value terms would therefore lead to an erosion of jobs. More recently Wood (1991, 1994) has contended that the employment impact of such trade would be greater on the grounds that imports from developing countries are 'noncompeting'. As a result, conventional factor content methodologies underestimate the amount of labour in the North which imports from the South displace. He estimates that North-South trade has resulted in a net loss of 9 million jobs in the North compared with 1 million using the standard methodology, and compared with a jobless total in the OECD countries of 35 million in 1994. However, Wood's findings have been criticised by Baldwin (1995) for overstating the extent to which imports are non-competing, and for the assumption that similar production technologies are employed in the North and South. Although they concede that the potential biases identified by Wood could result in factor content analysis, underestimating the employment impact of trade with developing countries, Cortes, Jean and Pisani-Ferry (1996) still conclude that the labour market impact of trade with low wage economies in France has been modest.

² A small increase in Italy and decline in Germany, the Netherlands and Belgium; no change in the UK and France.

Krugman (1995) sets up a mini-CGE model to explore the employment impact of increased trade with developing countries. He argues that with rigid relative wages of unskilled and skilled labour, increased imports of unskilled labour intensive products will have two components. The first is the standard factor content effect from an increase in net imports of unskilled-labour intensive products. This is supplemented by a general equilibrium multiplier effect whose magnitude depends on the level of net exports of skilled labour intensive products and the unskilled to skilled ratio in aggregate employment. The combined effect is double that of the usual factor content estimate alone. However, the impact on employment of increased trade with developing countries remains small - an estimated 1.43% fall in employment from an import penetration rate for manufactures from Newly Industrialising Countries of 1.75% of GDP (current level in OECD countries).

In the growth accounting approach, the sources of employment change are decomposed into domestic demand, trade and productivity elements. It is generally found that trade factors have played only a minor role in recent job losses - productivity growth has been the main factor displacing labour (in the short run). Indeed, an OECD (1992) study concluded that between 1970 and 1985 trade - including trade in services - was a net source of employment gains in Denmark, France, Germany and the Netherlands, but a source of loss in the UK. For the more recent period, 1979 to 1990, Gregory and Greenhalgh (1997) found that the UK also had a gain in employment from trade changes - though this was achieved by an increase in financial services, and primary and extractive employment, and losses in manufacturing. For France, Messerlin (1995) observed again a modest and mostly positive employment effect from foreign trade between 1980 and 1992 (+0.8% per year on average), though the effect was negative during the economic expansion of 1988 to 1991.

A well-known problem with the growth accounting approach is that it is assumed that the components of change are independent. Clearly, for example, if rising imports stimulated faster productivity growth, there would be additional effects of trade not picked up by this method (see Martin and Evans 1981, Wood 1994).³ There is evidence linking the growth of trade to the growth of labour productivity. For example, Cortes and Jean (1996) find a clear

³ Some critics (e.g. Courakis *et al.* 1997, Leamer 1994) argue that the growth accounting approach is flawed in an even more fundamental way. In their view, trade is not capable of 'explaining' changes in aggregate employment since employment in the tradable sector is a residual after changes in factor supplies, factor demands by non-tradable and technology. Since both trade and technology play a role, and the critical issue is the growing globalisation of the world economy, the attempt to apportion relative importance to the two factors is seen as irrelevant.

link for the US, France and Germany as does Lawrence (1996) for the US. Moreover, there are good reasons for believing that such an effect will be important. Trade-induced productivity growth might be stimulated via various channels. Caves and Kreps (1993) emphasise the pro-competitive impact of trade on X-efficiency whilst Borjas and Ramey (1994) point to reduced rents and employment of unionised labour. As Feenstra and Hanson (1996) argue, trade may also result in the relocation abroad of the most labour intensive stages of the production process. Neven and Wyplosz (1996) find substantial evidence of defensive changes in technique and output prices to meet competition from imports.

Clearly therefore theory and empirical evidence lay considerable stress on induced productivity effects. It is the principal aim of this study to quantify the importance of the trade stimulus to productivity growth and employment in the United Kingdom.

3 Modelling Employment Effects

As documented in the previous section, there are important limitations associated with the two most widely used approaches to investigating the employment effects of increased trade: the factor content and accounting decomposition methods. Instead of relying on either, we adopt a regression based approach grounded in a dynamic model of labour demand⁴ to quantify possible employment losses resulting from a more efficient use of labour.

We begin by assuming a Cobb-Douglas production function where for the representative firm in industry i in period t:

$$Q_{it} = A^{\gamma} K_{it}^{\ \alpha} N_{it}^{\ \beta} \tag{1}$$

where:

Q = real output

K = capital stock

N = units of labour utilised

⁴ There are a limited number of previous studies which use regression based techniques, the majority of which are based on U.S. data. Abowd (1987) examines the impact of import competition on collectively-bargained wage and employment outcomes in the U.S., with Abowd and Lemieux (1990) and Caves (1990) providing a comparison with Canada. Denny and Machin (1991) and Konings and Vandenbussche (1995), using firm-level data for the UK, also examine the impact of increased foreign competition on wages and employment.

and where α and β represent the factor share coefficients and γ allows for factors changing the efficiency of the production process. A profit-maximising firm will employ labour and capital at such levels that the marginal revenue product of labour equals the wage (w) and the marginal revenue product of capital equals its user cost (c). Solving this system simultaneously to eliminate capital from the expression for firm output allows us to obtain the following expression:

$$Q_{it} = A^{\gamma} \left(\frac{\alpha N_{it}}{\beta}, \frac{w_i}{c}\right)^{\alpha} N_{it}^{\beta}$$
⁽²⁾

Taking logarithms and rearranging equation (2) allows us to derive the firm's, and therefore the industry's, derived demand for labour as:

$$\ln N_{it} = \phi_0 + \phi_1 \ln \left(\frac{w_i}{c}\right) + \phi_2 \ln Q_{it}$$
(3)

where:

$$\phi_0 = -(\gamma \ln A + \alpha \ln \alpha - \alpha \ln \beta) / (\alpha + \beta)$$

$$\phi_1 = -\alpha / (\alpha + \beta)$$

$$\phi_2 = 1 / (\alpha + \beta)$$

One might expect that the technical efficiency of the production process increases over time and that the rate of technology adoption and increases in x-efficiency would be correlated with trade changes, therefore it is hypothesised that parameter *A* in the production function varies with time in the following manner:

$$A_{it} = e^{\delta_0 T_i} M_{it}^{\delta_1} X_{it}^{\delta_2}, \ \delta_0, \delta_1, \delta_2 > 0 \tag{4}$$

where:

T = time trend M = import penetration X = export penetration which implies:

which hipples.

$$\ln N_{it} = \phi_0^* - \mu_0 T - \mu_1 \ln M_{it} - \mu_2 \ln X_{it} + \phi_1 \ln \binom{w_i}{c} + \phi_2 \ln Q_{it}$$
(5)

with:

$$\begin{split} \phi_0^* &= -(\alpha \ln \alpha - \alpha \ln \beta) / (\alpha + \beta) \\ \mu_0 &= \mu \delta_0 \end{split}$$

 $\mu_1 = \mu \delta_1$ $\mu_2 = \mu \delta_2$ $\mu = \gamma / (\alpha + \beta)$

Dynamics in the employment equation

If there are costs associated with employment adjustment then the level of employment may deviate from its steady state as adjustment to equilibrium takes place. This leads to the introduction of a lag on employment into the employment function. If the employment measure is an aggregation across workers with differing adjustment costs then additional lags may be necessary to allow for heterogeneity effects (Nickell 1986). A longer lag structure may also be necessary if serially correlated technology shocks are present. Lags may also be introduced into the labour demand function once bargaining considerations are taken into account- such as sequences of bargains or expectations formation about future wage and output levels.

Purely specifying dynamics in terms of lags of the dependent variable implicitly imposes a common evolution for employment following a change in an explanatory variable. This restriction may be relaxed by additionally introducing a distributed lag structure for the independent variables. This is the approach which we adopt since we are agnostic about the source of the dynamics in the employment equation.

