
Bonus Vetus OLS:
A Simple Approach for Addressing the “Border Puzzle”

and other Gravity-Equation Issues

Scott L. Baier Jeffrey H. Bergstrand
The John E. Walker Department Department of Finance 
of Economics Mendoza College of Business
Clemson University and Kellogg Institute for
Clemson, SC 29634 International Studies
and the Federal Reserve Bank University of Notre Dame
of Atlanta, Atlanta, GA 30309 Notre Dame, IN 46556
sbaier@clemson.edu bergstrand.1@nd.edu

Abstract

Motivated to solve the “border puzzle” of Canadian-U.S. trade, theoretical foundations for the
gravity equation of international trade were refined recently to emphasize the importance of the
endogeneity of multilateral price (resistance) terms, cf., Anderson and van Wincoop (2003).  While region-
specific fixed effects can also generate consistent estimates of gravity-equation coefficients, cf., Feenstra
(2004), Anderson and van Wincoop argue that proper computation of general equilibrium comparative
statics requires custom estimation of the entire nonlinear system of trade flow and price equations.  We
show in this paper that these multilateral price terms are critical, but nonlinear estimation is not.  Virtually
identical results can be obtained using “good old” ordinary least squares – bonus vetus OLS.  The key is
using a first-order log-linear Taylor-series expansion to approximate the multilateral price terms.  Among
several findings, we note just three.  First, the approximation allows us to solve for a simple log-linear
gravity equation revealing a fundamental theoretical relationship among bilateral trade flows, regional and
world incomes, and bilateral, multilateral, and world trade costs.  Second, we provide econometric and
simulation results supporting that virtually identical coefficient estimates and comparative statics can be
obtained much more easily by estimating a reduced-form gravity equation including theoretically-
motivated exogenous bilateral, multilateral, and world resistance terms.  Third, we show that our
methodology generalizes to other settings as well, working just as effectively to explain world trade flows.
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1A nation, of course, can be considered an EIA of sub-national regions.

Bonus Vetus OLS:  
A Simple OLS Approach for Addressing the “Border Puzzle”

and other Gravity-Equation Issues

1.  Introduction

For nearly a half century, the gravity equation has been used to explain econometrically the ex post

effects of economic integration agreements, national borders, currency unions, stocks of immigrants,

language, and numerous other measures of “trade costs” on bilateral international trade flows.  Until

recently, researchers typically focused on a simple specification akin to Newton’s Law of Gravity, whereby

the bilateral trade flow from region i to region j was a multiplicative (or log-linear) function of the two

countries’ gross domestic products (GDPs), their bilateral distance, and typically an array of bilateral

dummy variables assumed to reflect the bilateral trade costs between that pair of regions (e.g., common

land border, common language, bilateral trade agreement, etc.); we denote this the “traditional” gravity

equation specification.  This traditional gravity equation gained acceptance among international economists

and policymakers in the last 25 years for at least three reasons: formal theoretical economic foundations

surfaced for a specification similar to the traditional gravity model (cf., Anderson, 1979; Helpman and

Krugman, 1985; Bergstrand, 1985); consistently strong empirical explanatory power (high R2 values);

policy relevance for analyzing the multitude of free trade agreements over the past 15 years.

However, the traditional specification has come under scrutiny.  First, since bilateral trade flows

are determined in an N-region world (N>2), the traditional specification ignores the fact that the

“remoteness” of regions i and j from the rest-of-the-world’s (ROW’s) regions should influence the volume

of trade from i to j and the economic size of the ROW’s regions matters as well.  Second, applications of

the traditional gravity equation to study bilateral trade costs often yielded seemingly implausible findings. 

For instance, coefficient estimates for dummy variables representing the effects of international economic

integration agreements (EIAs) on international trade were frequently negative (cf., Frankel, 1997) and

estimates of the effects of national borders (that is, a national EIA) on intra-continental inter-regional trade

flows were often seemingly implausibly high (cf., McCallum, 1995; Helliwell, 1998).1  The latter finding –

now famously termed McCallum’s “border puzzle” – inspired a cottage industry of papers in the

international trade literature to explain this result, cf., Michael A. Anderson and Stephen L.S. Smith

(1999a, 1999b) and John F. Helliwell (1996, 1997, 1998), as well as a new approach to international

macroeconomic issues.

While two early formal theoretical foundations for the gravity equation with trade costs – first

Anderson (1979) and later Bergstrand (1985) – addressed the role of “multilateral” prices, a solution to the
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border puzzle surfaced in Anderson and van Wincoop (2003), which refined the theoretical foundations for

the gravity equation to emphasize the importance of accounting properly for the endogeneity of prices in

the gravity model.  Three major conclusions surfaced from the Anderson and van Wincoop (henceforth, A-

vW) study, “Gravity with Gravitas.”  First, a complete derivation of a standard (Armington conditional)

general equilibrium model of bilateral trade in a multi-region (N>2) setting with iceberg trade costs

suggests that traditional cross-section empirical gravity equations have been misspecified owing to the

omission of theoretically-motivated multilateral (price) resistance terms for exporting and importing

regions.  Second, to properly estimate the full general equilibrium comparative-static effects of a national

border or an EIA, one needs to estimate these multilateral resistance (MR) terms for any two regions with

and without a border (in a manner consistent with theory).  Third, due to the underlying nonlinearity of the

structural model to explain trade flows, estimation requires a custom nonlinear-least-squares (NLLS)

program to account properly for the endogeneity of prices.

While the A-vW approach yields consistent, efficient estimates of gravity equation coefficients for

the effects of national borders or EIAs (in the absence of measurement and specification bias), Feenstra

(2004, Ch. 5) notes that a “drawback” to the estimation strategy is that it requires a custom NLLS program

to obtain estimates.  One critical reason the gravity equation has become the workhorse of empirical

international trade in the past 25 years is that one can use ordinary linear least squares (OLS) to explain

trade flows and potentially the impact of policies (such as national borders or EIAs) on such flows. 

Unfortunately, the need to apply custom NLLS estimation will likely continue to impede incorporating

these important price terms into estimation of gravity equations using the A-vW approach, in favor of an

“alternative.”

The alternative – and computationally less taxing – approach to estimate unbiased gravity equation

coefficients, which also acknowledges the influence of theoretically-motivated MR terms, is to use region-

specific fixed effects, as noted in A-vW and  Feenstra (2004).  An additional benefit is that this method

avoids the measurement error associated with measuring regions’ “internal distances” for the MR variables. 

Indeed, van Wincoop himself – and nearly every gravity equation study since A-vW – has employed this

simpler technique of fixed effects, cf., Andrew Rose and Eric van Wincoop (2001) and Rose (2004).  Using

the case of McCallum’s border puzzle as an example, Feenstra (2004, Ch. 5 Appendix) shows that fixed-

effects estimation of the gravity equation can generate unbiased estimates of the average border effect of a

pair of countries.

However, fixed-effects estimation also has drawbacks.  First, without the structural system of

equations, one still cannot generate region- or pair-specific comparative statics; fixed effects estimation
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2In their robustness analysis, Anderson and van Wincoop themselves demonstrate evidence using fixed-
effects for unbiased estimates of the average border effect.  In correspondence, Eric van Wincoop notes that “people
often introduce the region fixed effects to the gravity equation referring to our paper for motivation but then fail to
compute (using the system of structural equations) changes in the multilateral resistance variables when doing
comparative statics” (e-mail, August 24, 2004).

precludes estimating MR terms with and without EIAs.2  Second, many explanatory variables of interest are

region specific; using region-specific fixed effects precludes direct estimation of partial effects of numerous

potentially-important explanatory variables.  For instance, typical gravity studies often try to estimate the

effects of exporter and importer populations, immigrant stocks, or internal infrastructure measures on

bilateral trade; such variables would be subsumed in the fixed effects.

Consequently, the empirical researcher faces a tradeoff.  The advantage of the A-vW customized-

NLLS-estimation approach is that it can potentially generate consistent, efficient estimates of average

border effects and comparative statics; the disadvantage is that it is computationally burdensome relative to

OLS and subject to measurement error associated with internal distance indexes.  The advantage of

Feenstra’s fixed-effects estimation approach is that it uses OLS and avoids internal distance measurement

error for MR terms; the disadvantage is that one cannot retrieve the multilateral price terms to generate

quantitative estimates of comparative-static effects without also employing the structural system of

equations.  Is there a way to estimate consistently gravity equation parameters – and compute region-

specific or pair-specific comparative statics – using “good old” OLS?

This paper has two major goals.  First, we offer a simple OLS technique for estimating average

effects and comparative statics from a gravity equation including theoretically-motivated exogenous

multilateral resistance terms.  The advantage of this approach over A-vW is that “good old” ordinary least

squares – bonus vetus OLS – is computationally simple.  The advantage over fixed effects is that we can

then provide ready quantitative estimates of comparative statics using the estimated coefficients without

employing the structural system of equations.  We can estimate the comparative statics analytically.  We do

not dispute that A-vW’s NLLS procedure provides consistent, efficient estimates of the gravity equation

parameters.  However, for a very small loss of efficiency, our procedure – henceforth, “BV-OLS” – offers

an enormous gain in estimation simplicity and economic transparency for many practical contexts. 

Moreover, while simulations show that our BV-OLS approximation results in a trivially small estimation

bias, we also show econometrically that the bias is small relative to other potential biases associated with

mis-measurement of internal distances and other potential specification errors acknowledged by A-vW. 

The key methodological innovation for this literature is the use of a first-order log-linear Taylor-series

expansion centered around a symmetric world to derive an estimable OLS equation that includes

theoretically-motivated exogenous variables to capture the influence of multilateral (and world) resistance
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3By “loss of efficiency” in this paragraph, we mean that our approach uses a first-order approximation of
the underlying system of equations.

terms.  The Taylor-series expansion is rarely used by trade economists but is commonly used in modern

macroeconomics.3

Second, to maintain tractability for the reader, we apply our technique to trade flows using the

same context and data sets as McCallum, A-vW, and Feenstra.  However, the insights of our paper have

significant potential to be used in numerous related contexts assessing trade costs, especially estimation of

the effects of tariff reductions and free trade agreements on world trade flows – the most common usage of

the gravity equation.  A-vW argue that – since the gravity equation has been used traditionally to explain

cross-sectionally the effects of a variety of policy-induced, cultural, and geographic factors on world trade

flows – “all can be improved with our methods” (2003, p. 172).  We show that the linear-approximation

approach of BV-OLS works just as effectively in the context of world (intra- and inter-continental) trade as

in the narrower McCallum-AvW-Feenstra context of regional (intra-continental) trade.  Using Monte Carlo

techniques we demonstrate that the estimated bias (of the distance elasticity) of BV-OLS over nonlinear

least squares for world trade is less than 0.5 of one percent, smaller than that for intra-continental trade

flows.  Moreover, we demonstrate clearly the substantive reduction in bias using BV-OLS relative to the

traditional OLS specification as well as an OLS specification using “atheoretical” measures of remoteness.

The remainder of the paper is as follows.  Section 2 discusses the gravity equation literature and A-

vW analysis to motivate our paper.  Section 3 uses a first-order log-linear Taylor-series expansion to

motivate a simple OLS regression equation (BV-OLS) that can be used to estimate average effects and

comparative statics.  Section 4 shows that BV-OLS works; we apply the estimation technique suggested by

section 3 to the McCallum-A-vW-Feenstra data set and compare our coefficient estimates to these papers’

findings.  Section 5 compares the comparative-static-effect estimates from BV-OLS to those of A-vW and

provides intuition for why BV-OLS works in the context of the theoretical general equilibrium model. 

Section 6 shows that BV-OLS works well in general; we use Monte Carlo simulations to show that

estimated border effects using “good old” OLS are virtually identical to those using A-vW’s technique

either in the context of interregional trade flows (the McCallum-AvW-Feenstra context) or in the context

of international trade flows (the typical empirical context).  Section 7 explains why BV-OLS works so

well, addressing the empirical irrelevance of higher-order terms.  Section 8 concludes.

2.  The Gravity Equation and Prices

The gravity equation is now considered the empirical workhorse for studying interregional and 
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4In the remainder of the paper, boldfaced regular-case (non-bold italicized) variables denote observed
(unobserved) variables.

