

X-ray Photoelectron Spectroscopy (XPS) **Case Study:**

Polymer Composition and Spatial Distribution

Oxygen at%

Carbon at%

Nitrogen at%

Emily Smith

Nottingham Nanotechnology and Nanoscience Centre, University of Nottingham

Polymer Characterisation

- Polymers are not always directly or easily identifiable at material surfaces.
- Macro distributions and thicknesses may be of interest.
- X-ray photoelectron spectroscopy (XPS) is sensitive to light elements.
- XPS is also a highly surface sensitive technique (~ top 10nm), ideal for studying thin films of polymers or liquids*.

^{*} Analyse ionic liquids with the liquid phase photoelectron spectroscopy instrument (LiPPS) at the NNNC.

XPS Principles

- X-rays excite electrons out of the sample surface.
- These are collected and their energy analysed.
- Electron energies depend on the element they originate from.
- The resulting spectrum is dependent on what elements are in the surface layer and in what abundance.

Spectral Identification

- XPS Identification of polymers possible by elemental spectra.
- Example analysis of an ionic liquid:

	Fluorine	Oxygen	Nitrogen	Carbon	Sulphur	Total
No atoms	6	4	3	14	2	29
at% expected	20.7	13.8	10.3	48.3	6.9	100

Spatial Localisation

- Parallel imaging of a sample surface can be performed.
- This can provide spatial distribution of elements, and therefore surface components e.g. polymers
- **Example XPS distribution** of an ionic liquid droplet distribution on a gold surface.

400 um

Fluorine at%

Sulphur - sulphate at%

Oxygen at%

Sulphur - sulphide at%

Summary

- XPS is a highly surface sensitive technique capable of chemical identification localisation, and quantification.
- Sensitive to light elements with ~0.1% atomic sensitivity it can play a key role in thin film polymer and liquid characterisation.
- Potential applications:
 - o Polymer identification.
 - Surface enrichments of one polymer constituent.
 - Drug entrapment and depth and coverage with protective layers.
 - Micron scale polymer spatial segregation or coating distributions.
 - Chemical stability of coatings.
 - Polymer mixing in cross section.

Further Information

Research Case Study

For further information on how XPS, or the Nottingham Nanotechnology and Nanoscience Centre could help with your applications, systems and designs please contact:

<u>isac@nottingham.ac.uk</u> +44(0)781 645 3130

ISAC is a University of Nottingham Centre of Excellence in partnership with the National Physical Laboratory

For more details on the work showcased in this case study see the following publications:

E. F. Smith, D. Briggs, and N. Fairley, "Further developments in quantitative X-ray photoelectron spectromicroscopy: preliminary results from the study of germanium corrosion," Surf. Interface Anal., vol. 38, no. 2, pp. 69–75, 2006.

E. F. Smith, F. J. M. Rutten, I. J. Villar-Garcia, D. Briggs, and P. Licence, "Ionic Liquids in Vacuo: Analysis of Liquid Surfaces Using Ultra-High-Vacuum Techniques," *Langmuir, vol. 22, no. 22, pp. 9386–9392, Oct. 2006*.

