Natural Sciences
   
   
  

Environmental Science, Geography and Chemistry

Natural Sciences is a multidisciplinary degree which allows you to study three subjects in the first year and continue with two subjects in the second and third year. The combination of subjects which you study in the first year allows you to find out what each subject is like at university before you specialise further. You will also have the opportunity to explore specialist areas through optional modules as you progress through the course. Both of the subjects taken beyond the first year will be studied to degree level. This degree aims to provide you with a broad knowledge and understanding of your chosen areas of science, as well as experience of interdisciplinary study.

Year One

You will study 40 credits of each subject from your chosen three-subject pathway.

Environmental Science


40 compulsory credits:

  • Global Environmental Processes (20 credits, Autumn semester)
The unifying theme of this module is biogeochemical cycling - the production, distribution and cycling of materials on the Earth and their availability to, and use by, biological organisms. The module starts by covering the history of the universe, from the big bang to the evolution of the Earth's surface environment. Then you will explore the major global systems and their circulations as they are today - solids, liquids and gases. In the final section you will examine the major materials - including carbon, nitrogen, sulphur, oxygen and metals - and their budgets and cycles; and the interactions between biological and physical/chemical processes on a global scale. You will have a two-hour lecture once a week for this module. 
 
  • Environmental Geoscience (20 credits, Autumn semester)
Bulk properties of the Earth, minerals, igneous rocks, sedimentary rocks, metamorphic rocks, geological time, tectonics, geological structures, map interpretation, geological hazards, resource geology.
 
 

Geography


30 compulsory credits:

  • Earth and Environmental Dynamics (20 credits, full year)

This module integrates knowledge taken from the hydrosphere, oceans and continents to inform an understanding of global physical systems as they affect people and the environment. The module considers:

  • hydrological cycles
  • principles of Earth and geomorphological systems
  • fluvial geomorphology and biogeomorphology
 
  • Tutorial (10 credits, full year)

Small group tutorials in both the autumn and spring semesters in which emphasis will be placed on discussion, essay writing and seminar presentations which will be based on topics in the qualifying year geography modules and from broader intellectual, cultural and political fields.

 

 

10 credits from the following:

  • Introduction to Geographic Information Systems (10 credits, Autumn semester)

The module provides you with the theoretical background and practical training to undertake basic spatial analysis within a contemporary Geographic Information System (GIS). 

It is built upon a structured set of paired theory lectures and practical sessions, supported by detailed theory topics delivered via Moodle, which contain linkages to associated textbook resources. It aims to ensure competency in the use of a contemporary GIS software package whilst developing transferable ICT skills.

It also encourages you to develop the analytical skills necessary for the creation of workflows that utilise the built-in analytical functionality of a GIS to solve a spatial problem.

 
  • Physical Landscapes of Britain (10 credits, Autumn semester)

This module provides an understanding of the history and origins of the Earth and its life and landforms through consideration of the following topics:

  • Development of life over geological time
  • Environmental changes over geological time
  • Field trip to the Peak District (full costs will be suppliednearer the time of the trip)
 
  • On Earth and Life (10 credits, Spring semester)

On Earth and Life explores the deep historical co-evolution of Earth and Life and emphasises uniqueness of place and historical contingency. The module leads on from and complements Physical Landscapes of Britain in exploring geological, plate tectonic and palaeoenvironmental ideas and research, but at the global scale.

It emphasises the role of life in creating past and present planetary environments, and conversely the role of environment and environmental change in the evolution and geography of life. The module also serves to prepare the ground for and contextualise several second and third year geography modules, especially Environmental Change and Patterns of Life.

 
 

Chemistry


40 compulsory credits:

Fundamental Chemistry Theory and Practical (40 credits, full year)
This module shows how trends in chemical properties can be related to the structure of the Periodic Table and rationalise descriptive inorganic chemistry. To provide a fundamental understanding of the basics of organic chemistry, including nomenclature, molecular structure and bonding, stereochemistry and the chemical reactivity of common functional groups and reaction types through an understanding of their electronic properties. To provide an introduction to fundamental physical aspects of chemistry, which underpins all areas of Chemistry - emphasis will be placed on being able to apply knowledge, especially in solving problems. To introduce a range of chemical techniques appropriate to the study of inorganic, organic and physical chemistry at first year level, which will act as a foundation for more advanced work in subsequent years.
 
 

 

Year Two

You will continue on a pathway comprising of two of your first year subjects. You will take 60 credits of modules from each subject and greater emphasis will be put on studying outside of formal classes.

Environmental Science


20 compulsory credits:

Climate Change Science (10 credits, Autumn semester)
A broad overview of the science behind climate change and its effects is studied on this module. Topics include: historical climate change; the principles of climate forcing; the role of modelling; responses of aquatic and terrestrial ecosystems, including impacts on humans; the political environment; and options for climate stabilisation. You will have a two-hour lecture once a week with complementary practical and computing classes.
 
Soil Science (10 credits, Autumn semester)
This is an introductory module which provides a basic understanding of the nature and properties of soil and the application of soil chemistry, biology and physics to land management and environmental science. At the end of the module, the students should: possess quantitative knowledge of the magnitude of common soil parameters; have a clear understanding of the inter-relationship of soil processes and be able to offer pragmatic advice on soil management to environmental and agronomic managers. You will have a three-hour lecture each week, ending in an online examination.
 

Compulsory with Biological Sciences

  • Ecosystem Processes (10 credits, Autumn semester)

The course will focus on the processes that govern terrestrial ecosystem function. We will identify key ecosystem drivers and processes and explore how these have shaped the biosphere. Students will gain an understanding of the mechanisms that control changes in the physiochemical environment and their impact upon communities. Particular topics will include primary productivity, decomposition, herbivory, biodiversity and human impact on ecosystems. Classes comprise a mix of lectures, laboratory practicals, a computer practical, a seminar and fieldwork

 
  • Environmental Management Field Course (10 credits, Autumn semester)
BSc Environmental Biology, Environmental Science students and Natural Sciences Environmental Science pathway. If you are a student with a disability, and you have not already disclosed your disability to the module convenor, you should discuss any needs you may have with the module convenor at the point of registering for this module. The University will take all reasonable steps to ensure that any student with a disability is able to access this module.
 


Compulsory with Chemistry

  • Soil and Water Science (20 credits, Spring semester)
The aim of the module is to provide a sound understanding of important physical and chemical processes that take place within soils and fresh water systems. This includes provide a basis for the understanding of more applied aspects of the behaviour of these systems (eg plant-soil interactions, pollution and its remediation).
 


Optional environmental science modules

A further 20 credits from the options below:

  • Ecosystem Processes (10 credits, Autumn semester)

The course will focus on the processes that govern terrestrial ecosystem function. We will identify key ecosystem drivers and processes and explore how these have shaped the biosphere. Students will gain an understanding of the mechanisms that control changes in the physiochemical environment and their impact upon communities. Particular topics will include primary productivity, decomposition, herbivory, biodiversity and human impact on ecosystems. Classes comprise a mix of lectures, laboratory practicals, a computer practical, a seminar and fieldwork

 
Environmental Management Field Course (10 credits, Autumn semester)
BSc Environmental Biology, Environmental Science students and Natural Sciences Environmental Science pathway. If you are a student with a disability, and you have not already disclosed your disability to the module convenor, you should discuss any needs you may have with the module convenor at the point of registering for this module. The University will take all reasonable steps to ensure that any student with a disability is able to access this module.
 
Soil and Water Science (20 credits, Spring semester)
The aim of the module is to provide a sound understanding of important physical and chemical processes that take place within soils and fresh water systems. This includes provide a basis for the understanding of more applied aspects of the behaviour of these systems (eg plant-soil interactions, pollution and its remediation).
 
Computer Modelling in Science: Introduction (20 credits, Spring semester)
The aim of this module is to introduce the use of computing programming and modelling in the biological and environmental sciences for model simulation and image processing.
 
 

Geography


20 compulsory credits:

  • Techniques in Physical Geography (20 credits, full year)

This module presents the opportunity for hands-on experience of laboratory, field and surveying techniques in physical geography appropriate to the domain of interest of the participants. To achieve these aims all students participate in field projects on a residential field course, some of which are completed in the laboratory back in Nottingham, leading to an individual project.

In addition, you choose further laboratory techniques to investigate in the second semester. The ethical, safety and fieldwork limitations of geographical work are also considered.

 


20 credits from your chosen subpathway:

Physical Geography subpathway

  • Environmental Change (20 credits, full year)

This module considers the mechanisms for, and evidence of, global environmental change during the timescale of the Quaternary period. The nature, causes and impacts of change are evaluated in the context of the available evidence within a range of natural and human environments. 

 

Technical Geography subpathway

  • Digital Explorers (20 credits, full year)

This module provides a consideration of the following:

  • Introduction to GI science/systems/studies/services 
  • Spatial data types and sources 
  • Vector processing algorithms 
  • Raster processing algorithms
  • Spatial analysis and decision making 
  • Professional training in ArcGIS 
 


Geoscience subpathway

Mineralogy and Petrology (20 credits, full year)

The aim of this module is to introduce students to the major different rock types and the principal rock-forming minerals from which they are made. The module will consider:

  • economic mineral deposits
  • hydrocarbon resources
  • environmental mineralogy, for example, radioactive waste management, shale gas
  • volcanology and volcanic hazards

Specifically the module will include discussion of:

  • major rock types and rock-forming; bulk materials
  • types of ore deposit, how they form, and the important ore minerals and critical metals
  • types of oil and gas reservoirs, traps, seals, burial diagenesis and hydrocarbon migration
  • environmental mineralogy and geochemistry, covering carbon capture and storage technology and radioactive waste management

The module will cover these issues theoretically and practically.

 

 

A further 20 credits from the options below:

  • Introduction to Desert Geomorphology (20 credits, full year)
Earth Observation (20 credits, full year)

This module provides a general introduction to the subject of earth observation. This involves analysing remotely sensed images, typically acquired from instruments on board satellites or aircraft, to investigate spatial phenomena on the Earth's surface.

Example topics include the use of global image data sets to investigate climate change, analysis of satellite sensor imagery to identify wildlife habitats and conservation concerns, and urban land use mapping from detailed aerial photography. Theoretical lectures cover the concepts underpinning remote sensing, including the physical principles determining image creation, fundamental image characteristics, methods of image analysis and uses or applications of earth observation.

There is also a strong practical component to the module, with regular practical exercises on various forms of digital image analysis.

 
Environmental Change (20 credits, full year)

This module considers the mechanisms for, and evidence of, global environmental change during the timescale of the Quaternary period. The nature, causes and impacts of change are evaluated in the context of the available evidence within a range of natural and human environments. 

 
Patterns of Life (20 credits, full year)

This module focuses on patterns in the distribution of organisms in space and time, and theories proposed to explain those patterns. The main themes are:

  • biodiversity patterns
  • island biogeography
  • biodiversity dynamics
  • speciation and extinction 
  • evolution
 
River Processes and Dynamics (20 credits, full year)

This module:

  • introduces the water and sediment processes that operate in rivers
  • describes the characteristic forms of alluvial channels and the links between river processes and channel dynamics
  • uses laboratory practicals and a field trip to deliver kinaesthetic, student-centred learning and add value to teaching and learning during lectures

Topics covered include:

  • catchments and longitudinal patterns
  • river planforms: braided, meandering and straight
  • timescales of river change and morphological adjustments
  • complex response in the fluvial system
  • flow resistance, sediment transport and bank erosion
  • an introduction to biogeomorphology and aquatic ecology
 
Sedimentology and Palaeontology (20 credits, full year)

The aim of this module is to introduce you to sedimentology/sedimentary geology (the study of sediments such as sand, silt and clay and the processes that result in their deposition) and palaeontology (the study of fossils, both animal and plant, and both macroscopic and microscopic).

You will be given a comprehensive course on these subjects and how they are used scientifically and industrially together with their impact on human society and the natural environment.

 
 

Chemistry


40 compulsory credits:

Core Laboratory Work 'N' (20 credits, full year)
This module builds on the practical, analytical and communication skills acquired in the first year and introduces more advanced experiments across inorganic, organic and physical chemistry (note – students choose 2 of the 3 from Inorganic, Organic and Physical Chemistry). Increasing use is made of spectroscopic and other analytical techniques in the characterisation of compounds. More detailed laboratory reports will be required. Each laboratory component is a non-compensatable course element. In order to pass the course students must attain a mark of at least 40% in each laboratory component (i.e. inorganic laboratory practical, organic laboratory practical, physical laboratory practical). This policy is in place so that students who proceed to the following year have an acceptable level of laboratory experience, taking into account both practical achievement and the safety of themselves, fellow students and staff.
 
Intermediate Inorganic Chemistry (10 credits, full year)
This module aims to survey the classical and new chemistry of the main group elements. To use group theory as a tool in the analysis of vibrational spectra in inorganic chemistry. To give a concise introduction to the organometallic chemistry of the transition metals. To use multinuclear NMR spectroscopy as a tool for the characterisation of molecules.
 
Principles in Analytical Chemistry (10 credits, Autumn semester)
 The module introduces the basic ideas of analytical chemistry, outlining general types of analytical problem, the main types of instrumentation used for separation and detection of analytes, and statistical treatment of analytical results. All principles will be illustrated by relevant recent examples from the literature.
 


20 compulsory credits from your chosen subpathway:

Organic subpathway

  • Intermediate Organic Spectroscopy and Stereochemistry (10 credits, Autumn semester)
The module provides both a theoretical description of modern spectroscopic techniques (NMR, IR, and mass spectrometry) for structural analysis of organic and biological molecules and practical applications of these techniques in problem solving. Aspects of the stereochemistry of bio-organic molecules are covered, including conformational analysis and stereocontrol in bio-organic reactions.
 
  • Intermediate Synthetic Organic Chemistry (10 credits, Spring semester)
The module is divided into two parts: (a) Functional group chemistry: synthetic transformations of alcohols, amines, carbonyls, and alkenes, and how these transformations are used to synthesise complex molecules such as natural products or pharmaceutical agents. (b) Synthesis: Introduction to retrosynthetic analysis and synthesis of organic molecules using a selection of pharmaceutical agents as examples. Formative feedback is given on the material in this module at the associated workshops. Summative feedback is provided after the exam by the module convenor.
 


Physical subpathway

  • Intermediate Spectroscopy and Quantum Chemistry (10 credits, Autumn semester)
  • Intermediate Physical Chemistry (10 credits, Spring semester)
 

 

Year Three

You will continue with the same two subjects studied in the second year, taking 50 credits in each. Alongside subject-specific study, you will undertake a 20-credit synoptic module which aims to tie together the subjects you are studying through an interdisciplinary group project.

Environmental Science


20 compulsory credits:

  • Natural Sciences Synoptic Module (20 credits, full year)


Compulsory with Biological Sciences

Environmental Biotechnology (10 credits, Spring semester)
This module provides training in environmental biotechnology, with particular emphasis on the interaction between microorganisms and the environment. The main topics covered will be wastewater treatment, bioremediation of organic and inorganic pollutants, microbes as indicators of risk factors in the environment, microbes in agriculture (biocontrol and biofertilisers) and the role of microorganisms in bioenergy production.
 


Compulsory with Chemistry

Environmental Pollutants (20 credits, Spring semester)
This module is concerned with the behaviour and effects of pollutants in terrestrial and aquatic environments and how their impacts can be ameliorated and managed. The focus is on both the scientific understanding of environmental pollutants and on the intervention strategies currently available. Topics covered include study of the common water and soil pollutants: heavy metal contamination of land, radionuclide behaviour in the environment, persistent organic contaminants and pesticides, nitrate pollution of groundwater, pollution of surface waters by agriculture, eutrophication of lakes, acidification of soils and freshwaters, biological monitoring of rivers, ecotoxicology and environmental epidemiology, quantitative risk assessment, land reclamation, including landfill sites.
 


Optional environmental science modules

A further 30 credits from the options below:

Arctic Ecology Field Course (10 credits, Autumn semester)
The course will focus on the function of arctic ecosystems. We will identify key terrestrial ecosystem drivers and processes in order to gain a broad understanding of arctic areas. During the field course, students will put ecological methodology into practice in projects that analyse landscape patterns and processes in different habitats. The course will also address climate change impacts on arctic ecosystems. The work will familiarise students with ecological methodology, experimental design, data collection and analysis, interpretation and presentation. Students are required to pay a contribution towards the cost of the field course.
 