5The traditional argument is as follows.  Suppose importer j’s demand for the trade flow from i to j is a
function of j’s GDP, the price of the product in i (pi), and distance from i to j.  Suppose exporter i’s supply of goods
is a function of i’s GDP and pi.  Market clearing would require county i’s export supply to equal the sum of the N-1
bilateral import demands (in an N-country world).  This generates a system of N+1 equations in N+1 endogenous
variables: N-1 bilateral import demands XD

i j (j = 1,...,N with j…i), supply variable XS
i, and price variable pi.  This

system could be solved for a bilateral trade flow equation for Xij that is a function of the GDPs of i and j and their
bilateral distance.  Then pi is endogenous and excluded from the reduced-form bilateral trade flow gravity equation.

international trade patterns, cf., Frankel (1997), Eichengreen and Irwin (1998), and Feenstra (2004).  Early

applications of the gravity equation – Tinbergen (1962), Linnemann (1966), Aitken (1973), and Sapir

(1981) – assumed a specification similar to that used in McCallum (1995):

(1)ln ln ln lnX GDP GDP DISij i j ij ij ij ij= + + − + + +β β β β β β ε0 1 2 3 4 5ADJACENCY EIA

where Xij denotes the value of the bilateral trade flow from region i to region j, GDPi (GDPj) denotes the

nominal gross domestic product of region i (j), DISij denotes the distance (typically in miles or nautical

miles) from the economic center of region i to that of region j, ADJACENCYij is a dummy variable

assuming the value 1 (0) if two regions share (do not share) a common land border, and EIAij is a dummy

variable assuming the value 1 (0) if two regions share (do not share) an economic integration agreement.  In

the McCallum Canada-U.S. context, EIAij would be a national “border” dummy reflecting membership in

the same country and ADJACENCYij was ignored.4  Traditionally, economists have focused on estimates

of, say, $5, an estimate of the “average” (treatment) effect of an EIA on trade from i to j.  As discussed in

the early gravity equation studies cited above, traditional specification (1) excludes price terms.  The

rationale for their exclusion in these studies was that prices were endogenous and consequently would not

surface in the reduced-form cross-section bilateral trade flow equation.5  

However, theoretical foundations in Anderson (1979), Bergstrand (1985), Deardorff (1998), Eaton

and Kortum (2002), A-vW (2003), and Feenstra (2004) all suggest that traditional gravity equation (1) is

likely misspecified owing to the omission of measures of multilateral resistance (or prices).  In reality, the

bilateral trade flow from i to j is surely influenced by the prices of (substitutable) products in the other N–2

regions in the world, which themselves are influenced by the bilateral distances (and EIAs, etc.) of each of i

and j with the other N–2 regions.  Bergstrand (1985) provided early empirical evidence of this omitted

variables bias, but was limited by crude price-index data.  As Feenstra (2004) reminds us, published price

indexes probably do not reflect accurately “true” border costs (numerous costs associated with international
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6Consumption is measured as a quantity.  We can also set up the model in terms of a representative
consumer with Mj consumers in each country, but the results are analytically identical.

7As conventional, we assume that all trade costs consume resources and can be interpreted as goods “lost in
transit” (i.e., iceberg trade costs).

transactions) and are measured relative to an arbitrary base period.

A-vW raised two important considerations.  First, A-vW showed theoretically that proper

estimation of the coefficients of a theoretically-based gravity equation (such as $5) needs to account for the

influence of these (nonlinear) endogenous price terms.  One approach is NLLS estimation, and the other is

the use of region-specific (i, j) fixed effects.  Second, these techniques yield partial effects of change in a

bilateral trade cost on a bilateral trade flow, but not general-equilibrium effects.  A-vW clarified that the

comparative-static effects of a change in a trade cost were influenced by the full general-equilibrium

framework.  Regardless of which of the two techniques above was used to estimate coefficient parameters,

the comparative statics of a change in a trade cost require estimation of the full structural model (cf.,

footnote 2), which necessarily reflect economic sizes and trade costs of all countries.

A.  The Theoretical Model

To understand the context, we initially describe a set of assumptions to derive a gravity equation;

for analytical details, see A-vW (2003).  First, assume a world endowment economy with N regions and N

(aggregate) goods, each good differentiated by origin.  Second, assume consumers in each region j have

identical constant-elasticity-of-substitution (CES) preferences:

(2)
U Cj ij

i

N

j 1,...,N=
⎡

⎣
⎢

⎤

⎦
⎥ =−

=

−

∑ ( )/
/( )

σ σ
σ σ

1

1

1

where Uj is the utility of consumers in region j, Cij is consumption of region i’s good in region j, and F is

the elasticity of substitution (assuming F > 1).6  Maximizing (2) subject to the budget constraint:

(3)Y p t Cj i ij ij
i

N

=
=
∑

1

where pi is the exporter’s price of region i’s good and tij is the gross trade cost (one plus the ad valorem

trade cost7) associated with exports from i to j, yields a set of first order conditions that can be solved for

the demand for the nominal bilateral trade flow from i to j:
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(4)X
p t
P

Yij
i ij

j
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−1 σ

where Pj is the CES price index, given by:

(5)P p tj i ij
i
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Third, an assumption of market clearing requires:

(6)Y Xi ij
j

N

=
=
∑

1

Following A-vW, substitution of (4) and (5) into (6) and some algebraic manipulation yields:

(7)X ij
i j

T
ij

i j

1

=
⎛
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⎜
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σ

where

(8)( )P t Pi j ij j
j

N

=
⎡

⎣
⎢

⎤

⎦
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−

=

−

∑ θ
σ
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/
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1

1 1

(9)( )P t Pj i ij i
i

N

=
⎡

⎣
⎢

⎤

⎦
⎥

−

=

−

∑ θ
σ

σ

/
/( )

1

1

1 1

under a fourth assumption that bilateral trade barriers tij and tji are equal for all pairs.  YT denotes total

income of all regions, which is constant across region pairs, and 2i (2j) denotes Yi /YT (Yj /YT).

B.  The Econometric Model

As is common to this literature, for an econometric model we assume the log of the observed trade

flow (lnXij) is equal to the log of the true trade flow (lnXij) plus a log-normally distributed error term (,ij). 

Yi can feasibly be represented empirically by observable GDPi.  However, the world is not so generous as

to provide observable measures of bilateral trade costs tij.  Following the literature, a fifth assumption is that
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the gross trade cost factor is a log-linear function of observable variables, such as bilateral distance (DISij),

, and ,  the latter two representing the ad valorem equivalents of a commoneδADJACENCYij eαEIAij

land border and a common EIA, respectively:

(10)t e eij ij
ij ij= DIS ADJACENCY EIAρ δ α

where equals e* (> 1) if the two regions share a common land border (assuming * > 0)eδADJACENCYij

and equals e" (> 1) if the two regions are in an economic integration agreement (assuming " > 0). eαEIAij

One could also include a language dummy, a bilateral tariff rate, etc.; for brevity, we ignore these.

In the McCallum-AvW-Feenstra context of Canadian provinces and U.S. states, EIAij = 1if the two

regions are in the same country and these studies ignored ADJACENCYij (i.e., a common land border).  In

the context of the theory, estimation of the gravity equation’s parameters should account for the multilateral

(price) resistance terms defined in equations (8) and (9).  A-vW describe one customized nonlinear

procedure for estimating equations (7)-(10) to generate unbiased estimates in a two-country world with 10

Canadian provinces, 30 U.S. states and an aggregate rest-of-U.S. (the other 20 states plus the District of

Columbia), or 41 regions total.  A-vW also estimate a multicounty model, but discussion of that is treated

later.  This procedure requires minimizing the sum-of-squared residuals of:

(11) 
( )[ ]ln / ln

ln ln

X GDP GDP DIS EIAij i j ij ij

i j ij

= + +

− − +− −

a a a

P P

0 1 2

1 1σ σ ε

subject to the 41 market-equilibrium conditions:

(12.1)

( )P P ea a
1
1 1

1

41
1 2 1− −

=

+= ∑σ σ
i

i
i

i1 iGDP GDPT DIS EIA/ ln

M

    (12.41)( )P P ea a
41
1 1

1

41
1 41 2 41− − +

=

= ∑σ σ
i i

i

i iGDP GDPT DIS EIA/ ln
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to estimate a0, a1, and a2 where, in the model’s context, a0 = -lnGDPT, a1 = -D (F-1) and a2 = -" (F-1).  This

obviously requires a custom NLLS program.

C.  Estimating Comparative-Static Effects

As A-vW stress, the multilateral resistance terms Pi
1-F and Pj

1-F are “critical” to understanding the

impact of border barriers on bilateral trade.  Once estimates of a0, a1, and a2 are obtained, one can then

retrieve estimates of Pi
1-F and Pj

1-F for all j = 1,...,41 regions both in the presence and absence of a national

border.  Let Pi
1-F (P*i

1-F) denote the estimate of the multilateral resistance term of region i with (without) an

EIA following NLLS estimation of equations (11) and (12.1)-(12.41).  In the context of the model, A-vW

and Feenstra (2004) both show that the ratio of bilateral trade between any two regions with an EIA (Xij)

and without an EIA (X*
ij) is given by:

(13)( )( )X X P P P PEIA
ij ij i i j j

ij/ / /* * *= − − − −ea2 1 1 1 1σ σ σ σ

Comparative-static effects of an integration agreement are then calculated using equation (13).  Clearly, the

multilateral price terms with and without borders are critical to estimating these effects.

Consequently, A-vW (2003) “resolved” the border puzzle theoretically and empirically.  However,

the appealing characteristic of the gravity equation, that likely has contributed to its becoming the

workhorse for the study of empirical trade patterns, is that it has been estimated for decades using OLS. 

The A-vW procedure cannot use OLS.  This will likely inhibit future researchers from recognizing

empirically the multilateral price terms, as suggested by van Wincoop in footnote 2.

A-vW (2003) and Feenstra (2004) both note that a ready alternative to estimating consistently the

average border effect is to apply fixed effects.  However, both studies also note that a fixed-effects

approach cannot readily generate estimates of the comparative statics.  Feenstra (2004) acknowledges that

the fixed-effects approach is less efficient than A-vW’s custom nonlinear estimation procedure; however,

the former is simpler to estimate the average border effect.  However, while fixed effects can determine

gravity equation parameters consistently, estimation of country-specific border effects still requires

construction of the structural system of price equations to distinguish multilateral resistance terms with and

without borders.  We demonstrate in the remainder of this paper that a simple OLS technique that yields

virtually identical estimates of the average effects and comparative statics surfaces by applying a Taylor-

series expansion to the theory.

3.  Bonus Vetus OLS

In this section, we apply a first-order log-linear Taylor-series expansion to the system of price
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8We find that a first-order Taylor series works well, using a Monte Carlo robustness analysis.  Higher-order
terms are largely unnecessary but would reduce the remaining small bias; we address this more in section 7.

9That is, every region faces the same trade costs with every other region and is identically sized.

equations above to generate a reduced-form gravity equation – including theoretically-motivated

exogenous multilateral-and-world-resistance (MWR) terms – that can be estimated using OLS.  A first-

order Taylor-series expansion of any function f(xi), centered at x, is given by f(xi) = f(x) + [fN(x)](xi-x).  Of

course, the Taylor-series expansion requires some arbitrary choice for x.  In modern dynamic

macroeconomics, where such expansions are common, the Taylor-series expansion is usually made around

the steady-state value, suggested by the theoretical model.8

Since the solution to a Taylor-series expansion is sensitive to how it is “centered,” we consider two

cases.  In our static context, a natural choice is an expansion centered around a “symmetric” world, which

we will solve in the second subsection.  An empirically implausible – but theoretically feasible – case is a

“frictionless” world (zero trade costs).  First, we derive an OLS model assuming the world is frictionless. 

Despite a restrictive setting, the solution under this simpler scenario illustrates some fundamental insights

about specifying theoretically-motivated “exogenous” multilateral-and-world-resistance terms and

illustrates the essence of our approach.  Second, since the real world is far from frictionless, we derive the

expansion also centered around a “symmetric” world in (positive) trade costs and incomes.9  This

assumption may be more conceptually appropriate since OLS estimation defines variables as deviations

around their “mean” values; hence, we associate centering around a “symmetric” equilibrium with

centering around the “means.”  Moreover, we show later in sections 4, 5, and 6 why such an assumption is

very useful to generate OLS-based estimates of gravity equation parameters and comparative-static effects

that are consistently virtually identical to those using A-vW’s custom NLLS approach.  The basic intuition

is that, in the second case, much of the dispersion of incomes can be accounted for by an intercept.