1.1 Data and implementation

The data set we use has been specially assembled using a diversity of sources in order to allow the construction of an integrated database of industrial, labour market and trade statistics. Thus we have a panel of 167 manufacturing industries, corresponding approximately to a four digit ISIC level of aggregation, from 1979 to 1991⁵. Since the data set has both cross-sectional and time series elements the general dynamic estimating equation for the panel of industries in our study is of the form:⁶

$$\ln N_{i,t} = \lambda_i - \mu_0 T - \sum_j \mu_{1j} \ln M_{i,t-j} - \sum_j \mu_{2j} \ln X_{i,t-j} + \sum_j \phi_{0j} \ln N_{i,t-j} + \sum_j \phi_{1j} \ln w_{i,t-j} + \sum_j \phi_{2j} \ln Q_{i,t-j} + \varepsilon_{it}$$
(6)

⁵ Details of the data are available from the authors on request.

⁶ Assuming perfect capital markets, the user cost of capital will only vary over time, so that in estimation its variation will be captured by time dummies.

where:

 $N_{it} = \text{total employment in industry i in time t.}$ $w_{it} = \text{average real wage in industry i in time t.}$ $Q_{it} = \text{real output in industry i in time t.}$ $\lambda_i = \text{industry specific effect}$

Note that in this equation explanatory variables are assumed to have common impacts across industries. The industry specific effects allow for unaccounted differences between sectors which are constant over time.

For the purposes of estimation, the employment equation is differenced so as to transform out the industry specific fixed effects, and a dynamic equation implemented of the form:

$$\Delta \ln N_{i,t} = -\mu_0 - \sum_j \mu_{1j} \Delta \ln M_{i,t-j} - \sum_j \mu_{2j} \Delta \ln X_{i,t-j} + \sum_j \phi_{0j} \Delta \ln N_{i,t-j} + \sum_j \phi_{1j} \Delta \ln w_{i,t-j} + \sum_j \phi_{2j} \Delta \ln Q_{i,t-j} + \Delta \varepsilon_{it}$$
(7)

However, since the differencing will induce a bias in the coefficient on the lagged dependent variable because of the correlation between it and the unobserved fixed effects in the residual, an instrumental variable approach must be adopted. The one used is the generalised method of moments technique of Arellano and Bond (1991). This uses lags of the endogenous variables dated *t*-2 and earlier as instruments, but is efficient in the sense that it expands the instrument set as the panel progresses and the number of potential lags increases. This equation will give unbiased and consistent estimates of the regression coefficients as long as the differenced equation is free of second and higher order serial correlation. Thus test statistics, which are distributed normally under the null of no serial correlation, are calculated and presented in the tables. The validity of the instrument set is checked using a Sargan test based on the correlation between the instruments and the residuals from the model. This is asymptotically distributed as chi-squared under the null.

4 Results

The results of our model estimations are presented in Tables 2 and 3. The first reports three sets of estimates: for the base specification alone, for the base specification augmented by total trade and for the latter also including some analysis of interactions between trade and wage effects. There are some *a priori* reasons for thinking that origin might matter and, as we saw, some earlier empirical work has pointed to stronger employment effects being

associated with North-South trade than North-North trade. Table 3 therefore reports on our analysis when UK trade is decomposed by origin.

In the first panel of Table 2 we report on our base specification where both output and wages have the expected impacts. Output causes increases in the level of derived labour demand both in the short run and the long run whereas increases in wages have a negative effect. The positive coefficient on the lagged dependent variable indicates persistence in both the wage and output effects on the level of employment. Finally, we note that the equation performs well in conventional statistical terms with no second order serial correlation and with the Sargan test for instrumental validity indicating that the instrument set and the residuals are not correlated.

Panel 2 of Table 2 reports the results of introducing import and export penetration into the base employment equation. The specification is robust to such change with the signs of the coefficients remaining unchanged and of broadly similar magnitudes. Turning to trade shares we see that the impact effect of import penetration is negative, as expected, and significant at the 1% level. What are the employment implications of these results? Over the period 1981-1991 employment in manufacturing decreased from 6.107 million to 4.623 million, a reduction of 24.3%. Of this fall, our results indicate that changes in the efficiency of the use of labour as a result of increases in import penetration caused a short-run decline of 86,074 and a long run decline of 94,887. This accounts for 5.8% and 6.4% respectively of the 1.484 million fall in employment over the period. This excludes the direct employment displacement effects of trade. Table 4 shows the two digit industries particularly affected by the impact of increased import penetration. The extraction of other minerals and ores (SIC 22,23,24) has suffered an increase in penetration of over a third, as have the leather and metal goods industries.

Perhaps more surprising, however, is the result that the sign on current export share is also negative and significant and would have accounted for declines in employment of 56,543 (3.8%) in the short run and 69,900 (4.71%) in the long run. Although the magnitude of this effect is smaller than for imports it is nonetheless notable. It suggests that there are also trade induced efficiencies in the use of labour in export oriented industries. Note that there

is no evidence that the extent of domestic competition affects efficiency since, although the coefficient on seller market concentration is negative, it falls short of significance.⁷

The final panel of Table 2 focuses on the impact of trade changes on the slope of the derived labour demand function since, as we noted earlier, some analysts have suggested increased openness may make it easier to substitute foreign workers for domestic workers. Thus in panel 3 import and export volumes are interacted with the wage rate. For both, the effect is to increase the wage elasticity though none of the impact effects are statistically significant at conventional levels.

In Table 3 we investigate whether UK trade with different regions impacts differentially on the derived demand for labour. Column one disaggregates imports into those originating from the European Union, United States, Japan and East Asia, which on average accounted for 80% of UK imports over the sample period. The European Union and the United States are the UK's most important trading partners and much of the trade in question is of an intra-industry type. Japan and East Asia have become increasingly important and trade here is more typically inter-industry. The second thing we do is to disaggregate the East Asian countries into the established NICs (Korea, Taiwan, Hong Kong and Singapore) and the NECs (Thailand, Malaysia and Indonesia). These are referred to in the Table as the 'Tigers' and Dragons' respectively.

Refer first to the broad country results. For all the groupings the long run impact of import penetration is negative. These effects are rather badly determined however as import change amongst the regions is somewhat collinear. What is apparent, however, is that the timing and magnitude of impacts differs between regions. As can be seen from Table 5, imports from Japan and East Asia have increased proportionately faster than that from other regions over the sample period. Indeed import penetration from the United States declined between 1981 and 1991. However, the strongest induced efficiency effects are associated with imports from the USA and the European Union, though those from the EU have a more immediate impact. When one disaggregates between 'dragons' and 'tigers' the negative effect of import penetration persists with the coefficient for 'dragons' higher than that for 'tigers'. The stronger impacts from the European Union and the United States are perhaps contrary to the popular wisdom, though it may reflect the fact that imports from

⁷ This possibility is suggested in Konings and Vandenbussche (1995).

Asia are in those industries which have already declined in importance in the United Kingdom. Labour from the United States and the European Union however more directly competes with that currently extant in the UK.⁸

5 Conclusions

Throughout the post-war period the growth in trade has consistently outstripped the growth in real output resulting in a growing integration of the world's economies. The UK has featured prominently in this process. Recently the impact of expanding trade on labour markets and labour market adjustment has generated growing interest. In particular there has been concern about the effect on jobs of the growth of trade in general and the rapid expansion with low wage economies of East Asia. This interest has been acute in the UK given the sharp decline in manufacturing employment in the 1980s. Up until now, however, it has not been empirically investigated.

In this paper we have investigated the impact of trade on industry level outcomes for a sample of 167 manufacturing industries. We build on a dynamic labour demand equation by incorporating imports and exports in a panel framework using a specially constructed database. Our base equation is well defined and robust to changes in specification. When we introduce trade we find that increases in trade volumes, both in terms of imports and exports, cause reductions in the level of derived labour demand. This is consistent with the view that increased openness serves to increase the efficiency with which labour is utilised in the firm. Among other things it could imply that previous work has underestimated the impact of trade by ignoring the extent to which increased import penetration induces the elimination of x-inefficiency and the take up of new technology. Our results however find limited evidence that the potential for substituting foreign for domestic workers increases the wage elasticity of the derived labour demand function.

Our database allowed us to disaggregate the import data in order to see whether the region of origin affected labour demand differentially. Some evidence was reported to suggest that this may very well be the case. However, our results suggest that, contrary to the populist view, the disciplining effects of trade with East Asia and Japan appears to be less marked than that associated with imports from the EU.