Environmental Pollutants (20 credits, Spring semester)
This module is concerned with the behaviour and effects of pollutants in terrestrial and aquatic environments and how their impacts can be ameliorated and managed. The focus is on both the scientific understanding of environmental pollutants and on the intervention strategies currently available. Topics covered include study of the common water and soil pollutants: heavy metal contamination of land, radionuclide behaviour in the environment, persistent organic contaminants and pesticides, nitrate pollution of groundwater, pollution of surface waters by agriculture, eutrophication of lakes, acidification of soils and freshwaters, biological monitoring of rivers, ecotoxicology and environmental epidemiology, quantitative risk assessment, land reclamation, including landfill sites.
 
  • Environmental Biotechnology (10 credits, Spring semester)
This module provides training in environmental biotechnology, with particular emphasis on the interaction between microorganisms and the environment. The main topics covered will be wastewater treatment, bioremediation of organic and inorganic pollutants, microbes as indicators of risk factors in the environment, microbes in agriculture (biocontrol and biofertilisers) and the role of microorganisms in bioenergy production.
 
  • Environmental Pollution Field Course (10 credits, Autumn semester)
The field excursion will be of one week duration and will take place in September, immediately before semester 5. Students are required to pay a contribution towards the cost of the field course. The aim is to provide students with practical experience of a range of environmental pollution issues in a region of central Europe which historically has been one of the most polluted areas in the world. Specific issues covered during the excursion will be as follows:
  1. Soil acidification and forest decline/recovery.
  2. Contamination of soils and vegetation due to mining and air pollution.
  3. Biomonitoring using tree rings.
  4. Lignite mining and combustion, past and present.
  5. Reclamation of coal and uranium mines and contaminated land.
  6. Particulate and gaseous air pollution.
 
  • Computer Modelling in Science: Applications (20 credits, Autumn semester)
Modern biological and environmental science includes the study of complex systems and large data sets, including imaging data. This necessitates the use of computer models and analyses in order to understand these systems. This module contains an introduction to computer programming and modelling techniques that are used in the biological and environmental sciences. Specifically, it contains: (i) Development, simulation and analysis for models in space and time, using the Python language, with applications in the biological and environmental sciences; (ii) Analysis of long term behaviour of models in two or more dimensions; (iii) Methods for fitting models to experimental and environmental data; (iv) analysis of image data. The module will focus on relevant applications in environmental and biological science, e.g. chemical, radioactive and biological pollution, crop development and pathogens and microbiology. The module will use the Python programming language throughout and be assessed by a patchwork assessment consisting of write-ups of assignments from during the semester.
 
  • Geobiology (10 credits, Spring semester)
 

Geography


40 compulsory credits:

  • Natural Sciences Synoptic Module (20 credits, full year)
  • Environmental Informatics and Modelling (20 credits, full year)

This module will expose you to current practices, technologies and ideas existing at the forefront of environmental modelling. The module offers an opportunity for you to experience the theory and practice associated with key developments that are occurring in major modelling domains and the most recent advances from the research community. 

Hands-on experience of using machine-learning software and developing data-driven models will be an integral part of the learning experience.

The module will comprise four parts:

  1. Introduction 
  2. Modelling the impacts of climate change 
  3. Modelling biogeography 
  4. Hydroinformatics
 

 

20 compulsory credits from your chosen subpathway:

Physical Geography subpathway

20 credits from the options below:

Global Climate Change (20 credits, full year)

The module covers the following:

  • A review of modern climate systems and forcings
  • Climate modelling, projections of future climate change and their uncertainty
  • Controversies around climate change, the argument between believers and sceptics and the ways in which climate change is communicated to and perceived by the public 
  • The impact of climate change on the world's physical and built environments, water and food resources, and human health
  • Mitigation and adaptation to future climate change including the role played by policy markers and NGOs
 
Quaternary Environments (20 credits, full year)

This module considers the quaternary evolution, environmental and settlement history of the Yucatan peninsula of Mexico, building explicitly on material covered in Environmental Change. The focus of the course will be evolution of the present climate and environment of the lowland tropics and the interaction between the natural environment and human societies.

The module is based on a 10 day residential field trip to the Yucatan and project work associated with this. Full costs of the field trip will be advised nearer the time of the visit. The main elements are:

  • an overview of climate dynamics in the tropics, with particular emphasis on changes in the monsoon, the impact of sea level change and drivers of change from mid-latitudes
  • critical review of methods of environmental reconstruction, dating techniques and sampling methods (waters, soils, sediments)
  • archives of change relevant to the study area, primarily lakes and cave systems
  • quaternary history of the Yucatan
  • mesoamerican archaeology and cultural change in the Yucatan
  • exploration of the possible role of climate in driving societal change
 
  • River Management and Restoration (20 credits, full year)

This module further develops themes of river processes and dynamics introduced in the module River Processes and Dynamics, and considers them within the context of human attempts to manage and restore rivers. It initially centres on changes in the fluvial system that occur in response to river management and engineering and then goes on to examine approaches to restoring the natural functions of rivers that have been heavily degraded by human impacts.

The module includes reviews of past and present river channel restoration and rehabilitation activity in Europe and the USA. It details principles by which restoration practice is guided, and introduces criteria for selection between alternative strategies.

The module includes a residential field trip in semester two where students will have the opportunity to explore a range of river management and restoration issues relevant to rivers in the UK and develop practical skills in field survey and modelling techniques employed in contemporary river management.