We begin with N equations (8) from Section 2:

        (8)

( )P t Pi j ij j
j

N

=
⎡

⎣
⎢

⎤

⎦
⎥

−

=

−

∑ θ
σ

σ

/
/( )

1

1

1 1

 for i = 1,..., N.  It will be useful for later to rewrite (8) as:

(14)e e e eP P t( ) ln ln ( ) ln ( ) ln1 1 1

1

− − −

=

= ∑σ θ σ σi j j ij

j

N
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where e is the natural logarithm operator.

A.  Case 1:  Derivations for a Frictionless World

In a frictionless world, we are assuming tij = t = 1for all i,j = 1,..., N.  Hence, equation (8) simplifies

to:

(15)P Pi j
j

N

j

1

1

1−

=

−= ∑σ σθ

for all i =1,..., N.  Multiplying both sides of equation (15) by Pi
F-1 yields:

                              (16)
( )1

1

1
=

−

=
∑ θ

σ

j i j
j

N

PP

As noted in Feenstra (2004, p. 158, footnote 11), the solution to equation (16) is:

      (17)P Pi = = 1

for all i = 1,..., N.  Note that 2j can vary across N countries in this case.

Consequently, a first-order log-linear Taylor-series expansion of equation (14) centered at P = t = 1

(and lnP = lnt = 0) is:

(18)1 1 11 1

11
+ = − + −− −

==
∑∑ln ln ( ) lnP P ti j j j ij
j

N

j

N
σ σθ σ θ

using .  Subtracting 1 from both sides, multiplying both sides by[ ]d e d P eP P( ) ln ( ) ln/ (ln ) ( )1 11− −= −σ σσ

2i, and summing both sides over N yields:

(19)( )θ θ θ σ θθσ σ
i i i

i

N

i

N

j j
j

N

i j ij
j

N

i

N

ln ln lnP P t1
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Noting that the first RHS term can be expressed in alternative ways,
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we can substitute  for  in equation (19) to yield:−
=

−∑ θ σ
i

i

N

i
1

1ln P −
=

−

=
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i
i
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j j
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N

1

1
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ln P
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10For instance, internal distances tii and tjj will likely differ, as will 2i and 2j.  For transparency and
consistency with A-vW’s notation, we note that lnPi

F-1 = -lnPi
1-F; analogously for j.

( )θ θ σ θθσ σ
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or
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Substituting equation (20) into equation (18), after subtracting 1 from both sides of eq. (18), yields:

(21)ln ln ( ) ln ( / ) lnP P t ti i j ij
j

N

i j ij
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and it follows that:

(22)ln ln ( ) ln ( / ) lnP P t tj j i ji
i
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Although (by assumption) tij = tji,
  

need not equal
 

.10θi ij
i 1

N

lnt
=
∑ θ j ij

j 1

N

lnt
=
∑

Equations (21) and (22) are critical to understanding this analysis.  The benefit of the first-order

log-linear expansion is that it identifies the exogenous factors determining the multilateral price terms in

equation (7) in a manner consistent with the theoretical model.  To understand the intuition behind

equation (22) – analogous for (21) – we consider separately each of the two components of the RHS.  The

first component is a GDP-share-weighted (geometric) average of the gross trade costs facing country j

across all regions.  The higher this average, the greater overall multilateral resistance in j.  Holding

constant bilateral determinants of trade, the larger is j’s multilateral resistance, the lower are bilateral trade

costs relative to multilateral trade costs.  Hence, the larger the bilateral trade flow from i to j will be.  The

analogous intuition applies to equation (21).

Now consider the second component on the RHS of equation (22).  The Taylor-series expansion

here makes transparent the influence of world resistance, which is identical for all countries.  In A-vW,

this second component is only implicit.  World resistance lowers trade between every pair of countries. 

This term is constant in cross-section gravity estimation, embedded in and affecting only the intercept. 
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11Moreover, in panel estimation, changes in world resistance over time – along with changes in world
income – provide a rationale for including a time trend.

(However, the term cannot be ignored in estimating “border effects.”)11  Together, these terms indicate that

the level of bilateral trade from i to j is influenced – not just by the level of bilateral relative to multilateral

trade costs, but also – by multilateral relative to world trade costs.  Our estimation can account for the role

of world resistance.

In the context of the theory just discussed, we can obtain consistent estimates of the gravity

equations’ coefficients – accounting for the endogenous multilateral price variables – by estimating using

OLS the reduced-form gravity equation:

( )ln ' ln ln lnX GDPij i j ij= + + − −β σ0 1GDP t

(23)( )+ − ⎛
⎝⎜

⎞
⎠⎟ −
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⎠⎟

⎡
⎣⎢

⎤
⎦⎥= ==

∑ ∑∑σ θ θθ1 1
21 11

j i jt tln lnij
j
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N
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⎠⎟

⎡
⎣⎢

⎤
⎦⎥= ==

∑ ∑∑σ θ θθ1 1
21 11

i i jt tln lnji
i

N

ij
j

N

i

N

where  is a constant across country pairs.  Thus, in the context of the theoretical model, theβ0 ' ln= − Y T

influence of the endogenous multilateral price variables can be accounted for, once we have measures of tij,

using theoretically-motivated exogenous multilateral resistance variables.  This is the first major result of

this paper.

We close this section noting that it will be useful now to exponentiate equation (23).  After some

algebra, this yields:

(24)X t
t t / t

ij

i j
T

ij

i j
TYY Y/ ( ) ( ) ( )

( )

=
⎛

⎝
⎜

⎞

⎠
⎟

− −

θ θ θ

σ 1

where , and recall 2i = Yi/YT and tij = tji (byti j 1
N

ij
j

j i 1
N

ji
T

i 1
N

j 1
N

ij
i i j( ) , ( ) , ( )θ θ θθ θ θ θ= = == = = =Π Π Π Πt t t t t

assumption).  BV-OLS significantly simplifies the gravity equation implied by equations (7)-(9).  Based

upon a first-order log-linear expansion of the A-vW model, equation (24) is a simple reduced-form
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12We ignore here the possibility of “zero” trade flows.  Such issues have been dealt with by various means;
see, for example, Felbermayr and Kohler (2004).

equation capturing the theoretical influences of bilateral, multilateral, and world trade costs on (relative)

bilateral trade.  As noted, multilateral-and-world-trade costs are GDP-share weighted.  Given data on

bilateral trade flows, national incomes, and bilateral trade costs, equation (24) can be estimated by “good

old OLS,” noting the possible endogeneity bias introduced by GDP-share weights in RHS variables.12  But

will this equation work empirically?

At this juncture, we ask four critical questions that guide the direction of the remainder of our

paper.  First, does centering the Taylor expansion around a frictionless equilibrium make economic and/or

econometric sense, or is there a more plausible alternative?  Second, does BV-OLS estimation work

empirically as an approximation to A-vW (allowing for measurement and specification error), and why? 

Third, using Monte Carlo analysis to eliminate measurement and specification errors, does BV-OLS work

well?  Fourth, if the linear approximation of BV-OLS works well, why does it work well?

The next sub-section (3B) addresses the first question.  Sections 4 and 5 address the second set of 

questions.  Finally, sections 6 and 7 address the third and fourth questions, respectively.

B.  Case 2:  Derivations for a Symmetric World

The world is far from frictionless.  Yet, a Taylor-series expansion requires some “center.”  An

alternative center would be a symmetric world – where countries have identical economic (GDP) sizes (2j

= 1/N) and trade costs (tij = t), but the latter are positive (t > 1) unlike the previous case.  One can interpret

the centering around a symmetric equilibrium as centering around the “means” of GDP shares and trade

costs.  This has a ready econometric analogue when the resulting trade-flow equation is estimated by OLS

with cross-sectional data since OLS coefficients correspond to variables that are defined as deviations

around their respective “means.”  We now show that a gravity equation similar to equation (24) surfaces

under this centering that can potentially yield virtually identical coefficient estimates to those generated by

NLLS structural estimation.

In a symmetric world, equation (8) can be expressed as:

(25)P P1 1 1− − −=σ σ σθN t

where P denotes the multilateral price term under symmetry.  It will be useful to note now that (25) can be

solved for P as a function of N, 2, and t:

(26)( )P t t= =−Nθ σ1 2 1 1 2 1 2/[ ( )] / /
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since 2 = 1/N in a symmetric world.

A first-order log-linear Taylor-series expansion of equation (14) is:

(27)

[ ( )( ) ( )

( )( ) ( )( ) ( ) ]

( ) ( ) ( ) ( ) ( ) ( )[ ]

P P P

P t P t P P
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=
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−

=
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= − − −
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N
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j
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N

P

using equation (25) and .  Dividing both sides of (27) by[ ]d e d P eP P( ) ln ( ) ln/ (ln ) ( )1 11− −= −σ σσ

 P1-F yields:

(28)

( ) ( ) ( ) ( )
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( ) ( )
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1 1
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1

1 1
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j

Using (25), add (1-F) lnP = lnN + ln2 - (1-F) lnP + (1-F) lnt to (28) to yield:

(29)ln ln ln ln ( ) lnP P ti j j ij
j

N

j

N

j

N

N N N N1 1 1 1 1

111
1− − − − −

===
= − + + − ∑∑∑σ σ θ σ

To solve for ln Pi
1-F, sum both sides of equation (29) over i = 1, . . . , N:
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(30)
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Since then (30) simplifies to:ln lnP Pi j
j

N

i

N
1 1
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==
= ∑∑ σ σ

(31)( )ln ln ln lnP tj
j

j ij
j

N

i

NN

j
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Substituting (31) for in (29) yields:ln Pj
j

N
1

1

−

=
∑ σ

(32)
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N
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and, by implication:

(33)
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Equations (32) and (33) are similar to equations (21) and (22), but share two key distinctions. 

First, since this derivation allows an expansion around 2j, additional terms are present in both equations

reflecting deviations around identical GDP shares (1/N).  Second, because of this additional expansion, the

trade cost terms are simple averages – rather than GDP-share-weighted averages – of the logs of the tij’s
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13Asymmetry in GDP shares across all bilateral partners (which causes the second bracketed term to
become negative) raises multilateral resistance, analogous to the traditional gravity equation notion that greater
asymmetry in bilateral GDP shares increases bilateral trade resistance, cf., Baier and Bergstrand (2001).

14In estimation of equation (34), the second component of each multilateral resistance term is constant
across country pairs, and thus only influences the estimate of the intercept.  However, we leave these “world-
resistance” terms in each multilateral resistance term because they will be important in estimating later “border
effects.”  Indeed, the variables measuring GDP-share asymmetries are also important theoretically for estimating
border effects, but – as in A-vW – we will ignore these later in estimating border effects because they will be

since the dispersion of incomes is treated separately.

The second bracketed RHS term (second line) in either equation (32) or (33) represents deviations

of GDP shares around symmetry.  If all regions are the same size in GDP, this last term is zero.  The more

GDP shares deviate from symmetry, the higher is multilateral resistance and the greater the bilateral trade

flow.  The intuition parallels that of GDPs of exporter i and importer j in the standard gravity equation,

such as equation (7).  For given economic size of two regions, bilateral trade is diminished the more

asymmetric in size are regions i and j.  Similarly here, the greater the asymmetry in all regions’ economic

sizes, the smaller will be multilateral trade of any particular country.13  Holding bilateral determinants

constant, bilateral trade from i to j will be greater the more asymmetric are all regions’ economic sizes.

Centering on a symmetric world, we can obtain estimates of the gravity equations’ coefficients

accounting for multilateral resistance by estimating using OLS the gravity equation:

( )ln ' ln ln lnX GDPij i j ij= + + − −β σ0 1GDP t
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where  is a constant across country pairs.  Thus, in the context ofβ θ0 ' ln ln= − −
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the theoretical model, the influence of the endogenous multilateral price variables can be accounted for

using slightly different theoretically-motivated exogenous multilateral resistance variables.14  
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quantitatively trivial and it will facilitate estimation of such effects.

15In fact, while for brevity we do not report estimates for equation (23), both econometric and simulation
results confirm this argument.  Results are available on request.  Note also that (to deal with “zero” trade flows)
equation (35) can potentially be estimated using a pseudo Poisson maximum likelihood procedure with an additive
error term.