⁸ At the suggestion of an anonymous referee, we investigated whether a differential response existed between high and low IIT industries. Evidence was found that the efficiency impact of imports is stronger in high IIT industries and it is also more rapid. UK trade with the US and EU is predominantly IIT. This will be investigated further in future work.

Finally, the paper points up some potentially interesting avenues for future research. Given more finely graded data, it would be useful to explore the relationship for different categories of labour and for a range of alternative groupings of industries by relative factor intensities. In addition, the links between the speed of adjustment and the importance of intra-industry trade merit further investigation.

SIC Division	Employment ('000s)		Production ¹ (£million)		Wage rates ²		Import Penetration ³		Export Share ⁴						
	1979	1991	% change 1979-91	1979	1991	% change 1979-91	1979	1991	% change 1979-91	1979	1991	% change 1979-91	1979	1991	% change 1979-91
43	368.0	181.7	-50.6	79.4	52.3	-34.1	4788	7000	46.22	0.29	0.47	62.1	0.23	0.32	39.1
35	491.2	245.8	-50.0	155.3	149.2	-3.9	6875	10976	59.63	0.35	0.46	31.4	0.32	0.42	31.3
32	967.5	547.0	-43.5	255.2	221.6	-13.2	6684	10367	55.11	0.21	0.30	42.9	0.30	0.33	10.0
2	1045.5	613.9	-41.3	482.2	419.3	-13.1	6986	11039	58.0	0.21	0.31	47.6	0.24	0.31	29.2
44&45	448.3	269.6	-39.9	76.1	56.5	-25.9	3894	5416	39.09	0.25	0.44	75.0	0.17	0.26	52.6
31	498.1	307.9	-38.2	116.9	102.1	-12.7	5863	8517	45.25	0.08	0.15	87.5	0.10	0.13	30.0
36	383.6	251.3	-34.5	81.2	110.2	35.7	6903	11315	63.92	0.14	0.14	0.0	0.19	0.17	-10.5
34&37	797.2	547.4	-31.3	184.4	210.0	13.9	6027	9594	59.19	0.31	0.56	77.9	0.32	0.52	60.1
46	245.6	188.9	-23.1	69.2	67.0	-3.0	5777	7914	37.00	0.25	0.23	-8.0	0.06	0.06	0.0
42	265.9	216.8	-18.5	222.9	246.2	10.5	6508	10241	57.36	0.08	0.12	50.0	0.08	0.13	62.5
47	533.0	441.9	-17.1	151.9	201.0	32.3	6924	10776	55.64	0.15	0.17	13.3	0.08	0.10	25.0
48	267.5	223.5	-16.5	75.7	91.3	20.7	6117	9108	48.90	0.15	0.24	60.0	0.17	0.20	17.7
49	90.9	76.9	-15.4	22.2	23.2	4.5	4878	7098	45.51	0.23	0.35	52.2	0.22	0.22	0.0
41	394.4	359.8	-8.8	168.9	187.8	11.2	5013	7173	43.11	0.17	0.18	5.9	0.05	0.07	40.0
33	46.9	64.4	37.3	21.0	58.8	179.7	7531	13209	75.41	0.50	0.51	2.0	0.44	0.49	11.4

T-LL 1.	T l-			1 4	TITZ	C 4!		1070
I able 1:	: irade.	production.	wages and em	blovment in	UK man	ufacturing	2 industries.	19/9 and 1991

SIC description			48 Processing of rubber and plastics
	2 Extraction of minerals, manufacture of metals and mineral products.31 Manufacture of metal goods	35 Manufacture of motor vehicles36 Manufacture of other transport equipment	46 Timber and wooden furniture
	32 Mechanical engineering	41/42 Food drink and tobacco	47 Manufacture of paper and paper products
	33 Manufacture of office machinery	43 Textiles	49 Other manufacturing industries
_	34&37 Electrical and instrument engineering	44&45 Manufacture of leather, footwear and clothing	

Source: ONS Business Monitor PA1002, various years Notes:

¹ 1985 prices.
 ² Per person per year, 1985 prices.
 ³ Imports as a share of apparent consumption (production+imports-exports)
 ⁴ Exports as a share of production

	1		2		3	
	Coefficient	t-ratio	Coefficient	t-ratio	Coefficient	t-ratio
Constant	0.0001	0.0054	-0.0033	-0.4540	-0.0088	-1.2891
$\Delta \ln N_{t-1}$	0.4309	2.7136	0.3980	2.6628	0.3243	2.4432
$\Delta \ln N_{t-2}$	0.0469	0.7318	0.0419	0.7178	0.0120	0.2060
$\Delta \ln Q_t$	0.6082	8.7225	0.5255	7.5387	0.5067	7.2180
$\Delta \ln Q_{t-1}$	-0.2039	-1.7798	-0.1819	-1.6488	-0.1377	-1.3855
$\Delta \ln Q_{t-2}$	-0.0053	-0.0798	0.0368	0.5843	0.0676	1.0790
$\Delta \ln(W/c)_t$	-0.3350	-3.4110	-0.3141	-3.1464	-0.2843	-2.3993
$\Delta \ln(W/c)_{t-1}$	0.2451	1.5078	0.2831	1.8030	0.2533	1.6026
$\Delta \ln(W/c)_{t-2}$	0.0102	0.0879	0.0121	0.1057	0.0093	0.0751
$\Delta \ln$ concentration	-0.0324	-1.3046	-0.0234	-0.9419	-0.0213	-0.8531
$\Delta \ln import_t$			-0.0449	-3.1716	-0.0667	-2.5131
$\Delta \ln import_{t-1}$			0.0002	0.0200	0.0030	0.3454
$\Delta \ln import_{t-2}$			0.0101	0.7810	0.0110	0.9025
$\Delta \ln export_t$			-0.0317	-2.4592	-0.0086	-0.6292
$\Delta \ln export_{t-1}$			0.0108	1.4381	0.0082	0.9962
$\Delta \ln export_{t-2}$			-0.0055	-0.3536	-0.0015	-0.0978
$\Delta \ln(W/c)_t \cdot \Delta \ln import_t$					-0.3724	-0.9219
$\Delta \ln(W/c)_{t-1} \cdot \Delta \ln import_{t-1}$					0.2398	0.6729
$\Delta \ln(W/c)_{t-2} \cdot \Delta \ln import_{t-2}$					0.0401	0.1048
$\Delta \ln(W/c)_t \cdot \Delta \ln export_t$					0.2567	1.1450
$\Delta \ln(W/c)_{t-1} \cdot \Delta \ln export_{t-1}$					-0.4128	-1.4395
$\Delta \ln(W/c)_{t-2} \cdot \Delta \ln export_{t-2}$					-0.3824	-0.9412
Instrumental validity		0.76673		0.85355		0.90328
2 nd order serial correl.		0.203		-0.022		0.734

 Table 2: Employment Equations for United Kingdom manufacturing: Total Trade

Notes

1. The dependent variable is $\Delta \ln N_t$

2.Heteroskedastic consistent t-ratios in parentheses.

3.All models are estimated in differences by instrumental variables.

4. Coefficients on time dummies are not reported.

	1		2	
	Coefficient	t-ratio	Coefficient	t-ratio
Constant	-0.0015	-0.1863	-0.0002	-0.0234
$\Delta \ln N_{t-1}$	0.4002	2.3935	0.3988	2.3888
$\Delta \ln N_{t-2}$	0.0635	1.0188	0.0555	0.8865
$\Delta \ln Q_t$	0.5257	7.5628	0.5318	7.6063
$\Delta \ln Q_{t-1}$	-0.1784	-1.5180	-0.1784	-1.5262
$\Delta \ln Q_{t-2}$	0.0148	0.2149	0.0181	0.2624
$\Delta \ln(W/c)_t$	-0.2826	-2.8327	-0.2820	-2.8536
$\Delta \ln(W/c)_{t-1}$	0.2822	1.7271	0.2768	1.7561
$\Delta \ln(W/c)_{t-2}$	0.0146	0.1269	0.0176	0.1508
$\Delta \ln$ concentration	-0.0218	-0.8742	-0.0241	-0.9766
$\Delta \ln \text{Japan}_{t}$	0.0059	1.3495	0.0049	1.0538
$\Delta \ln$ Japan $_{t-1}$	0.0004	0.1059	-0.0004	-0.0893
$\Delta \ln \operatorname{Japan}_{t-2}$	-0.0072	-1.2507	-0.0074	-1.2737
$\Delta \ln \text{USA}_t$	-0.0036	-0.5458	-0.0052	-0.7877
$\Delta \ln \text{USA}_{t-1}$	-0.0155	-2.8229	-0.0157	-2.8529
$\Delta \ln \text{USA}_{t-2}$	0.0045	0.6479	0.0061	0.8773
$\Delta \ln E.Asia_t$	-0.0057	-0.8758		
$\Delta \ln \text{E.Asia}_{t-1}$	0.0025	0.6785		
$\Delta \ln \text{E.Asia}_{t-2}$	0.0019	0.3728		
$\Delta \ln \operatorname{Dragons}_{t}$			-0.0051	-0.7811
$\Delta \ln \text{Dragons}_{t-1}$			0.0005	0.1226
$\Delta \ln \text{Dragons}_{t-2}$			0.0032	0.7435
$\Delta \ln \operatorname{Tigers}_{t}$			0.0003	0.1128
$\Delta \ln \operatorname{Tigers}_{t-1}$			-0.0068	-1.8473
$\Delta \ln \operatorname{Tigers}_{t-2}$			0.0038	0.9531
$\Delta \ln EU_t$	-0.0348	-2.8779	-0.0314	-2.5963
$\Delta \ln \mathrm{EU}_{t-1}$	0.0129	1.2515	0.0119	1.5086
$\Delta \ln EU_{t-2}$	0.0156	0.9583	0.0151	0.9140
$\Delta \ln export_t$	-0.0250	-1.6909	-0.0244	-1.6475
$\Delta \ln export_{t-1}$	0.0111	1.7048	0.0116	1.7146
$\Delta \ln export_{t-2}$	-0.0085	-0.5233	-0.0108	-0.6757
2 nd order serial correl.	0.88772		0.89507	
Instrumental validity	0.160		0.297	

Table 3: Employment Equations for United Kingdom Manufacturing: Trade by Origin

Notes

1. The dependent variable is $\Delta \ln N_t$

2.Heteroskedastic consistent t-ratios in parentheses.

3. All models are estimated in differences by instrumental variables.

4. Coefficients on time dummies are not reported.

$\Delta \ln M < 0$	$0 \le \Delta \ln M \le 1/3$	$\Delta \ln M > 1/3$
26 Production of Man Made Fibres	25 Chemical Industries	22 Metal Manu.
33 Manufacture of Office Machinery	32 Mechanical Engineering	23 Extraction of minerals
36 Manufacture of other transport equip.	34 Electrical Engineering	24 Manu. Of non-metallic mineral prod.
46 Timber and Wooden Furniture	35 Manu. Of motor vehicles	31 Manu of metal goods
47 Manu. Of paper and paper products	37 Instrument engineering	44 Manu. Of leather
49 Other Manufacturing industries	41 Food, drink, tobacco.	
	43 Textile Industry	
	45 Footwear and Clothing	
	48 Processing of rubber and Plastics	

 Table 4: Changes in Import Penetration by Industry

Table 5: Changes in Import Penetration by region

Country	Average annual		
	increase 1981-1991		
United States	-1.04		
Japan	3.04		
European	0.97		
Union			
East Asia	4.98		