 
  • Scale and Diversity in the Canary Islands (20 credits, full year)

The module involves the study of broad-scale patterns of diversity, endemism and evolution in the Canary Islands using secondary data made available and where necessary collected by students. Independent research by student research groups supported by lectures, training sessions, research development seminars, presentation and feedback sessions, and unlimited consultations with lecturers.

 


Technical Geography subpathway

Geospatial Technologies: Mobile, Augmented and Virtual (20 credits, full year)

This module focuses on the uptake of digital geographic information across a wide range of applications in society and the research agenda that is underpinning these developments. We will explore the use of location-aware mobile devices and techniques for geo-visualisation that are visually immersive and interactive. Content is organised as follows:

Part I: Digital Geographic Information in the public domain
Here we consider how a convergence of technologies (positioning, communication and processing) has allowed digital geographic information to make an impact 'beyond the desktop' at both a global scale through the web, and at a personal scale via the mobile device. This includes virtual globes, 'open' and 'linked' geographic information, Volunteered Geographic Information (VGI), location-based services, and mobile geospatial apps.

Part II: Virtual Geographic Environments
Here we look at the role and impact of multi-dimensional geographic visualisation to support decision making, environmental impact assessment, and the communication of spatial context. This includes animation and 3D graphics, advances in data capture, urban and rural landscape visualisation, interaction design and immersion, augmented and virtual realities.

 


Geoscience subpathway

  • Geological Hazards and Resources (20 credits, full year)

A geohazard is a natural process or phenomenon that has the potential to adversely affect humanity by endangering life or property. A geo resource is a substance or commodity that can be extracted from the subsurface for use by humanity. This module will spend one semester focussing on these two important issues for Environment and Society.

 


Optional geography modules

A further 10 credits from the options below:

  • Contaminated Land Site Investigation and Risk Assessment (10 credits, Autumn semester)
  • Introduction to Desert Geomorphology (10 credits, Spring semester)
Digital Explorers (10 credits, Autumn semester)

This module provides a consideration of the following:

  • Introduction to GI science/systems/studies/services 
  • Spatial data types and sources 
  • Vector processing algorithms 
  • Raster processing algorithms
  • Spatial analysis and decision making 
  • Professional training in ArcGIS 
 
Foundations of Environmental Management (10 credits, Autumn semester)

This module provides a foundation for the scientific concepts and issues which underpin environmental management. Topics covered include climate-change impacts and mitigation, river channel processes and management, pure and applied research on biodiversity patterns and conservation.

 
Patterns of Life (10 credits, Spring semester)

This module focuses on patterns in the distribution of organisms in space and time, and theories proposed to explain those patterns. The main themes are:

  • biodiversity patterns
  • island biogeography
  • biodiversity dynamics
  • speciation and extinction 
  • evolution
 
River Dynamics (10 credits, Spring semester)

This module:

  • introduces the water and sediment processes that operate in rivers
  • describes the characteristic forms of alluvial channels and the links between river processes and channel dynamics
  • uses laboratory practicals and a field trip to deliver kinaesthetic, student-centred learning and add value to teaching and learning during lectures

Topics covered include:

  • catchments and longitudinal patterns
  • river planforms: braided, meandering and straight
  • timescales of river change and morphological adjustments
  • complex response in the fluvial system
  • flow resistance, sediment transport and bank erosion
  • an introduction to biogeomorphology and aquatic ecology
 
 

Chemistry

30 compulsory credits:

  • Natural Sciences Synoptic Module (20 credits, full year)
  • Advanced Laboratory Techniques 'N' (10 credits, full year)
This course aims to teach advanced experimental techniques in chemistry. To provide experience in the recording, analysis and reporting of physical data. To put into practice the methods of accessing, assessing and critically appraising the chemical literature.
 


40 compulsory credits from your chosen subpathway:

Organic subpathway

  • Communicating Chemistry (10 credits, full year)
A classroom-based module for learning key skills including communication, presentation, team-working, active listening, time management and prioritisation. Increased transferable skills which will enhance employability and confidence. Provision of classroom experience if considering teaching as a potential career.
 
  • Bioinorganic and Metal Co-ordination Chemistry (10 credits, Autumn semester)
The aim of this module is to provide you with an understanding of coordination chemistry in the context of macrocyclic, supramolecular and bioinorganic chemistry and its applications in metal extraction and synthesis. You will gain an appreciation of the importance of metals in biological systems, and be able to explain the relationship between the structure of the active centres of metallo-proteins and enzymes and their biological functions. The module is assessed by a two-hour written exam.
 
  • Chemical Biology and Enzymes (10 credits, Autumn semester)
Discover the foundations of enzymological, chemical and molecular biological techniques needed to probe cellular processes and catalysis at the forefront of Chemical Biology research. By the end of the module you will understand the basic principles of protein expression, mutagenesis and purification, yeast two and three hybrid technology, protein NMR and Crystallography among other topics. There will be one and half hours of lectures a week.
 
  • Organometallic and Asymmetric Synthesis (10 credits, Autumn semester)
This module will introduce you to a range of reagents and synthetic methodology. You will learn how to describe how it is applied to the synthesis of organic target molecules. By the end of the module you will know how the use of protecting groups can be used to enable complex molecule synthesis and how modern palladium-mediated cross-coupling reactions can be used to synthesise useful organic molecules. Your problem-solving and written communication skills will be developed.
 
  • Protein Folding and Biospectroscopy (10 credits, Autumn semester)
This module will develop an understanding of protein structure, stability, design and methods of structural analysis. In addition you will understand the protein folding problem and experimental approaches to the analysis of protein folding kinetics and the application of site-directed mutagenesis. You will also be expected to develop a number of spectroscopic experimental techniques to probe protein structures. There will be two hours of lectures a week.
 