As in the previous section, exponentiating equation (34) yields the analogue to equation (24).  In

the context of an N-region world, the log-linear approximation of the general equilibrium model yields the

simple reduced-form gravity equation :

(35)X t
t t / t
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i j
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Compare  equations (24) and (35).  The latter differs from the former in one critical dimension.  In

equation (35), the effect of dispersion of GDPs is accounted for entirely in the first term on the RHS and

affects only the intercept; dispersion of GDPs is captured in 2.  The Taylor expansion around GDP shares

effectively removes the GDP-share weights from the multilateral and world trade cost variables.  By

implication, the RHS term in brackets is a function of exogenous (trade cost) variables.  This reduces the

influence of dispersion of economic mass on estimates of key parameters, such as the effect of trade costs

– including borders – on trade flows, -(F-1).  Consequently, we expect OLS estimation of equation (34) –

BV-OLS centered around a symmetric equilibrium – to yield closer estimates to the “true” parameters than

OLS estimation of (23).15

The preceding discussion addresses the first question asked at the end of section 3A: Does

centering the Taylor expansion around a frictionless world make economic sense, or is there a better

alternative?  This section argued that centering around a symmetric world seems more plausible

economically and econometrically.  The second question posed at the end of section 3A was:  Does BV-

OLS estimation work empirically as an approximation to A-vW (allowing for measurement and

specification error)?  Sections 4 below address this question.

4.  BV-OLS Works:  Estimation of Average Effects

The goal of this section is to show that one can generate virtually identical gravity equation

coefficient estimates (“average effects”) to those generated using the technique in A-vW but using instead
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16It will be useful now to distinguish “regions” from “countries.”  We assume that a country is composed of
regions (which, for empirical purposes later, can be considered states or provinces).  We will assume N regions in
the world and n countries, with N > n.  Our theoretical model applies to a two-country or multi-country (n > 2)
world.  We will assume n $ 2.  A “border” separates countries.  Also, we use BORDER rather than EIA so that the
coefficient estimates for DIS and BORDER are both negative and therefore are consistent with A-vW (2003) and
Feenstra (2004).  The model is isomorphic to being recast in a monopolistically-competitive framework.

OLS with exogenous multilateral-resistance terms determined by theory.  While the approach should work

in numerous contexts, for tractability for the reader we apply it in this paper to McCallum’s U.S.-Canadian

case, since this is a popular context; in a later section, we also do a Monte Carlo analysis for world trade

flows among countries.  We estimate the McCallum, A-vW, fixed-effects, and our versions of the model

using the A-vW data provided at Robert Feenstra’s website, and compare our coefficient estimates with the

other results.  We show that A-vW, fixed effects, and our methods can yield virtually identical gravity-

equation coefficient estimates, even though both BV-OLS and fixed effects are computationally simpler.

Before estimating (34), we need to replace the unobservable theoretical trade-cost variable tij in

(34) with an observable variable.  First, we will define a dummy variable, BORDERij, which assumes a

value of 1 if regions i and j are not in the same nation; hence, EIAij = 1- BORDERij.16  Take the

logarithms of both sides of equation (10) and then substitute the resulting equation for ln tij into (34) to

yield:
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where xij = Xij / GDPi GDPj.  We will term this the “BV-OLS” model, noting that – to conform to our

theory – the coefficient estimates for lnDIS (BORDER) and MWRDIS (MWRBORDER) are restricted

to have identical but oppositely-signed coefficient values.  “MWR” denotes Multilateral and World

Resistance.

As readily apparent, equation (36) can be estimated straightforwardly using OLS, once data on
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17However, as shown earlier, these terms would include the GDP-share-weighted average distances if we
centered our first-order log-linear approximation around a “frictionless” equilibrium.

18In Feenstra’s Table 5.2, column 3, he does not report the actual dummy variable’s coefficient estimate
(comparable to our estimate of 0.71).  Instead, he reports only the implied “Indicator Canada” and “Indicator US”
estimates of 2.75 and 0.40, respectively.  The implied Indicator Canada and Indicator US estimates from our
regression are 2.66 and 0.48, respectively; the difference is that we restrict the GDP elasticities to unity.  When we

trade flows, GDPs, bilateral distances, and borders are provided.  We note that the inclusion of these

additional MWR terms appears reminiscent of early attempts to include – what A-vW term – “atheoretical

remoteness” variables, typically GDP-weighted averages of each country’s distance from all of its trading

partners.  However, there are three important differences here.  First, our additional (the last two) terms are

motivated by theory; moreover, we make explicit the role of world resistance.  Second, in the context of

our Taylor series around a symmetric equilibrium, the distances of each country from all of its trading

partners should not be weighted by GDP shares.17  Third, previous atheoretical remoteness measures

included only multilateral distance, ignoring multilateral (and world) “border” variables (and multilateral

and world resistance versions of other “bilateral” variables, such as adjacency, language, etc.).

We follow the A-vW procedure (for the two-country model) of estimating the gravity equation for

trade flows among 10 Canadian provinces, 30 U.S. states, and one aggregate region representing the other

20 U.S. states and the District of Columbia (denoted RUS).  As in A-vW, we do not include trade flows

internal to a state or province.  We calculate the distance between the aggregate U.S. region and the other

regions in the same manner as A-vW.  We also compute and use the internal distances as described in A-

vW for MWRDIS.  Hence, there are 41 regions.  Some trade flows are zero and, as in A-vW, these are

omitted.  As in A-vW and Feenstra (2004), we have 1511 observations for trade flows from year 1993.

Table 1 provides the results.  For purposes of comparison, column (1) of Table 1 provides the

benchmark model (McCallum) results estimating equation (36) except omitting MWRDIS and

MWRBORDER.  Columns (2) and (3) provide the model estimated using NLLS as in A-vW for the two-

country and multi-country cases, respectively.  Column (4) provides the results from estimating equation

(36) using BV-OLS.  For completeness, column (5) provides the results from estimating equation (36)

using region fixed effects instead of MWRDIS and MWRBORDER.

Table 1’s results are generally comparable to Table 2 in A-vW.  Column (1)’s coefficient estimates

for the basic McCallum regression, ignoring multilateral resistance terms, are biased, as expected.  This

specification can be compared with Feenstra (2004, Table 5.2, column 3), since it uses US-US, CA-CA,

and US-CA data for 1993.  Note, however, we report the border dummy’s coefficient estimate (“Indicator

border”) whereas Feenstra reports instead the implied “Country Indicator” estimates.18  Columns (2) and
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relax the constraints on GDP elasticities, our estimates match those in Feenstra’s Table 5.2, column 3 and A-vW’s
Table 1 exactly.

19The coefficient estimates from the fixed-effects regression in A-vW’s Table 6, column (viii) are not
reported.  However, they were generously provided by Eric van Wincoop in e-mail correspondence, along with the
other coefficient estimates associated with their Table 6.  A-vW’s Distance (Border) coefficient estimate using fixed
effects was -1.25 (-1.54).

(3) in Table 1 report the estimates (using GAUSS) of the A-vW benchmark coefficient estimates; these

correspond exactly to those in A-vW’s Table 2 and (for the two-country case) Feenstra’s Table 5.2,

column (4).  The coefficient estimates from our BV-OLS specification (36) are reported in column (4) of

Table 1.  While the coefficient estimates differ from the NLLS estimates in columns (2) and (3), they

match closely the coefficient estimates using fixed effects in column (5).  Recall that – as both A-vW and

Feenstra note – fixed effects should provide unbiased coefficient estimates of the bilateral distance and

bilateral border effects, accounting fully for multilateral-resistance influences.  Our column (5) estimates

match exactly those in A-vW and Feenstra (2004).19

We now address the difference between bilateral distance coefficient estimates in columns (2) and

(3) and those in columns (4) and (5).  While Feenstra (2004) omitted addressing this difference, A-vW did

address it in their sensitivity analysis (2003, part V, Table 6).  As A-vW (2003, p. 188) note, the bilateral

distance coefficient estimate using their NLLS program is quite sensitive to the calculation of “internal

distances.”  In their sensitivity analysis, they provide alternative coefficient estimates when the internal

distance variable values are doubled (or, 0.5 minimum capitals’ distance).  These are reported in column

(6) of our Table 1; note that the absolute value of the distance coefficient increases with virtually no

change in the border dummy’s coefficient estimate.  Using the same procedure, we increased the internal

distance variables’ values by a factor of ten (or, 2.5 times minimum capitals’ distance); the coefficient

estimates are reported in Table 1, column (7).  We see that the bilateral distance coefficient estimate is now

much closer to those in columns (4) and (5).

These results confirm A-vW’s suspicion that the NLLS estimation technique is sensitive to both

measurement error in internal distances and potential specification error.  Fixed-effects estimates, of

course, do not depend on internal distance measures.  The empirical results suggest that the (log-linear)

BV-OLS estimation procedure avoids the potential bias introduced by measurement error and potential

specification error better than the nonlinear estimation procedure.  First, BV-OLS estimates are insensitive

to measures of internal distance.  As A-vW note (p. 179), internal distances are only relevant to calculating

the multilateral resistance terms (in our context, only the multilateral and world resistance (MWR) terms). 

Examine equations (36) and (37) closely.  Since the BV-OLS MWRDIS variable is linear in logs of

distance, a doubling of internal distance simply alters the intercept of equation (36).  The measurement

error introduced by internal distances in A-vW’s structural estimation is avoided in BV-OLS and fixed-
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20Our Taylor-series expansion illustrates that the intercept also reflects world resistance and the dispersion
of world income.  We note that Balistreri and Hillbery (2004) addressed other concerns about the A-vW study as
well, including A-vW’s exclusion of interstate trade flows and their imposing symmetry on U.S.-Canadian border
effects.  Due to space limitations, we do not address these issues.

21 The discerning reader will note that the last two bracketed terms on the RHS of equation (36) effectively
“de-mean” the lnDISij and BORDERij variables.  Of course, estimation with region-specific fixed effects is
equivalent econometrically to de-meaning lnDISij and BORDERij.  However, BV-OLS is distinguished from fixed
effects estimation in three dimensions.  First, while fixed-effects dummy variables can “account” for variation in MR
terms in estimation, such dummies cannot identify the source of multilateral resistance; BV-OLS can.  Second,
ideally the Taylor-series expansion should include higher-order terms, which would cause the MWR terms in BV-
OLS to include variables other than just the means; the similarity to fixed effects is due to a first-order expansion. 
Third, econometrically BV-OLS is not identical to fixed effects because the LHS variable in BV-OLS, xij, is not de-
meaned.  This will cause BV-OLS estimates to differ from fixed effects.  The distinction between BV-OLS and
fixed-effects results is also confirmed empirically by noting the correlation coefficient between the MWR terms in

effects estimation.  Second, BV-OLS avoids potential specification bias, such as one raised by Balistreri

and Hillberry (2004).  That study argued that A-vW’s NLLS estimates ignored the constraint that the

constant (a0) needed to equal (the negative of the log of) world income; once this structural constraint is

imposed, the A-vW coefficient estimates (especially that for distance) are closer to the fixed-effects

estimates.  By contrast, BV-OLS and fixed effects avoid this specification error.20

5.  Why BV-OLS Works: Estimation of Comparative-Static Effects and Intuition

This section has three parts.  In section A, we use BV-OLS to estimate comparative statics without

the nonlinear system of equations.  In section B, we provide intuition for why BV-OLS works in providing

a good approximation of the comparative-static (average) country effects addressed in A-vW (2003).  Yet,

the multilateral resistance terms from BV-OLS are derived from linear “approximations”; consequently,

MR terms estimated using BV-OLS are not likely to provide very precise estimates of region-specific or

region-pair-specific comparative statics.  Accordingly, in section C, we describe briefly a simple “fixed-

point iteration” procedure that can be used to generate the identical MR terms and comparative statics as in

A-vW, but again without the complex NLLS estimation procedure.

A.  Estimation of Comparative Statics using BV-OLS

As A-vW note and Feenstra (2004, p. 161) emphasizes, consistent estimates of the gravity

equation coefficients and the average border effect can be obtained estimating eq. (1) adding region-

specific fixed effects.  However, to estimate the country-specific border effects, the fixed-effects technique

falls short.  As A-vW note, one still needs to use the coefficient estimates from column (5) in Table 1

along with the nonlinear system of equations (12.1)-(12.41) to generate the country-specific border effects. 

By contrast, the BV-OLS procedure allows one to estimate the country-specific border effects without

employing the nonlinear system of equations. We now demonstrate this.21
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BV-OLS and those implied by the coefficient estimates of the relevant dummy variables using fixed effects is 0.81.

