Raman Spectroscopy Case Study:
The Dissolution of Amorphous Solid Drug Dispersions

Francesco Tres1
Graham Rance2

1Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham.
2Nottingham Nanotechnology and Nanoscience Centre, University of Nottingham
The Solubility of New Drugs

Research Case Study

• The drug development process identifies many chemicals with useful pharmacological activity.

• A high proportion of these also have poor dissolution and solubility profiles, and as a consequence poor bioavailability e.g. felodipine.

• Amorphous solid dispersions of water-insoluble drugs with water-soluble polymers represent a possible solution.

• But release profiles of amorphous solid dispersions remain poorly understood, with little chemical or time-resolved information.
Raman Spectroscopy

Research Case Study

- A (confocal) microscopy technique for real-time, ‘in-situ’ chemical and morphological analysis.
- Uses spontaneous inelastic scattering of light to generate spectra unique to a material’s molecular composition and state.
Optical Microscopy reveals that the dissolution profile of the felodipine amorphous solid dispersion depends on the loading of the drug in the polymer.
• Time resolved spectral analysis on sample variations highlight chemical differences and changes.
Raman Mapping

Research Case Study

- Then possible to image and record the spectral changes representative of subtle chemical differences such as the change in crystallinity with dissolution.
• Optical microscopy reveals the dissolution profile of the amorphous solid dispersion depends on the loading of the drug in the polymer.

• Raman spectroscopy reveals that:

 o **Low drug loadings** – the drug and polymer dissolve as a single entity.
 o **High drug loadings** – the drug and polymer dissolve on different time scales, enriching the concentration of the drug as the polymer dissolves and leading to re-crystallisation.

• This research demonstrates the critical role Raman spectroscopy can play in understanding the release profile of poorly water-soluble drug molecules.
For further information on how Raman spectroscopy, or the Nottingham Nanotechnology and Nanoscience Centre could help with your applications, systems and designs please contact:

isac@nottingham.ac.uk
+44(0)781 645 3130
www.nottingham.ac.uk/isac

ISAC is a University of Nottingham Centre of Excellence in partnership with the National Physical Laboratory

For more details on the work showcased in this case study see the following publications: