

Raman Spectroscopy Case Study:

Characterising Bleached Hair Damage

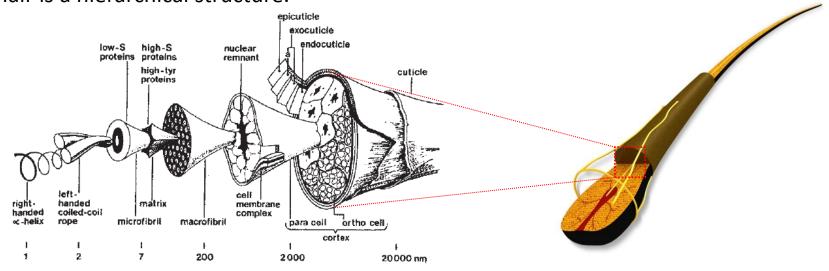
Andrew Davies¹
Graham Rance¹
Nikki Weston²

¹Nottingham Nanotechnology and Nanoscience Centre, University of Nottingham

²Advanced Materials Research Group, Faculty of Engineering, University of Nottingham

'Blondes have more fun....?'

- Hair is susceptible to changes and damage induced by:
 - Mechanical factors:
 - Heating, blow drying and brushing
 - Environmental factors:
 - Exposure to sunlight and salt water
 - Internal factors:
 - Age and nutrition
 - Chemical factors:
 - Bleaching and colouring treatments



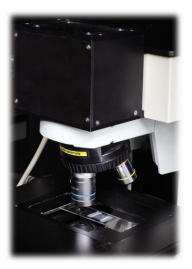
Characterising Hair Damage

Research Case Study

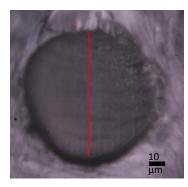
Hair is a hierarchical structure.

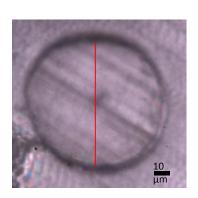
Kuzuhara, A. Analysis of Structural Change in Keratin Fibers Resulting from Chemical Treatments Using Raman Spectroscopy. 2005. *Biopolymers, 77 (6), 335-344*

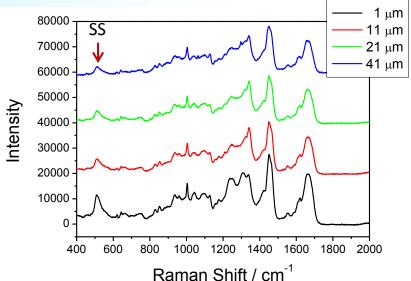
- Current techniques to evaluate the penetration of chemicals into the internal volume simply give an average of the whole structure.
- Better characterisation would allow discreet localisation and assessment of chemical damage.

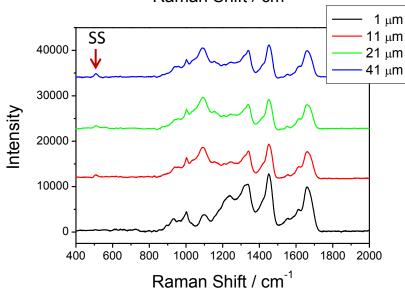

Confocal Raman Spectroscopy

- Confocal Raman mapping is an 'in-situ', non-destructive chemical analysis and imaging technique.
- It uses the spontaneous inelastic scattering of light to generate spectra unique to a material's molecular composition and state.
- It requires no sample extraction, purification or labelling, and provides molecular level information about the components in hair with high spectral resolution.



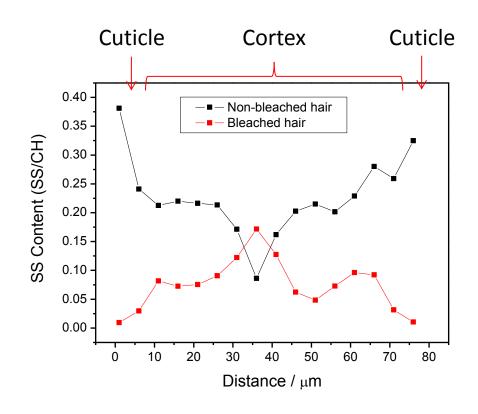

Raman Mapping


- A cross section of bleached hair was compared to non-bleached hair.
- Samples were mapped along the width of the cross section (red line).
- The graphs opposite show
 Raman spectra at various
 distances from the outside of the sample.
- SS (di-sulphide) groups form cross-linkers in keratin fibres and contribute to the physical and mechanical properties of hair.
- The Raman shift for this band occurs at 430 -550 cm⁻¹



Non-Bleached Hair

Bleached Hair



Content Tracking

Research Case Study

- Bleaching decreases the SS content at the cuticle, destabilising hair structure.
- Bleach does not penetrate
 significantly into the centre
 of the cortex as SS content
 in the centre is the same as
 in the non-bleached
 sample.

Depth profile of the SS content (SS band normalised to the CH band)

Summary

- Confocal Raman spectroscopy can provide 'in-situ' analysis of chemical damage across the hierarchical structure of a hair.
- It can be applied to look for subtle changes or differences in material chemistry.
- It has been used to show a reduction in SS bonds caused by bleaching, linked to a reduction in the mechanical strength of hair.
- The reduction of SS bonds was not observed in the central cortex of the hairs,
 suggesting bleach penetration was not sufficient to reach this far.

Further Information

Research Case Study

For further information on how Raman spectroscopy, or the Nottingham Nanotechnology and Nanoscience Centre could help with your applications, systems and designs please contact:

<u>isac@nottingham.ac.uk</u> +44(0)781 645 3130

ISAC is a University of Nottingham Centre of Excellence in partnership with the National Physical Laboratory