Recall equation (13) to calculate (region-specific) border effects for xij, using its log-linear form:

BBij = lnxij - lnxij* = a2 - lnPi
1-F +  lnPi*1-F - lnPj

1-F +  lnPj*1-F (39)

where a2 is the estimate of -"(F-1) and a2 < 0.  We substitute equation (10) into equations (32) and (33) to

find estimates of the multilateral price terms with and without national borders:
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22As discussed in A-vW’s Appendix B, the 2’s change between states BB and NB, although these changes
are negligible.  Moreover, the effects of these changes do not matter materially for equation (39).
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23The estimate of the correlation coefficient between price levels estimated using A-vW and those using
BV-OLS is 0.92.

where BORDERij = 1 if regions i and j are not in the same nation and 0 otherwise.

Equations (40) are reported to emphasize three points, noting that the last two equations for

country j are symmetric to the first two for country i.  The first two equations for country i differ in two

respects.  First, lnPi
1-F differs from lnPi

*1-F because the former includes the “border” component.  Second,

note that the GDP shares will differ in the two equilibria, because GDPs are endogenous variables.  Thus,

the multilateral resistance terms are endogenous variables.  However, we will ignore the latter differences

since – at the suggestion of A-vW (2003, footnote 26, p. 183) – the GDP-share changes are quantitatively

trivial and, consequently, the multilateral price terms are determined exclusively by exogenous distance

and border variables.  Our robustness analysis will support this simplification.22  Finally, as footnote 21

addressed, equations (40) distinguish BV-OLS from fixed effects; the latter cannot deliver comparable

equations of multilateral resistance terms without constructing the nonlinear system of price equations.

The presence of border barriers tends to increase multilateral resistance levels in countries. 

Moreover, MR increases tend to be higher for small (GDP) countries relative to large countries.  A-vW’s

Table 3 illustrated these price level increases.  Our Table 2 reports the ratios of the (average) price levels

with barriers relative to those without barriers for the U.S. states and Canadian provinces from A-vW and

from our BV-OLS estimates.  Using BV-OLS, the increase in price levels is relatively higher for relatively

smaller Canadian provinces and the magnitudes of the increases are comparable to those in A-vW.23

We are now ready to address the impact of border barriers on bilateral trade flows between

Canadian provinces, between U.S. states, and between Canadian provinces with U.S. states.  Substituting

equations (40) for the respective terms in equation (39) yields:

 (41)
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where the distance components of the multilateral price terms cancel out and, as discussed above and in A-

vW, the income-share differences are trivially small and consequently ignored.  Thus, estimates of the

comparative static border barriers do not require estimating the Pi
1-F, Pi*1-F, Pj

1-F, and Pj*1-F terms using a

custom nonlinear program.

Table 3 – similar to A-vW’s Table 4 – reports the ratios of average bilateral trade with border

barriers (BB) to bilateral trade without border barriers (NB).  Like A-vW, we decompose the ratio into that

portion due to a change in bilateral resistance and that portion due to a change in multilateral resistance. 

The first two parts of Table 3 reproduce the relevant estimates from A-vW’s Table 4 for both the two-

country and multi-country cases.  The third part reports our comparable estimates using BV-OLS.

The notable finding in Table 3 is that the BV-OLS estimates of the impact of border barriers on

bilateral trade are virtually identical to A-vW’s multi-country NLLS estimates.  The economic

interpretation of the BV-OLS estimates is the same as in A-vW and need not be reproduced.  However, we

emphasize two important results.  First, cross-border U.S.-Canada trade is 0.56-0.57 of its level without the

border, implying a reduction of 43-44 percent, considerably smaller than that in McCallum (1995). 

Second, as suggested in McCallum and A-vW, bilateral resistance reduces bilateral international trade by

78-80 percent.  However, the increase in trade due to the increase in multilateral resistance offsets this

dramatically, with the MR increase causing more state-province trade by a factor of 2.6-2.7.

Finally, Table 4 – akin to A-vW’s Table 5 – reports the results of estimating the impact of national

borders on the ratio of (average) intranational trade to (average) international trade.  Not surprisingly, the

BV-OLS estimates are very close in magnitude to the values implied using the more complex A-vW NLLS

procedure.

B.  Intuition

We now explain intuitively why BV-OLS works here.  To do so, we draw upon the simple

insightful conceptual example in A-vW (2003, p. 177):

Consider the following example . . . .  A small economy with two regions and a large economy with
100 regions engage in international trade.  All regions have the same GDP.

A modification of this example to the U.S.-Canadian border-puzzle setting – 10 Canadian provinces and

30 U.S. states – along with a consistent estimate of the cross-border dummy variable coefficient, "(1-F), is

sufficient to generate the country-specific comparative-static border effects.
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1.  A-vW’s Implication 1

First, we know from equation (41) that the log of the ratio of average trade from a region in

Canada (i) to a region in the United States (j) with and without a border, or ln (xij/xij*), can be written as:
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Second, note that – in this context – *CA and *US are each negatively related to their respective

country’s share of the two countries’ GDP.  Specifically, 

*CA = 1 - 2CA *US = 1 - 2US

where – with each region having identical GDP (as in A-vW) – 2CA (= 10/40) is Canada’s share of both

countries’ GDPs and 2US (= 30/40) is the U.S. share of their GDPs.  Substituting 1-2CA (1-2US) for *CA

(*US) in eq. (43) yields:
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24Using the estimate of "(1-F) = -1.65 from A-vW’s two-country model, (-1.65)(0.375) = -0.619, implying
a RatioBB/NB = e-0.619 = 0.54, slightly larger than the A-vW two-country RatioBB/NB = 0.41.
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since 22CA 2US = 1 - 2CA
2 - 2US

2 when 2CA (2US) is a fraction.  Recall that " represents the conversion of

the border effect into the log of the gross trade-cost factor.

Note that eq. (44) above and eq. (15) in A-vW are identical.  Equations (43) and (44) – like

AvW’s eq. (15) – support A-vW’s “Implication 1.”  The larger are the two countries’ GDPs (as a share of

all the N regions in the world), the larger the effect of a national border on their size-adjusted

international trade.  See A-vW for further intuition.

Consequently, equation (43) provides a ready estimate of the log of the ratio of average trade

from a region in Canada to a region in the United States with a border to that without a border.  Equation

(43) can be rewritten as:

(45)( ) ( ) ( )[ ]dln
d

1 1ij

ij
CA CA US US CA US

x
BORDER

= − − − − −α σ δ δ δ δ δ δ

The direct bilateral effect is "(1-F)(1) < 0, which is estimated using A-vW, fixed effects, or BV-OLS.  A-

vW suggests -1.65; BV-OLS (fixed effects) suggests -1.53 (-1.54).  The second RHS term –

-"(1-F)(*CA - *CA *US) > 0 – represents the offsetting effect of the change in Canada’s theoretically-

motivated multilateral resistance term.  The effect of the change in U.S. multilateral resistance is

represented by the third RHS term -"(1-F)(*US - *CA *US) > 0.  Simply substituting *CA = 30/40, *US =

10/40, and an estimate of -"(1-F), say -1.53, into (45) yields an estimate of the log ratio of an average

Canadian region’s trade to a U.S. region with and without a border, or -(1.53) (0.375) = -0.5738.  This

implies a RatioBB/NB = e-0.5775 = 0.56 – which is nearly identical to the estimate of RatioBB/NB in Table 3

using either BV-OLS or the A-vW Multi-country NLLS estimation procedures.24
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2.  A-vW’s Implication 2

It will not be surprising then to learn that our model also supports A-vW’s Implication 2: a border

increases size-adjusted trade within small countries more than within large countries.  In our model for

Canada:

 (46)( )[ ]dln
d

1 0 2ii

ij
CA CA CA US

x
BORDER

= − − − +α σ δ δ δ δ

Substituting 2CA = 1 - *CA and 2US = 1 - *US into equation (46) yields:
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Equation (47) is identical to equation (16) in A-vW.  Consequently, Canada’s size-adjusted intranational

trade should increase more than U.S. intranational trade with a border introduced.  Substituting *CA =

30/40, *US = 10/40, and the estimate of -"(1-F), -1.53, into (47) yields a value of 1.72.  This implies

intranational Canadian trade increase by a factor of e1.72 = 5.59, similar to our BV-OLS estimate and

slightly less than the estimate in A-vW’s multi-country model (see Table 3).  The analogous estimate for

the United States is 1.21, similar to our BV-OLS estimate and slightly less than A-vW’s multi-country

model estimate (see Table 3).

3.  A-vW’s Implication 3

A-vW’s Implication 3 follows from Implications 1 and 2 here as well:
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Equation (48) is identical to equation (17) in A-vW.  Consequently, a national border increases

intranational relative to international trade more the smaller is Canada and the larger is the United States,

as in A-vW’s Implication 3.  Substituting *CA = 30/40, *US = 10/40, and the estimate of -"(1-F), -1.53,

into equation (48) yields a value of 2.295.  This implies that intranational relative to international

Canadian trade increases by a factor of 9.92 due to the U.S.-Canadian border, in line with estimates in

Table 4 (footnote).  Finally, intranational relative to international U.S. trade increases by a factor of 2.15,

similar to that found in Table 4 (footnote).

C.  Fixed-Point Iteration

This section has demonstrated so far that BV-OLS provides an excellent first-order

approximation to estimating average effects of EIAs and certain comparative-static effects, such as

country-specific border effects.  However, because BV-OLS is a linear approximation of a nonlinear

system, it cannot provide very precise estimates of the numerous region-specific or region-pair-specific

comparative statics that may be desired for policy purposes.  That is, region-specific multilateral

resistance terms – in the context here, state- or province-specific MR terms – generated by BV-OLS are

likely to provide poor estimates of the region-specific MR terms generated using custom NLLS

estimation of the full general-equilibrium model.

Is there an easy way to estimate precisely A-vW’s region-specific MR terms without nonlinear

estimation?  We can show that the region-specific price terms can be obtained readily using a simple

(iterative) matrix manipulation technique that is computationally much less resource-intensive than the

nonlinear estimation technique used by A-vW, as it does not require computation of the Jacobian of the

system of equations, nor does it even require that the inverse of the Jacobian exists.  The process is based

upon fixed-point iteration.

We summarize the process briefly, referring the reader to Appendix A for technical details.  

First, calculate initial estimates of every Pi
1-F (Pi

*1-F ) using BV-OLS, denoted Pi
1-F

0 (Pi
*1-F

0), for every

region (i = 1, ..., N).  Denote the Nx1 vector of these MR terms V0 (V0*) and the Nx1 vector of the

inverses of each of these MR terms V0
- (V0

-*).  Second, define an NxN matrix of GDP-share-weighted

trade costs, B, where each element, bij, equals 2jtij
1-F.  Third, compute Vk+1 according to:

                                                         (49)V zBV z Vk k k+
−= + −1 1( )

starting at k = 0 until successive approximations are less than a predetermined value of g (say, 1x10-9),
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where and z is a dampening factor with , and analogously for Vk*.ε = −+maxV Vk k1 z ∈( , )0 1

Given the initial estimates of Pi
1-F (Pi

*1-F ) using BV-OLS (i = 1, ..., N), this fixed-point iteration

process will converge to the set of multilateral price terms identical to those generated using A-vW’s

NLLS program.  We have run this set of matrix calculations and the correlation coefficient between our

MR terms (using fixed-point iteration) and A-vW’s MR terms (using NLLS) is 1.0 (reported to seven

decimal places).  Consequently, any region-pair-specific border effects – such as that between Alabama

Quebec – are identical.  

6.  BV-OLS Works Well:  Evaluating Robustness using a Monte Carlo Analysis

The previous two sections have addressed the second set of questions posed at the end of section

3A: Does BV-OLS estimation work empirically as an approximation to A-vW (allowing for measurement

and specification error), and why?  While NLLS of the A-vW system of equations, BV-OLS, and fixed-

effects specifications should all generate similar estimates of -D(F-1) and -"(F-1), comparisons of Table

1's empirical results for specifications (2), (4), and (5) yield significantly different results.  Notably, BV-

OLS (spec. 4) and fixed effects (spec. 5) yield similar results, but both differ sharply from estimation

using NLLS (spec. 2).  Why?  As discussed in section 4, A-vW’s NLLS procedure is highly sensitive to

the measurement of internal distances for the multilateral resistance terms and potential specification

error.  Is there a way to compare the estimation results of A-vW and BV-OLS excluding the measurement

error introduced by internal distances’ mis-measurement and potential specification error?