References

- Abowd J.M. (1987) 'The effects of international competition on collective bargaining agreements in the United States.' *Princeton University*, unpublished.
- Abowd J.M. and Lemieux T. (1990) 'The effects of international competition on collective bargaining outcomes: a comparison of the United States and Canada.' *NBER working paper 3352.*
- Baldwin R.E. (1995) 'The effects of trade and foreign direct investment on employment and relative wages.' *OECD Economic Studies* No. 23 pp7-53
- Borgas, G.J. and Ramey, V.A. (1994) 'The Relationship Between Wage Inequality and International Trade' in J. Bergstrand *et al.* (eds) *The Changing Distribution of Income in an Open US Economy*, Amsterdam, North Holland.
- Borkakoti, J. and Milner, C.R. (eds) (1997) International Trade and Labour Markets, London, Macmillan.
- Caves, R.E. (1990) 'Adjustment to International Competition: Short run relations of prices, trade flows and inputs in Canadian manufacturing industry.' *Economic Council of Canada*.
- Caves R. & Krepps M. (1993) 'Fat: the displacement of nonproduction workers from US manufacturing industries.' *Brookings Papers: Macroeconomics* 2 pp.
- Cortes, O. and Jean, S. (1996), International Trade Spurs Productivity, mimeo, OECD Development Centre.
- Cortes, O., Jean, S. and Pisani-Ferry, J. (1996), 'Trade with Emerging Countries and the Labour Market: The French Case', CEPII, Document de travail, no. 96-04.
- Courakis A, Maskus K.E. & Webster A. (1997) 'Occupational employment and wage changes in the UK: trade and technology effects', in Borkakoti and Milner (eds) (1997).
- Denny K. and Machin S. (1991) 'The effects of import competition on wages and employment.' Mimeo, Institute for Fiscal Studies.
- Feenstra, R. and Hanson, G.H. (1996), 'Foreign Investment Outsourcing and Relative Wages', *American Economic Review*, Vol. 86, pp. 252-257.
- Greenaway, D., Hine, R.C. & Milner, C.R. (1994) 'Country Specific Factors and the Pattern of Horizontal and Vertical Intra Industry Trade in the UK.' *Weltwirtschaftliches Archiv*, Vol. 131, pp 77-100.
- Greenaway, D., Hine, R.C. & Milner, C.R. (1995) 'Horizontal and Vertical Intra-Industry Trade: A Cross Industry Analysis for the UK.' *Economic Journal*, Vol. 105, pp. 1505-1518.

- Gregory M. and Greenhalgh C. (1997) 'International trade, de-industrialisation and labour demand an input-output study for the UK 1979-90.' in Borkakoti and Milner (eds) (1997).
- Konings, J. and Vandenbussche, H. (1995) 'The effect of foreign competition on UK employment and wages: evidence from firm-level panel data', *Weltwirtschaftliches Archiv*, 131, pp655-71.
- Krugman P. (1995) 'Growing world ttrade: causes and consequences' *Brookings Papers on Economic Activity*, 1 pp 327-77
- Lawrence, R. (1996) Single World, Divided Nations (Paris, OECD).
- Lawrence, R. and Slaughter, M. (1993) 'Trade and US Wages: Great Sucking Sound or Small Hiccup', *Brookings Papers on Economic Activity*
- Leamer E.E. (1994) 'Trade, wages and revolving door ideas.' *National Bureau of Economic Research* Working Paper 4716.
- Martin J.P. & Evans J.M. (1981) 'Notes on measuring the employment displacement effects of trade by the accounting procedure.' *Oxford Economic Papers*, 33 pp154-64.
- Messerlin P.A. (1995) 'The impact of trade and capital movements on labour: evidence of the French case.' *OECD Economic Studies* No. 24 pp89-124
- Neven D. and Wyplosz (1996) 'Relative prices, trade and restructuring in European Industry.' CEPR Discussion Paper No 1451, August.
- Nickell S. (1986) 'Dynamic models of labour demand', in O.Ashenfelter and R. Layard (eds), *Handbook of Labour Economics*, vol. 1, Amsterdam: North Holland.
- Oi W.Y. (1962) 'Labour as a quasi fixed factor.' *Journal of Political Economy*, Vol. 70 pp538-555.
- Sapir A. & Schumacher D. (1985) 'The employment impact of shifts in the composition of commodity and services trade.' In *Employment Growth and Structural Change*, OECD, Paris.
- Tyers, R. and Young, Y. (1997) 'Trade with Asia and Skill Upgrading', *Weltwirtschaftliches Archiv*, Vol. 133, pp. 383-417.
- Wood A. (1991) 'The factor content of North-South trade in manufactures reconsidered.' *Weltwirtschaftliches Archiv* Vol. 127, pp719-43
- Wood A. (1994) North-South trade, employment and inequality: changing fortunes in a *skill-driven world*. Oxford, Clarendon Press.