  • Catalysis (10 credits, Spring semester)
This module aims to provide a framework for understanding the action of heterogeneous catalysts in terms of adsorption/desorption processes and for understanding catalyst promotion in terms of chemical and structural phenomenon and also describes a wide variety of homogeneous catalytic processes based on organo-transition metal chemistry.
 
  • Topics in Inorganic Chemistry (10 credits, Spring semester)
This module covers inorganic mechanisms and the overarching fundamental principles of greener and sustainable chemistry as applied to processes, inorganic reaction mechanisms, and discussion on the theme of greener and sustainable chemistry
 
Pericyclic Chemistry and Reactive Intermediates (10 credits, Spring semester)
Use of frontier molecular orbital analysis to explain and predict stereochemical and regiochemical outcomes of pericyclic reactions (Woodward-Hoffmann rules etc). Examples will be drawn from Diels-Alder reactions, cycloadditions [4+2] and [2+2], [3,3]-sigmatropic rearrangements (eg Claisen and Cope), [2,3]-sigmatropic rearrangements (eg Wittig and Mislow-Evans). Generation and use of reactive intermediates in synthesis (ie radicals, carbenes, nitrenes).
 


Physical subpathway

  • Communicating Chemistry (10 credits, full year)
A classroom-based module for learning key skills including communication, presentation, team-working, active listening, time management and prioritisation. Increased transferable skills which will enhance employability and confidence. Provision of classroom experience if considering teaching as a potential career.
 
  • Bioinorganic and Metal Co-ordination Chemistry (10 credits, Autumn semester)
The aim of this module is to provide you with an understanding of coordination chemistry in the context of macrocyclic, supramolecular and bioinorganic chemistry and its applications in metal extraction and synthesis. You will gain an appreciation of the importance of metals in biological systems, and be able to explain the relationship between the structure of the active centres of metallo-proteins and enzymes and their biological functions. The module is assessed by a two-hour written exam.
 
  • Chemical Bonding and Reactivity (10 credits, Autumn semester)
To provide a fundamental understanding of molecular structure and of the requirements for reactivity. To introduce modern electronic structure theory and demonstrate how it can be applied to determine properties such as molecular structure, spectroscopy and reactivity.
 
  • Protein Folding and Biospectroscopy (10 credits, Autumn semester)
This module will develop an understanding of protein structure, stability, design and methods of structural analysis. In addition you will understand the protein folding problem and experimental approaches to the analysis of protein folding kinetics and the application of site-directed mutagenesis. You will also be expected to develop a number of spectroscopic experimental techniques to probe protein structures. There will be two hours of lectures a week.
 
  • Catalysis (10 credits, Spring semester)
This module aims to provide a framework for understanding the action of heterogeneous catalysts in terms of adsorption/desorption processes and for understanding catalyst promotion in terms of chemical and structural phenomenon and also describes a wide variety of homogeneous catalytic processes based on organo-transition metal chemistry.
 
  • Lasers in Chemistry (10 credits, Spring semester)
A general introduction to lasers, including laser radiation and its properties will be given, leading to why lasers have such widespread uses in Chemistry. The bulk of the module is devoted to selected applications, which will include some of: atmospheric measurements; combustion; photochemistry and synthesis; chemical kinetics; spectroscopic studies of isolated molecules (stable and reactive); studies of van der Waals complexes; studies of small metal clusters and nanoparticles; time-resolved studies.
 
Solids, Interfaces and Surfaces (10 credits, Spring semester)
This course aims to teach the relationship between structure and properties of solids, structure of Solids and characterisation. It aims to teach a general introduction to Interfaces and Surfaces.
 
Topics in Inorganic Chemistry (10 credits, Spring semester)
This module covers inorganic mechanisms and the overarching fundamental principles of greener and sustainable chemistry as applied to processes, inorganic reaction mechanisms, and discussion on the theme of greener and sustainable chemistry
 
 

 

Year Four (MSci students only)

You will choose one of your third-year subjects to focus on in the fourth year, spending half your time working on an independent research project aiming to develop the skills needed to pursue a career in research. Alongside the project you take taught modules in your main subject and if you wish to maintain some breadth you can also take options from your other third year subject.

Environmental Science


100 compulsory credits:

  • Environmental Science Research Project (60 credits, full year)
Writing and Reviewing Research Proposals (20 credits, full year)
The overall aim is to consider, practice, write and assess research proposals. In the real world, one may have to communicate to experts within your discipline or to non-specialist professionals. A subsidiary aim is to give students information and teach skills, which will help them in coursework assignments. A third aim is to give students the opportunity to study a topic, which may not otherwise be formally covered, and to communicate that topic to their peers.
 
  • Project Management (20 credits, full year)
Project management skills are a highly transferable skill directly relevant to employment sectors. The module will cover the fundamentals of project management, including project lifecycles, leadership in project management, managing risk in projects, analysis of project successes and failures and project management software. Students will produce a documented project management outline tailored to their research project to identify the key constraints, bottlenecks and milestones. This will be supplemented by the production of appropriate project management visualisation diagram, ie a Gantt or PERT chart. They will also present an interim verbal report to their supervisors and the module convenor to rehearse such reporting skills.
 
  • Statistics and Experimental Design for Bioscientists (10 credits, Autumn semester)
Principles of experimentation in crop science, basic statistical principles, experimental design, hypothesis testing, sources of error, analysis of variance, regression techniques, presentation of data, use of Genstat for data analysis. There are two routes through the module, one focusing on crop improvement and one focusing on more general issues.
 