In this section, we employ a Monte Carlo approach to show that the BV-OLS method yields

estimates of average- and country-specific border effects that are virtually identical to those using A-vW’s

NLLS method when we know the “true” model, but are much simpler to compute.  To do this, we

construct the “true” bilateral international trade flows among 41 regions using the theoretical model of A-

vW described in section 2.  We assume the world is described precisely by equations (11) and (12.1)-

(12.41), assuming various arbitrary values for ", D, and F under alternative scenarios.  Using data on

GDPs and bilateral distances and dummy variables for borders, we can compute the true bilateral trade

flows and true multilateral resistance terms associated with these economic characteristics for given

values of parameters ", D, and F.

We then assume that there exists a log-normally distributed error term for each trade flow

equation.  We make 5,000 draws for each trade equation and run various regression specifications 5,000
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25The error terms’ distribution is such that the R2 (and standard error of the estimate) from a regression of
trade on GDP, distance, and borders using a standard gravity equation is similar to that typically found (an R2 of 0.7
to 0.8).

times.25  We will consider first two different sets of given parameter values and five specifications.  We

use GAUSS in all estimates.

Finally, to show that this approach works in the more traditional context of world trade flows, we

employ the same Monte Carlo approach in this alternative context in sub-section C.

A.  Specifications

We consider five specifications.  Specification (1) is the basic gravity model ignoring multilateral

resistance terms, as used by McCallum.  The specification is analogous to equation (11) excluding the

MR terms.  In the context of the theory, we should get biased estimates of the true parameters since we

intentionally omit the true multilateral price terms or fixed effects.

Specification (2) is the basic gravity model augmented with “atheoretical remoteness” terms

(REMOTEi and REMOTEj), as in McCallum (1995), Helliwell (1996, 1997, 1998), and Wei (1996 ). 

Equation (11) would include REMOTEi and REMOTEj, instead of Pi and Pj, where REMOTEi =

lnGj
N(DISij/GDPj) and analogously for REMOTEj.  In the context of the theory, we should get biased

estimates of the true parameters since we are using atheoretical measures of remoteness.  This

specification also ignores other multilateral trade costs.

For Specification (3), we take the system of equations described in equations (12.1)-(12.41) to

generate the “true” multilateral resistance terms associated with given values of -D(F-1) and -"(F-1).   We

then estimate the regression (11) using the true values of the multilateral resistance terms.  In the presence

of the true MR terms, we expect the coefficient estimates to be virtually identical to the true parameters.

As discussed earlier, country-specific fixed effects should also generate unbiased estimates of the

coefficients.  For robustness, we also run Specification (4), which includes region fixed effects instead.

Specification (5) is BV-OLS, or equation (36).  If our hypothesis is correct, then the parameter

estimates should be virtually identical to those estimated using Specifications 3 and 4.

B.  Monte Carlo Simulations

Initially, we run these five specifications for two different scenarios of values for a1 = -D(F-1)

and a2 = -"(F-1).  In both cases, we report three statistics.  First, we report the average coefficient

estimates for a1 and a2 from the 5,000 regressions for each specification.  Second, we report the standard
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26Note that the standard deviation refers to the square root of the variance of all the coefficient estimates for
a specification.  We also calculated the standard errors of each coefficient estimate.  The last column in each table
refers to the fraction of the 5,000 regressions that the estimated coefficient is within two standard errors of the true
value.

deviation of these 5,000 estimates.  In the third column, we report the fraction of times (from the 5,000

regressions) that the coefficient estimate for a variable was within two standard errors of the true

coefficient estimate.26  All estimation was done using GAUSS.

   1.  Assume -D(F-1) = -0.79 and -"(F-1) = -1.65

For Scenario 1, we use the actual coefficient estimates found in A-vW using their two-country

model.  Table 5 reports the estimated values for the five specifications under this scenario.  There are two

major results worth noting.  First, the first two specifications provide biased estimates of the border and

distance coefficient estimates, as expected.  Second, both fixed effects and BV-OLS provide estimates

very close to those using Specification 3, as expected.  While the average BV-OLS coefficient estimates

depart slightly from the average A-vW estimates, note that 98 percent of the border and distance

(coefficient) estimates are within two standard errors of the true value.

   2.  Assume -D(F-1) = -1.25 and -"(F-1) = -1.54

Now we choose values for -D(F-1) and -"(F-1) that are identical to those estimated using fixed

effects in Table 1.  Table 6 provides the same set of information as in Table 5, but for this alternative set

of true values.  The results are robust to this alternative set of parameters.  The BV-OLS coefficient

estimates are within two standard errors of the true values 99 percent of the time.

The “average” coefficient estimates using BV-OLS are very close in magnitude to those

estimated using either the true MR terms or using fixed effects.  In both cases, the coefficient estimates

for BORDER (lnDIS) are within 1 (2) percent of the true value.  While not as accurate as fixed effects in

terms of the average coefficient estimates, we note that the fraction of times that the BV-OLS estimates

are within two standard errors of the true value is 99 percent, which exceeds Specification 3 as well as

Specification 4.

  3.  Vary -D(F-1) and -"(F-1) each between -0.25 and -2.00

Given the success of these results, we decided to perform these simulations for a wide range of

arbitrary values of the parameters.  We considered a range for each variable’s “true” coefficient from 

-0.25 to -2.00.  Because of the large number of simulations, we used 1,000 runs per parameter pair.  We
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basically found the same findings.  For brevity, these are not reported individually.  However, we did

chart the estimated bias of BV-OLS border and distance variables’ coefficient estimates vs. the “true”

coefficient estimates.

BV-OLS yields virtually identical border and distance coefficient estimates to the true values. 

Figure 1a illustrates for the entire range of true Border and Distance coefficients the bias on the Border

coefficient estimate from using BV-OLS.  The BV-OLS bias for Border is smallest when Border’s (true)

coefficient is -2.00 and Distance’s (true) coefficient is -0.25.  By contrast, the BV-OLS bias for Border is

largest (0.04) when Border’s coefficient is -0.25 and Distance’s coefficient is -2.00.

However, Figure 1b illustrates the fraction of times that the BV-OLS coefficient estimate for

Border falls within two standard errors of the true Border coefficient.  Two points are worth noting.  First,

when the absolute size of the BV-OLS bias for Border’s coefficient estimate is largest – when Border’s

coefficient is -0.25 and Distance’s coefficient is -2.00 – the BV-OLS Border coefficient estimate is within

two standard errors of the true value 99.5 percent of the time.  Second, regardless of the true values of the

Border and Distance coefficients, the BV-OLS Border coefficient estimate is within two standard errors

of the true value no less than 93 percent of the time.

Figures 2a and 2b report the analogous findings for the BV-OLS Distance coefficient estimate’s

bias.  Figure 2a indicates that the largest Distance coefficient estimate bias (0.05) occurs when the

distance elasticity is -2.00.  However, Figure 2b reports that the BV-OLS Distance coefficient estimate is

within two standard errors of the true coefficient about 95 percent of the time.  Similar to Border, the BV-

OLS Distance coefficient estimate is within two standard errors of the true value no less than 93 percent

of the time.

C.  Implications for Gravity Equations for World Trade Flows

As noted earlier, the gravity equation has been used over the past four decades to analyze

economic and political determinants of a wide range of aggregate “flows.”  However, the most common

usage of the gravity equation has been for explaining world (intra- and inter-continental) bilateral trade

flows.  Surely, the issues raised in A-vW (2003) and in this paper have potential relevance to the

estimation of the effects of free trade agreements and of tariff rates on world trade flows.  In the spirit of

addressing the “generality” of our technique to other contexts, we offer another sensitivity analysis of our

technique.

In this section, we construct an artificial set of aggregate bilateral world trade flows among 88
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27The 88 countries are Argentina, Australia, Austria, Bangladesh, Belgium, Bolivia, Brazil, Bulgaria,
Canada, Chile, China, Colombia, Costa Rica, Cote d’Ivoire, Cyprus, Denmark, Dominican Republic, Ecuador,
Egypt, El Salvador, Finland, France, The Gambia, Germany, Ghana, Greece, Guatemala, Guinea-Bissau, Guyana,
Haiti, Honduras, Hong Kong, Hungary, India, Indonesia, Iran, Ireland, Israel, Italy, Jamaica, Japan, Kenya, South
Korea, Madagascar, Malawi, Malaysia, Mali, Mauritania, Mauritius, Mexico, Morocco, Mozambique, Netherlands,
New Zealand, Nicaragua, Niger, Nigeria, Norway, Pakistan, Panama, Paraguay, Peru, Philippines, Poland, Portugal,
Romania, Saudi Arabia, Senegal, Sierra Leone, Singapore, Spain, Sri Lanka, Sudan, Sweden, Switzerland, Syria,
Thailand, Trinidad and Tobago, Tunisia, Turkey, Uganda, United Kingdom, United States, Uruguay, Venezuela,
Zaire, Zambia, and Zimbabwe.

28Naturally, we could also introduce in this exercise an array of other typical bilateral dummies, such as
common language, common EIA, etc.  However, this would have no bearing on the generality of our results.

countries for which data on the exogenous RHS variables discussed above were readily available.27  Three

exogenous RHS variables that typically explain world trade flows are countries’ GDPs, their bilateral

distances, and a dummy representing the presence (0) or absence (1) of a common land border

(“NoAdjacency”).  We then estimate the relationship among bilateral trade flows, national incomes,

bilateral distances and NoAdjacency among 88 countries using BV-OLS.  We simply redo Section 6’s

Monte Carlo simulations.28

We start with the system of equations (11) and (12), modified to 88 regions.  Initially, we

assigned two sets of possible parameters for -"(F-1) and -D(F-1), the same two sets of values used for

Tables 5 and 6 (the original 2-country A-vW estimates and the fixed-effects estimates).  We then

calculated the “true” MR terms and “true” trade flows using equations (11) and (12).  We then assume

there exists a log-normally distributed error term.  We make 1,000 draws for the equation and run various

specifications 1,000 times.

For the world data set, the countries are chosen according to data availability and include the

largest of the world’s economies.  GDPs in thousands of U.S. dollars are from the World Bank’s World

Development Indicators.  Bilateral distances were calculated using the standard formula for geodesic, or

“great circle,” distances (http://mathworld.wolfram.com/GreatCircle.html).  NoAdjacency is a dummy

variable defined as 0 (1) if the two countries actually share (do not share) a common land border.  In the

typical gravity equation for world trade flows, adjacency is expected to augment trade; hence,

NoAdjacency (like Border in the previous section) has an expected negative relationship with trade.

The notable finding is that the estimation biases for world trade flows are very small, even

relative to those found for BV-OLS for the intra-continental (Canadian-U.S.) trade flow specifications. 

For example, consider the results for -"(F-1) = -1.65 and -D(F-1) = -0.79.  For U.S.-Canadian trade, the

average Border estimation bias is 0.42 percent and the fraction of times the estimate is within two

standard errors of the true value is 0.985.  The average Distance estimation bias is 1.52 percent and the
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29The systematically lower estimation bias for the distance coefficients for world relative to regional trade
flows is an issue of current research by the authors, the subject of which exceeds considerably the scope of this
already lengthy paper.  Because the two border variables have different economic interpretations, we also conducted
the Monte Carlo analyses for the two data sets in the absence of a border variable in both “true” models.  The results
just discussed for Distance are very similar in that setting.

fraction of times the estimate is within two standard errors of the true value is 0.978.  However, for world

trade, the average Border estimation bias is 0.18 percent and the fraction of times the estimate is within

two standard errors of the true value is 0.992.  The average Distance estimation bias is 0.13 percent and

the fraction of times the estimate is within two standard errors of the true value is 0.996.  The results for  -

"(F-1) = -1.54 and -D(F-1) = -1.25 are similar.  These results support our conjecture that BV-OLS works

well in other contexts also.  

In a robustness analysis, we have found that the small estimation bias is systematic.  Figure 3a

illustrates the estimation bias for all parameter values between -0.25 and -2.00 of the NoAdjacency

variable’s coefficients for the 88-country specification.  As for Figure 1a, the estimation bias is small.  In

fact, 79.4 percent of the estimation biases are smaller for world trade flows compared with intra-

continental trade flows, although the two “border” variables have different economic interpretations. 

Figure 3b confirms that the fraction of estimates within two standard errors of the true values is very high

for world trade flows.

Figure 4a illustrates the estimation bias for all parameter values between -0.25 and -2.00 of the

distance variables’ coefficients for the 88-country specification.  The distance variable is measured in the

same manner for both data sets.  Figure 4a illustrates that for all parameter values for the distance

variables’ coefficients the estimation bias for world trade flows is less than that for regional trade flows. 

Figure 4b shows that the fraction of estimates within two standard errors of the true values is also

consistently high for world trade flows.29

These findings provide quantitative support to our hypothesis that BV-OLS is not only a good

approximation to NLLS, but that it works just as effectively in the context in which it is most often used –

the analysis of global trade flows.

D.  Summary

This section has addressed the third question raised at the end of section 3A:  Using Monte Carlo

analysis to eliminate measurement and specification errors, does BV-OLS work well?  The Monte Carlo

analysis indicates that BV-OLS is a good (log) linear approximation to the underlying nonlinear model.  

Coefficient estimates for the Distance and Border variables are within 0.05 of the true values.  The
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30The degree of estimation bias is, of course, also influenced by the degree of curvature of the underlying
model (i.e., the values of a1 and a2).  In the previous section, we demonstrated quantitatively the sensitivity of the
estimation bias to a wide range of plausible parameter values, -0.25 to -2.00.  We address this as well later in this

fraction of times that the BV-OLS coefficient estimates are within two standard errors of the true values is

at least 93 percent, and ranges up occasionally to 99.5 percent.  We find that in either context – intra-

continental Canadian-U.S. trade or intra- and inter-continental international trade – estimation using A-

vW’s custom NLLS, fixed effects, or BV-OLS yield similar results, which are much more accurate

estimates of gravity equation parameters than either the traditional gravity equation or the traditional

specification including atheoretical “remoteness” terms.

The quantitative findings that these estimates from a first-order log-linear approximation to an

underlying nonlinear surface are quite good suggests that higher-order terms are not very important.  We

now address the fourth – and final – question posed at the end of section 3A: Why does BV-OLS work so

well?  Using a Monte Carlo analysis, we provide some quantitative evidence suggesting that higher-order

terms are empirically irrelevant.

7.  Why BV-OLS Works Well: The Empirical Irrelevance of Higher-Order Terms

As well established by now, BV-OLS uses a first-order Taylor-series expansion; higher-order

terms were intentionally omitted to derive an estimable OLS equation.  However, the degree of estimation

bias is clearly influenced by the empirical relevance or irrelevance of higher-order terms.  Since an nth-

order Taylor-series expansion of a function is the sum of the first-order term and (n–1) higher-order

terms, there is a ready analogue to the issue of measurement error (and endogeneity bias) in econometrics. 

In econometric terms, we can think of the “true” multilateral price resistance (MR) term as the sum of the

observed MR term (the first-order linear approximation, denoted MR*) and a measurement error L (the

n–1 higher-order terms).  We know that L is correlated with the true MR term, by construction.  However,

we do not know if L is correlated with the first-order term, MR*.  This is the source of concern because a

non-zero correlation of L and MR* generates estimation bias for BV-OLS.

In the first sub-section, we discuss a second-order expansion of the system of price equations,

centered around a symmetric equilibrium.  Although one cannot solve for an analytical solution (as in the

first-order case), the expansion suggests that the second-order terms include variances and covariances of

the underlying variables.  Clearly, heterogeneity of trade costs and GDP shares, and their interactions,

influence the degree of estimation bias of the MR terms.  Yet, these variance and covariance terms are

also potentially correlated with the first-order terms, creating a possible estimation (endogeneity) bias of

the Distance and Border coefficient estimates.30
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section.

In the second sub-section, we turn to an econometric analysis to demonstrate the empirical

irrelevance of higher-order terms for estimating the coefficient estimates.  We examine the deviations of

the estimated MR terms from their “true” values, which reflect the higher-order terms of a higher-order

expansion.  Since the higher-order terms would be embedded in the error terms of a BV-OLS regression,

estimation bias of the coefficients would be attributable to these terms and such terms would be correlated

with the RHS variables in the BV-OLS specification.  We demonstrate empirically that the price

deviations – representing higher-order terms – are uncorrelated with the RHS variables.  BV-OLS works

well because higher-order terms are empirically irrelevant!

A.  Sources of Estimation Bias from a First-Order Approximation

BV-OLS uses a first-order log-linear expansion centered around a symmetric world (akin to

centering around the “mean” values of the underlying variables).  BV-OLS should approximate the

coefficients of underlying nonlinear system better the lower the correlation of higher-order terms with

BV-OLS’ RHS terms.

To illustrate this, we consider a formal second-order log-linear Taylor-series expansion of

equation (8) [or (14)].  For brevity, we present in Appendix B the first stage of the expansion.  Appendix

B demonstrates three results.  First, variances of the underlying GDP-share and trade-cost variables are

important in explaining the estimation bias (second, third and fourth RHS terms in Appendix B equation

(B1)).  Second, covariances among the underlying variables are potentially important for influencing the

degree of curvature of the underlying multilateral price terms (fifth, sixth, and seventh RHS terms in

Appendix B equation (B1)).  Third, the relationships among these factors are highly nonlinear and no

analytical solution exists (as one did for the first-order expansion earlier).  Third- and higher-order terms

would make this relationship even more complex.

Econometrically, we know that BV-OLS will yield biased estimates of a1 and a2 if there are any

omitted variables correlated with the MR variables that are being captured by the BV-OLS error terms. 

Appendix B equation (B1) suggests that there are potential higher-order terms, such as the covariances in

equation (B1), that may be correlated with the BV-OLS RHS terms.  We argue that BV-OLS has little

estimation bias because second- and higher-order terms are uncorrelated with the first-order terms on the

RHS of BV-OLS.

B.  Estimation of Higher-Order Terms
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31The estimation procedure for NLLS in GAUSS actually uses a first-order Taylor-series expansion. 
However, the procedure is fundamentally different from BV-OLS since the GAUSS procedure takes Taylor
expansions around parameters (a0, a1, a2) of the system of equations.  In the optimization procedure in GAUSS,
using the Quasi-Newton method, first let $ denote the vector of three parameters a0, a1, and a2 in those 42 equations
[(11) and (12.1)-(12.41)].  The Quasi-Newton solution method forms a function, f($), which is the sum of the
squared errors (,ij) of equation (11) subject to the 41 nonlinear price equation constraints (12.1)-(12.41).  Second, the
method takes a first-order Taylor-series expansion centered at some arbitrarily-selected initial values of the
parameter vector, $0.  The function is then minimized at $1; formally, the method chooses $1 such that f’($)=  f’($0) - 
f”($0)($1 - $0) = 0, or $1 = $0 - [f’($0)]/[f”($0)].  Next, repeat the process substituting $1 for $0, $2 for $1, and so on
until $j - $j-1 is less than some pre-specified tolerance value (0.000001); the method eventually iterates to a solution
for the three parameters in $.  This is fundamentally different from the Taylor-series expansions in BV-OLS which
takes expansions around the “means” of the underlying variables.

Since, as Appendix B shows, we cannot solve analytically for a higher-order expansion of lnPF-1,

we must estimate the influence of higher-order terms indirectly.  The BV-OLS approach yields an

estimate of MRij = lnPi
F-1+lnPj

F-1 using first-order terms – henceforth, MRe
ij.  These are obtained using

equation (36), along with estimated values of a1 = -D(F-1) and a2 = -"(F-1).  If, in the limit, MR can be

represented by an nth-order Taylor-series expansion, then deviations of MRe
ij from MRij – henceforth, Lij –

represent the higher-order terms that are known to be correlated with MRij (which will not generate

estimation bias) and are potentially correlated with MRe
ij (which would generate estimation bias).

We use the A-vW NLLS procedure in Specification 3 in Section 6 to generate the “true” MR

terms.  Of course, even a NLLS computer program uses an “approximation” method to generate the

“true” MR terms.  Moreover, GAUSS uses a first-order iterative Taylor-series expansion around the

parameters (a0, a1, a2) – a Quasi-Newton method – to solve the system.  However, the procedure used by

GAUSS to generate the “true” MRij terms is fundamentally different from that used to generate the MRe
ij

terms using BV-OLS.31 

We then calculate Lij = MRij - MRe
ij, which represent the higher-order terms.  BV-OLS will yield

biased estimates if Lij is correlated with MRe
ij.  We ran 5000 regressions of Lij on MWRDISij,

MWRBORDERij, and a constant on each of two sets of parameter values, the same two sets used in

Section 6.B.1 and 6.B.2.  In no regression was the coefficient estimate for MWRDISij or for

MWRBORDERij economically or statistically significant.  When the Distance (Border) elasticity was    -

0.79 (-1.65), the average coefficient estimate for MWRDISij was -0.012 with an average standard error of

0.019 and the average coefficient estimate for MWRBORDERij was 0.008 with an average standard error

of 0.026.  When the Distance (Border) elasticity was -1.25 (-1.54), the average coefficient estimate for

MWRDISij was -0.027 with an average standard error of 0.036 and the average coefficient estimate for

MWRBORDERij was 0.011 with an average standard error of 0.047.  

We conclude that the first-order log-linear Taylor-series approximation of BV-OLS works well
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because the higher-order terms are empirically irrelevant.  Even though higher-order terms are correlated

with the true MR terms, the econometric results here indicate the higher-order terms are uncorrelated with

the observed first-order terms (MRe
ij), consistent with little estimation bias from BV-OLS.

8.  Conclusions and Directions for Future Research

Three years ago, theoretical foundations for the gravity equation in international trade were

enhanced to recognize the systematic bias in coefficient estimates of bilateral trade-cost variables from

omitting theoretically-motivated “multilateral (price) resistance” (MR) terms.  Anderson and van

Wincoop (2003) demonstrated that (i) consistent and efficient estimation of the bilateral gravity

equation’s coefficients in an N-region world required custom programming of a nonlinear system of trade

and price equations, (2) even if unbiased estimates of gravity equation coefficients could be obtained

using fixed effects, general equilibrium comparative statics still required estimation of the full nonlinear

system, and (3) the model could be applied to resolve McCallum’s “border puzzle.”

This paper has attempted to make three potential contributions.  First, we have demonstrated that

first-order log-linear Taylor series expansions of the nonlinear system of price equations (around two

economically-different “centers”) suggest two alternative OLS log-linear specifications that introduce

theoretically-motivated exogenous MR terms (with or without GDP-share weights).  Both specifications

demonstrate clearly why the “atheoretical” remoteness terms included in numerous earlier OLS

specifications, such as McCallum (1995), yielded imprecise gravity-equation coefficient estimates.  For

tractability, we show using the same Canadian-U.S. data set as in McCallum (1995), Anderson and van

Wincoop (2003) and Feenstra (2004) and using Monte Carlo simulations that our approach – BV-OLS –

yields virtually identical trade-cost coefficient estimates as with fixed effects or the Anderson-van

Wincoop (A-vW) technique, and demonstrate the bias introduced when either ignoring the multilateral

resistance terms or proxying for them with atheoretical “remoteness” measures.

Second, the Taylor-series expansions allow one to solve for the general equilibrium comparative

statics analytically, avoiding nonlinear estimation procedures.  We apply our approach to the same

Canadian-U.S. data set and calculate virtually identical Canadian and U.S. comparative static “border

effects” as in A-vW.  Moreover, recognizing that our BV-OLS estimates of the region-specific

multilateral-resistance terms are just “approximations,” we demonstrate a simple two-step fixed-point

iteration process that can generate identical MR terms as A-vW without any nonlinear least squares

estimation.  Thus, initial estimates of the MR terms from BV-OLS can be used to estimate more precisely

how the multilateral resistance terms influence comparative-static effects.
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Third, since the gravity equation has been used typically to examine the determinants of bilateral

world (intra- and inter-continental international) trade flows, we show that our approach works in this

setting as well.  Using Monte Carlo simulations for a world economy, we show that the bias introduced

by our approach is even less than in the intra-continental setting.  This suggests that – for the context in

which the gravity model is most frequently used – a log-linear approximation works even better.  We

demonstrate theoretically (in an appendix) the how the higher-order terms – variances and covariances of

GDP shares and trade costs – potentially influence the results, and provide econometric evidence

supporting the empirical irrelevance of higher-terms. This suggests that BV-OLS works well empirically

because – for many practical international trade contexts – the underlying curvilinear system of equations

is likely quite “flat.”

There are several directions to take future work.  First, one of the benefits of BV-OLS over fixed

effects is that BV-OLS allows direct estimation of the coefficients of region-specific variables.  Future

work could explore the consistency of bilateral trade-cost variables’ coefficient estimates under the two

approaches, enabling researchers to examine the effects of region-specific variables precluded under

region-specific fixed effects.