Optional environmental science modules

Minimum of 0 credits, maximum of 10 credits from the options below:

  • Syndicate Exercise (10 credits, Spring semester)
This module covers the preparation of a group presentation and individual report on an environmental subject.
 
 

Geography


60 compulsory credits:

  • Natural Sciences Dissertation (60 credits, full year)


Minimum of 20 credits, maximum of 40 credits from the following:

  • Statistical and Computational Problem Solving (20 credits, full year)
  • Geographical Research Methods (20 credits, full year)
This module is split into three major sections:
  • Quantitative methods: This section gives students an introduction to parametric and non-parametric statistics and the use of databases and statistical packages.
  • Social research methods: You receive an introduction to the philosophical and analytical issues that lie behind designing social research methods. A range of social research methods are considered in terms of their approach, design, implementation and analysis.
  • GIS: You receive an introduction to the technologies of GIS. They cover the design and operation of these systems and how they are used as decision support tools. The material also covers the concept of modelling and what issues the user must be aware of in evaluating model outputs.
 


Minimum of 20 credits, maximum of 40 credits from the following:

  • Lakes and Catchments in the Anthropecene (20 credits, full year)
Geospatial Technologies: Mobile, Augmented and Virtual (20 credits, full year)

This module focuses on the uptake of digital geographic information across a wide range of applications in society and the research agenda that is underpinning these developments. We will explore the use of location-aware mobile devices and techniques for geo-visualisation that are visually immersive and interactive. Content is organised as follows:

Part I: Digital Geographic Information in the public domain
Here we consider how a convergence of technologies (positioning, communication and processing) has allowed digital geographic information to make an impact 'beyond the desktop' at both a global scale through the web, and at a personal scale via the mobile device. This includes virtual globes, 'open' and 'linked' geographic information, Volunteered Geographic Information (VGI), location-based services, and mobile geospatial apps.

Part II: Virtual Geographic Environments
Here we look at the role and impact of multi-dimensional geographic visualisation to support decision making, environmental impact assessment, and the communication of spatial context. This includes animation and 3D graphics, advances in data capture, urban and rural landscape visualisation, interaction design and immersion, augmented and virtual realities.

 
Quaternary Environments: Mexico Field Course (20 credits, full year)

This module considers the quaternary evolution, environmental and settlement history of the Yucatan peninsula of Mexico, building explicitly on material covered in Environmental Change. The focus of the course will be evolution of the present climate and environment of the lowland tropics and the interaction between the natural environment and human societies.

The module is based on a 10 day residential field trip to the Yucatan and project work associated with this. Full costs of the field trip will be advised nearer the time of the visit. The main elements are:

  • an overview of climate dynamics in the tropics, with particular emphasis on changes in the monsoon, the impact of sea level change and drivers of change from mid-latitudes
  • critical review of methods of environmental reconstruction, dating techniques and sampling methods (waters, soils, sediments)
  • archives of change relevant to the study area, primarily lakes and cave systems
  • quaternary history of the Yucatan
  • mesoamerican archaeology and cultural change in the Yucatan
  • exploration of the possible role of climate in driving societal change
 
Spatial Decision Making (20 credits, full year)
The first part of the module covers the theory and practice of utilising Geographical Information Systems (GIS) for supporting spatial decision making. It reflects upon the broader discipline of Geographical Information Science (GI Science) before considering the importance of data quality, key spatial analysis tools and visualisation techniques. A group project (with individual critical reflection) focussing on a site suitability exercise forms the focus for the coursework in the autumn semester and the examination covers theoretical underpinnings.

The second part of the module extends the skills and knowledge gained in part one by applying them to a real world problem supplied by an external client (Experian). You will work in teams by responding to an invitation to tender, then developing a GIS-based solution to a problem supplied by Experian which will typically involve evaluating alternative locations for retail developments around Nottingham. Teams will plan their own meetings, manage the division of workload and ensure they are meeting the requirements of the client (but also exploring further possibilities that the client may not have considered).

 
 

Chemistry


60 compulsory credits:

  • Chemistry Research Project (60 credits, full year)
This module will give students the opportunity to undertake a research project in Chemistry. A wide range of projects will be available and students will be offered a selection of research areas. All projects will require a review of relevant published work and the planning and execution of a research topic under the guidance of two supervisors. Students will present their findings orally and in a written report. 
 


Minimum of 20 credits, maximum of 60 credits from the options below:

Enterprise for Chemists (10 credits, full year)
Students will learn about the factors that lead to successful innovation, including evaluation and management of an idea/concept. In addition, students will consider the factors required to extract the value from a product/concept (e.g. market awareness) and the potential routes to market available from both an academic and industrial viewpoint.
 
 Advanced Physical Chemistry 1 (10 credits, Autumn semester)
The module covers advanced topics of current importance in Physical Chemistry. (1) Intermolecular Forces. Relevance of intermolecular forces. Calculating and measuring intermolecular forces. Computer modelling and simulations of condensed phases. Molecular properties and the multipole expansion. Perturbation theory of intermolecular forces. Monte Carlo simulations and calculation of thermodynamic properties. (2) Chemical Sensors. Principles of chemical sensing. Operating principles of electrochemical sensors, including ion-selective electrodes and amperometric sensors. Potentiometric and amperometric enzyme electrodes. DNA-based sensors. Piezoelectric sensors and biosensors. Immunological sensors and enzyme-linked immunosorbent assays.
 