Second, since BV-OLS offers only a log-linear approximation of nonlinear MR terms, further

exploration of the properties of the approximation are warranted in other contexts.  BV-OLS has the

potential to be used in a wide array of policy contexts because of estimation simplicity.  However, the

precision of estimates of MR terms for policy analysis is critical and necessitates more studies comparing

estimates of MR terms from BV-OLS and A-vW.  For example, in the context of the world economy, the

creation of an economic integration agreement of a small country with a group of countries will likely

influence dramatically its multilateral resistance level and the consequently comparative-static effects for

this small country.  The non-linearity of the system plays a more important role in this context – relative

to the context here estimating only average country effects.  Future research on individual EIAs will need

to address this issue in more detail.

Third, and relatedly, the robustness analysis suggested that BV-OLS works potentially even

better in the context of intra- and inter-continental trade flows, compared to intra-continental trade flows

(using identical parameter settings).  The two contexts differ in economic “density”; economic activity

per square mile is much higher intra-continentally than inter-continentally.  Moreover, differences in

economic density are likely to influence the relative performance of BV-OLS because of the role of

covariances of GDPs and bilateral distances in the second-order terms in BV-OLS.  This suggests that

future work should explore the role of economic density in BV-OLS in more analytical detail. 
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TABLE 1
Estimation Results

Parameters

(1)
OLS w/o

MR Terms

(2)
A-vW

NLLS-2

(3)
A-vW

NLLS-3

(4)

BV-OLS

(5)
Fixed

Effects

(6)
A-vW

NLLS-2a

(7)
A-vW

NLLS-2b

-D(F-1) -1.06
(0.04)

-0.79
(0.03)

-0.82
(0.03)

-1.26
(0.04)

-1.25
(0.04)

-0.92
(0.03)

-1.15
   (0.04)

-"(F-1) -0.71
(0.06)

-1.65
(0.08)

-1.59
(0.08)

-1.53
(0.07)

-1.54
(0.06)

-1.65
(0.07)

-1.67
   (0.07)

Avg. Error Terms

US-US -0.21 0.06 0.06 -0.01 0.00 0.05 0.04
CA-CA 1.95 -0.17 -0.02 0.03 0.00 -0.22 -0.32
US-CA 0.00 -0.05 -0.04 0.01 0.00 -0.04 -0.02

R2 0.42 n.a. n.a. 0.52 0.66 n.a. n.a.
No. of obs. 1,511 1,511       1,511 1,511 1,511 1,511 1,511

Numbers in parentheses are standard errors of the estimates.

TABLE 2
Ratios of Average PF-1 with (BB) and without (NB) Border Barriers

(PF-1/P*F-1)US (PF-1/P*F-1)CA

A-vW 2-country NLLS 1.02 2.08

A-vW Multi-country NLLS 1.12 2.44

BV-OLS 1.09 2.39
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TABLE 3
Impact of Border Barriers on Bilateral Trade

US-US CA-CA US-CA

(1) A-vW Two-country NLLS

Ratio BB/NB 1.05
(0.01)

4.31
(0.34)

0.41
(0.02)

- due to bilateral resistance 1.0
(0.0)

1.0
(0.0)

0.19
(0.01)

- due to multilateral resistance 1.05
(0.01)

4.31
(0.34)

2.13
(0.09)

(2) A-vW Multi-country NLLS

Ratio BB/NB 1.25
(0.02)

5.96
(0.42)

0.56
(0.03)

- due to bilateral resistance 1.0
(0.0)

1.0
(0.0)

0.20
(0.02)

- due to multilateral resistance 1.25
(0.02)

5.96
(0.42)

2.72
(0.12)

(3) BV-OLS

Ratio BB/NB 1.20
   (0.01)

5.73
  (0.45)

0.57
  (0.01)

- due to bilateral resistance 1.0
(0.0)

1.0
(0.0)

0.22
(0.02)

- due to multilateral resistance 1.20
(0.01)

5.73
  (0.45)

2.62
(0.11)

Numbers in parentheses are standard errors.
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1Using only 40 regions – excluding the 41st “aggregate” state – yields a Canadian (U.S.) estimate of 9.87
(2.15).  Using all 51 U.S. states (including the District of Columbia), rather than the 41st aggregate state yields a
Canadian (U.S.) estimate of 10.67 (1.59).

TABLE 4
Impact of Borders on Intranational Trade Relative to International Trade

Canada U.S.

(1) A-vW Two-country NLLS 10.50
(1.16)

2.56
(0.13)

(2) A-vW Multi-country NLLS 10.70
(1.06)

2.24
(0.12)

(3) BV-OLS1 10.07
   (1.05)

2.11
   (0.07)

Numbers in parentheses are standard errors.
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TABLE 5
Monte Carlo Simulations: Scenario 1

True Border Coefficient = -1.65
True Distance Coefficient = -0.79

Specification

Coefficient
Estimate
Average

Standard
Deviation

Fraction within
2 Standard Errors

of True Value

(1) McCallum
Border -0.789 0.026 0.000
Distance -0.562 0.017 0.000

(2) OLS w/Atheoretical
      Remoteness Terms

Border -0.804 0.026 0.000
Distance -0.541 0.019 0.000

(3) A-vW
Border -1.650 0.051 0.973
Distance -0.789 0.034 0.950

(4) Fixed Effects
Border -1.650 0.033 0.967
Distance -0.790 0.033 0.943

(5) BV-OLS
Border -1.643 0.033 0.985
Distance -0.802 0.020 0.978
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TABLE 6
Monte Carlo Simulations: Scenario 2

True Border Coefficient = -1.54
True Distance Coefficient = -1.25

Specification

Coefficient
Estimate
Average

Standard
Deviation

Fraction within
2 Standard Errors

of True Value

(1) McCallum
Border -0.655 0.025 0.000
Distance -0.952 0.017 0.000

(2) OLS w/Atheoretical
      Remoteness Terms

Border -0.664 0.026 0.000
Distance -0.940 0.019 0.000

(3) A-vW
Border -1.540 0.051 0.977
Distance -1.250 0.034 0.950

(4) Fixed Effects
Border -1.540 0.033 0.988
Distance -1.250 0.033 0.942

(5) BV-OLS
Border -1.529 0.033 0.999
Distance -1.276 0.021 0.996
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Appendix A

The technique described in the paper, BV-OLS, yields virtually identical gravity equation
coefficient estimates to those estimated using region-specific fixed effects (which are unbiased estimates). 
However, fixed effects cannot be used to generate general equilibrium comparative statics.  Because BV-
OLS yields linear approximations, it does not provide precise estimates of the region-specific multilateral
resistance (MR) terms (with or without borders).  However, one need not estimate the entire system of
equations using custom nonlinear least squares to generate the exact same estimates of the MR terms as
with A-vW’s NLLS estimation.  Given initial estimates of the MR terms using BV-OLS, a version of
fixed-point iteration can be used to generate identical MR terms as under the NLLS technique, and fixed-
point iteration is computationally much less intensive than the A-vW NLLS technique.  In particular, even
though the system of equations that determines the MR terms is non-linear, our fixed-point iteration
method does not require computation of the Jacobian of the system of equations, nor does it require that
the inverse of the Jacobian exists.  We show that our approach requires nothing more than simple matrix
manipulation in STATA, GAUSS, or any similar matrix programming language.

The approach can be calculated for MR terms with or without borders; for demonstration here, we
assume borders are present.  First, BV-OLS yields estimates of multilateral resistance terms Pi

1-F for
i=1,..., N regions (with borders) based upon the log-linear approximation.  Denote V0 as the Nx1 vector of
these Pi

1-F terms and V0
- as the Nx1 vector of their inverses (Pi

F-1).  The functional equation we solve is
f(V) = V - BV-, where B is an NxN matrix of GDP-share-weighted trade costs where each element, bij,
equals 2jtij

1-F, where tij are defined in section 2.  Evaluated at the equilibrium values of the MR terms, VE

and V-E, then f (VE) = V - BV-E = 0. 

The fixed-point iteration method we use has essentially only two steps.  First, use coefficient
estimates from BV-OLS to construct the matrix B and use BV-OLS estimates of Pi

1-F (Pi
F-1) to construct

the initial value of V0 (V0
-).  Second, compute Vk+1 according to:

                                                     (A1)Vk zBVk z Vk+ = − + −1 1( )

starting at k = 0 until successive approximations are less than a predetermined value (e.g., 1x10-9) of
, where  is the largest error approximation and z is a damping factorε = + −maxVk Vk1 maxVk Vk+ −1

with .  The estimated Vk+1 satisfying this second step is identical to the V estimated using A-z ∈( , )0 1
vW’s custom NLLS estimation.

The remainder of this appendix proves in mathematical detail why this version of the fixed-point
iteration converges to a solution.  First, the standard approach for fixed-point iteration is to start with an
initial guess   and iterate on: V0

                                                              (A2)Vk BVk+ = −1

starting at k=0.  The above equation converges as long as BV- is a contraction map; that is, a necessary
condition for a fixed-point iteration to converge is that – for each row of the Jacobian of BV-  – the sum of
the absolute values of each element is less than unity, cf., Gerald and Wheatley (1990). This condition is
unlikely to hold in general and it certainly does not hold for the McCallum-A-vW-Feenstra data.  Even if
it is a contraction map, it may not be the case that iterating induces convergence to the fixed point. 

To see why this iteration process will not work in this context, consider a simple univariate



mapping of:

                                                                (A3)( )v v= −1 2 1/

Trivially, the fixed point of this mapping is .  Clearly, the Jacobian satisfies the necessaryvE = 1 2/
condition for the fixed-point iteration to converge.  However, with any initial guess of , thev0 1 2≠ /
iteration produces a periodic cycle.  For example, choose and the “solution” iterates betweenv0 2=

vi
i odd

i even
=
⎧
⎨
⎩

1 4
2
/

and convergence does not obtain.  To induce convergence in this system, we simply add a damping factor
z (z = 0.5) and iterate on:

                                                                                                            (A4)( )vk z vk z vk+ = − + −1 1 2 1 1( / )

With an initial estimate of v0 = 2 for k=0, iterating on (A4) causes convergence of v to the true value
(within ten decimal places) in three iterations.

Consequently, to induce convergence in our context, we introduce the damping factor z, where
, and (A2) becomes:z ∈ ( , )0 1

                                                                                                                    (A5)( )Vk zBVk z Vk+ = − + −1 1

Note this implies that Vk+1 = Vk - z f(Vk).  For an initial guess in the range of VE, the fixed-point iteration
will converge to f(VE) = 0  if z is contracting (since z is less than unity), cf., Nirenberg (1975).  Thus, for
the class of models discussed in A-vW the solution to the price terms can be obtained by fixed-point
iteration with a damping factor of  .  Note how similar this is to the Gauss-Newton iterationz ∈( , )0 1
scheme discussed in Judd (1998).  Unlike the Gauss-Newton iteration, this procedure does not require
computing the Jacobian or its inverse, if the latter exists. 

We applied this procedure to the McCallum-A-vW-Feenstra Canadian-U.S. data set, using a
stopping rule of , < 1x10-9 for all elements of V.  If we use the parameter values in A-vW of

and , convergence is achieved after 25 iterations (for both cases, with( )ρ σ1 0 79− = − . α σ( ) .1 165− = −
and without the border) and the correlation of the multilateral resistance terms with the multilateral
resistance terms constructed by A-vW is 1.0 (reported to seven decimal places).  If we use the parameter
values in BV-OLS of   and , convergence is achieved after 21 iterations( )ρ σ1 125− = − . α σ( ) .1 154− = −
(for both cases, with and without the border) and the correlation of the multilateral resistance terms with
the multilateral resistance terms constructed by the A-vW NLLS methodology is 1.0 (reported to seven
decimal places).  Given that this methodology replicates perfectly the MR terms calculated by A-vW, the
comparative statics are identical to those reported by A-vW (2003, 187). 
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Appendix B

In this appendix, we take a second-order log-linear Taylor-series expansion of equation (14),
centered around a symmetric world (eq. (25)).  We report only the first set of derivations, akin to equation
(27) in section II.B.:

(B1)

A comparison of equation (B1) with equation (27) shows that the RHS of the former equation
includes three additional terms reflecting variances of the (endogenous) price term and of the (exogenous)
GDP shares and trade costs, and three additional terms reflecting covariance among the (endogenous)
price terms and (exogenous) GDP shares and trade costs.  One cannot solve this equation analytically.



 



 



 



 