  • Contemporary Organic Synthesis (10 credits, Autumn semester)

Explore the synthesis of a variety of natural (and unnatural) compounds of relevance to biology and medicine, with reference to the goals and achievements of contemporary organic synthesis through a range of case studies. There is an emphasis on the use of modern synthetic methodology to address problems such as chemoselectivity, regiocontrol, stereoselectivity, atom economy and sustainability.

You will also study the application of new methodology for the rapid, efficient and highly selective construction of a range of target compounds - particularly those that display significant biological activity. There will also be an opportunity to address how a greater understanding of mechanism is important in modern organic chemistry. This module is assessed by a two hour exam.

 
Contemporary Physical Chemistry (10 credits, Autumn semester
 

Applications will be introduced that range from condensed matter through to gas phase, but novel “states” of matter such as ultracold molecules in traps and liquid He nanodroplets, microsolvated clusters, and low dimensional carbon structures will also be covered. The dynamics of chemical processes, including non-adiabatic interactions will be discussed, and the capability of modern light sources allowing for the study of time-resolved measurements on chemically relevant timescales ranging from pico- to attoseconds will be explained and illustrated. Methods for the state-selective preparation and detection of molecular systems will be discussed. The principles by which extended systems can be designed to have properties allowing use in novel sensors and devices will be introduced. A wide range of computational techniques will be covered which underpin the modelling of cutting edge scientific applications such as gas capture and storage at the nanometer scale and novel nanomaterials.

 
Inorganic and Materials Chemistry A (10 credits, Autumn semester)
This course aims to give knowledge and understanding of (i) the structure, bonding and physicochemical properties of carbon nanostructures; (ii) the key technological applications of graphene, carbon nanotubes and fullerenes; (iii) the historical and the most modern approaches to advanced polymeric materials manufacture; (iv) the most important structure property relationships of polymeric materials and how these can be controlled, measured and exploited.
 
  • Inorganic and Materials Chemistry B (10 credits, Autumn semester)

This module builds on the previous years' modules on both transition metal chemistry and structural chemistry and focuses on Inorganic Photochemistry and Crystal Structure Determination. Photochemistry topics covered include Electron transfer pathways; dynamics and energies; biological systems; mixed valance compounds; Principles of molecular and supramolecular photochemistry; Applications of inorganic photochemistry; probes for DNA, ion sensors, artificial photosynthesis, photocatalysis, photodynamic therapy of cancer treatment. Crystal Structure Determination topics covered include an Introduction and Overview; a survey of key background concepts; sample preparation and evaluation; data acquisition and processing; structure solution and refinement; interpretation and analysis of results; case studies of routine and challenging structural problems; related techniques; sources and detectors; current practice and future developments.

 
Medicines from Nature (10 credits, Autumn semester)
This course aims to give an overview of the history of natural products and their importance to the discovery of medicines. To describe the relationship of natural products and how they are synthesised in nature to medicines in the following areas: non-steroid anti-inflammatory agents, steroids, polyketides and terpenes, vitamins, cannabinoids, anti-cancer agents, alkaloids and neurotransmitters and anti-biotics.To delineate the principles of process chemistry as applied to the pharmaceutical industry. To consider six main aspects of process chemistry: Safety, Environmental; Legal; Economics; Control; Throughput. To consider how these aspects can affect the viability of a synthesis and lead to the development of alternatives that are safer, have lower environmental impact, and are more efficient and cost-effective.
 
  • Advanced Physical Chemistry 2 (10 credits, Spring semester)
The module provides the student with the opportunity to study the topics of Astrophysical Chemistry and Quantum Mechanics and Spectroscopy to a more advanced level building on the Chemistry covered in the core modules.
 
  • Advanced Biocatalysis, Biosynthesis and Chemical Biology (10 credits, Spring semester)
Advanced Chemical Biology: To introduce concepts of chemical genetics and including activity-based protein profiling, non-natural amino acid incorporation, bio-orthogonal reactivity and the use of bump-and-hole strategies, applied to various challenges such as finding kinase/target pairs. Biocatalysis: To introduce enzyme engineering and the synthetic utility of designer biocatalysts, especially highlighting chemo-enzymatic approaches toward chiral commodity molecules (e.g. pharmaceuticals) and their precursors. Biosynthesis: To introduce the biosynthetic pathways and enzyme catalysed reactions leading natural products polyketides, terpenes, fatty acids and non-ribosomal peptides.
 
  • Nucleic Acids and Bio-organic Mechanism (10 credits, Spring semester)
During this module you will learn to understand in depth the structure, chemistry and molecular recognition of nucleic acids and their reactivity towards mutagens, carcinogens and ionising radiation and anti-tumour drugs. You will appreciate the plasticity and dynamics of the DNA duple helix through base motions that underpin its function. The bacterial replisome will be used as the prime example to highlight the problems associated with DNA replication and the significance of telomeres will be discussed. Alongside this you will develop an understanding of the chemical reactivity of coenzymes and how these add significantly to the functionality of the 20 amino acids found in proteins. 
 
  • Self-assembly and Bottom-up Approaches to Nanostructure Fabrication (10 credits, Spring semester)
 

 

The following is a sample of the typical modules that we offer as at the date of publication but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Due to the passage of time between commencement of the course and subsequent years of the course, modules may change due to developments in the curriculum and the module information in this prospectus is provided for indicative purposes only.

 

Natural Sciences

School of Chemistry, University of Nottingham
University Park
NG7 2RD

Tel: +44 (0) 115 823 2376
Fax: +44 (0) 115 951 3555
Email: naturalsciences@nottingham.ac.uk